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Abstract ─ Method of Moments (MoM) modeling 
inside resonating structures is discussed and a 
novel approach called Multi-MoM (Mi-MoM) is 
proposed. Propagation inside a two-dimensional 
(2D) non-penetrable parallel plate waveguide is 
taken into account. The Mi-MoM results are 
compared with the analytical reference solution. 
Practical ways of different source representations 
(untilted/tilted Gaussian beams) are also presented. 
Finally, surface irregularities inside the waveguide 
and their effects on the propagation are modeled 
with both Mi-MoM and the Split-Step Parabolic 
Equation (SSPE) method.   
  
Index Terms - computational electromagnetics, 
gaussian beam, Green's function, method of 
moments, mode summation, MoM, parallel plate 
waveguide, propagation, split step parabolic 
equation, SSPE. 
 

I. INTRODUCTION 
Method of Moments (MoM) [1] is one of the 

oldest numerical electromagnetic (EM) model. In 
this method, first a discrete model of the object 
under investigation is created from small pieces 
(compared to wavelength) called segments or 
patches. Everything on these segments is assumed 
constant. Then, an NxN system of equations is 
built with N unknown segment/patch currents, N 
known segment voltages, calculated from the 

Green's function of the problem, and known NxN 
segment/patch impedances. The model is closed-
form and stable, but necessitates high memory and 
high speed computers especially for high 
frequency applications (it requires N3 operations). 
It requires the Green's function of the problem. 
MoM has been successfully applied to broad range 
of EM scattering problems (see, for example [1-4] 
for some of the applications). MoM with some 
acceleration techniques (e.g., Forward-Backward 
Spectral Acceleration - FBSA) has also been 
applied to propagation problems [5-7], especially 
to long-range ground wave propagation over 
irregular and lossy Earth. 

Propagation modeling inside waveguides with 
irregular and lossy boundaries has become 
important because of signaling requirements 
through railway tunnels, communication in mines, 
screening in printed circuit boards (PCB), etc. The 
Split-Step Parabolic Equation (SSPE) and Finite 
Element based PE models to these guiding 
structures have been developed and calibrated 
against analytical reference data in [8]. MoM 
suffers from resonances in these waveguiding 
structures [9-10] therefore its direct application is 
a challenge. Here, a novel Multi-Iteration MoM 
model (Mi-MoM) is introduced for this purpose. 
Propagation inside a two-dimensional (2D), non-
penetrable parallel plate waveguide is taken into 
account. The novel Mi-MoM model is compared 
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against analytical reference data (generated from 
the exact mode summation model), as well as 
against SSPE [8-9]. 

Propagation inside a parallel plate waveguide 
is an interesting EM problem where both 
analytical and numerical models can be tested one 
against the others [11-12]. It can also be used for 
calibration. The Green's function solution (i.e., EM 
response of a line source) is exact but requires 
infinite number of mode (eigenfunction) 
summation [11]. This is a numerical challenge 
especially in the near vicinity of the line source. 
Modes are grouped into two; propagating modes 
(with real eigenvalues) and evanescent modes 
(with complex eigenvalues). The number of 
propagating modes depends on the frequency and 
width of the plate. A tilted directional antenna can 
also be located inside and can be modeled in terms 
of modes, but modal excitation coefficients 
become complex. This is another numerical 
challenge, especially at high frequencies when the 
number of propagating modes is extremely high. 
The modes are global therefore do not suffer from 
local problems, but extraction of modal excitation 
coefficients is crucial when generating reference 
solutions. Analytical exact solution can also be 
constructed in terms of rays which are local wave 
pieces; again summation of infinite number of rays 
is required for the line source excitation [12]. 
Moreover, eigenray extraction might have 
numerical problems. 
 

II. THE 2D GREEN'S FUNCTION 
PROBLEM AND ANALYTICAL 

REFERENCE SOLUTION 
The 2D parallel plate waveguide is pictured in 

Fig. 1. Here, x and z are the transverse and 
longitudinal coordinates, respectively. The 
structure is infinite along y-direction ( 0 y/ ). 
The width of the waveguide is a. The PEC 
boundaries are assumed Dirichlet-type for the TEz 
(transverse electric with respect to z) problem and 
Neumann-type for the TMz (transverse magnetic 
with respect to z) problem (see [13] for TE/TM 
discussions).  

Since the TEz and TMz sets are decoupled, 
each can be excited independently of the other by 
appropriate selection of the sources, J and M. The 
line sources Mx, Mz, Jy excite the TEz set, whereas 
the line sources My, Jx, Jz excite the TMz set. 

Further simplification can be obtained by setting 
the source components Mx=0, Mz=0 for the TEz 
set, and Jx=0, Jz=0 for the TMz set. 

 

 
Fig. 1. The non-penetrable (PEC) parallel plate 
waveguide, x: height, z: range and tilt is measured 
from z-axis (“+” for upwards, “-” for downwards). 

 
The Green's function problem (under 

)exp( tj  time dependence) associated with both 
the TEz set (when Mx=Mz=0) and the TMz set 
(when Jx=Jz=0) is postulated as: 
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Here,  zx ,  and  zx,  specify source and 
observation points, respectively,    is the Dirac 
delta function, 000 /2  k  is the free-
space wave-number, and  is the free-space 
wavelength. 

The Green's function  zxzxg ,;,  can be 
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where amkxm /  , 22
0 xmzm kkk  . The line-

source-excited fields are then given by either 
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gjEy 0  or gjH y 0  for the TEz and TMz 
cases, respectively. The remaining field 
components can be calculated from 
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for the TEz model and  
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for the TMz model. 
 

 
 
Fig. 2. Field vs. z  (TMz case): (Solid) only 15 
propagating modes, (Dashed) The first 100 modes 
(a=1 m, 0z , 3.0x m, 7.0x m, 500 ak ). 

 
A short MatLab code is prepared for the 

calculation of field distribution inside the parallel 
plate waveguide in terms of mode summation for 
both polarizations. An example is shown in Fig. 2. 
Here, longitudinal variation of the field inside a 
1m-wide plate at 7.0x m is pictured. The line 
source is at 3.0x m. The number of propagating 
modes for the sets of parameters listed in the 
figure is 15. The two curves belong to the 
summation of the first 15 and 100 modes. As 
observed, at a distance beyond 5.0z m (i.e., 
after 3-4  distance) only propagating modes 
contribute. Figure 3 displays field vs. x at two 

different distances ( 2z  and 20z ). As 
observed, the contribution of only propagating 
modes at 2z  is not enough to build the correct 
field distribution. 

 
 
Fig. 3. Field vs. x  (TMz case): (Solid) only 15 
propagating modes, (Dashed) The first 100 modes 
( 1a m, 0z , 3.0x m, 500 ak ). 

 
The line source is a theoretical antenna. In 

practice, a directive antenna is used in many 
applications. This antenna can be tilted upwards or 
downwards. A directive antenna with tilt- 
capability is usually modeled by injecting a 
vertical field distribution (e.g., a complex 
Gaussian function) in analytical and numerical 
simulations. It is therefore a challenge to compare 
models using line source excitations models with 
directive antennas; even data normalization may 
not be a solution in many cases. One solution in 
modeling a tilted (Gaussian) beam excitation is to 
use a line source at a specific horizontal position 
and then determine the ray excitation coefficients 
according to their departure angles. 

The tilted Gaussian source  zxf ,  inside a 
parallel plate waveguide at zz   may be 
represented in terms of modal summation as: 

      
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M

mm
xmmm xkvzczxf

0

,,  (7) 

where M is the highest mode that should be 
included for the specified excitation (and depends 
on the specified accuracy), mv  is the normalization 
constant calculated from  
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and  zcm   is the modal excitation coefficient, 
numerically derived from transverse 
orthonormality condition:  
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The initial field profile )0,(xf  at 0z  is 
generated from a tilted Gaussian pattern 
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where ))2/sin(/(2ln2 0 bwkw  . The tilted 
antenna pattern is specified by its transverse 
position ( x ), beamwidth (θbw) and tilt (elevation) 
angle (θelv). Note that,   again shows either Sine 
or Cosine function starting from either m0=1 or 
m0=0 for the TEz and TMz cases, respectively. The 
number of modes would be finite for numerical 
computations. It is common to choose a vertically 
extending Gaussian function with arbitrary 
location having vertical elevation angle in the 
range of ±90° (plus for upwards, minus for 
downwards). Note that the modal excitation 
coefficient mc  is real for a real source function 
without any tilt, and becomes complex if the 
source is tilted. 

It should be noted that, reference data can best 
be generated from analytical exact solution if 
numerically computed accurately. The mode 
summation solution is exact but necessitates 
infinite number of terms with complex excitation 
coefficients for tilted directive antennas. 

Figure 4 illustrates reliability of the reference 
data for a tilted Gaussian antenna. Here, field vs. x 
at two different z points for the same set of 
parameters, but for a directive antenna tilted 30° 
downwards with 45° beamwidth. The solid line 
belongs to data generated with the mode 
summation model. The dashed line belongs to the 
well-known Split-Step Parabolic Equation (SSPE) 
model [9]. A perfect agreement indicates the 
reliability of the reference data under both line 
source and directive antenna excitations. 

 
Fig. 4. Field vs. x (TMz case): (Solid) Mode sum 
with 49 modes, (Dashed) SSPE ( 1a m, 0z , 

3.0x m, 500 ak , 0.01dz dx  m,  45bw ,  
 10elv ). 

 
III. PARALLEL PLATE WAVEGUIDE 

AND METHOD OF MOMENT 
MODELING  

Method of Moments (MoM) technique can be 
used to find propagation of horizontally (TEz case) 
and vertically (TMz case) polarized waves by 
using the Electric Field Integral Equation (EFIE) 
and the Magnetic Field Integral Equation (MFIE), 
respectively. Open region propagation over 
irregular ground and/or rough surface has been 
successfully modeled with MoM (see, for 
example, [5-7] among a huge number of reference 
list which cannot be included here). In the 
classical MoM, the integral equation is converted 
to the corresponding matrix equation via the 
discretization of the ground/surface. Then, an NxN 
system of equations     IZV   is constructed 
and is solved numerically. Here,  I  contains the 
unknown segment currents,  V  contains segment 
voltages excited by the source,  Z   is the NxN 
impedance matrix of the ground/surface. Solution 
of this system yields the unknown segment 
currents. Superposition of the contributions of the 
segment currents via the Green's function of the 
problem yields the ground-scattered field. Finally, 
the total field is obtained by adding the incident 
field [6].  

The classical MoM approach can be enhanced 
to model propagation inside waveguiding 
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structures. This is achieved by using the free-space 
Green's functions with a multi-iterative approach 
to build in the presence of the multiple reflections 
due to the conducting walls. Figure 1 shows MoM 
discretization and related parameters. Ray 1, 
shown as a sample, induces segment currents 
because of the external source. Ray 2 contributes 
to the field because of the induced segment 
currents. Ray 3 represents higher order effects on 
bottom segments caused by top segment currents.  
Necessary formulae for both polarizations are as 
summarized in [1,2,7]: 
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TMz case 
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where z  is the segment length,  1200   is the 
intrinsic impedance of free space, )2(

0H  and )2(
1H  

are the second kind Hankel functions with order 
zero and one, respectively, 781.1  is the 
exponential of the Euler constant, mn̂  denotes the 
unit normal vector of the plate at  mρ , and nmρ̂  is 

the unit vector in the direction from source mρ  to 
the receiving element nρ . 

The Mi-MoM procedure may be outlined as 
follows:  
 First, discretize top and bottom boundaries. Use 

N segments for the lower and N segments for 
the upper boundaries. Label all segments from 1 
to N in a way that Segment 1 and Segment N+1 
have the same horizontal (i.e., z) coordinate (i.e., 
parallel to each other). 

 Calculate segment currents  I  from 
     VZI 1  and scattered/total fields using 
either inc

yE   in (11a) or inc
yH  in (12a) for TEz 

and TMz polarizations, respectively. 

 For a given source point, calculate distances to 
all segments and segment voltages, using either 

inc
yE   in (11b) or inc

yH   in (12b) for TEz and 
TMz polarizations, respectively. This will yield 
 V . 

 Calculate the impedance matrix nmZ  from either 
(11c) or (12c) for TEz and TMz polarizations, 
respectively.  

 The segment currents induced by the external 
source on the top plate excite field on segments 
on the bottom plate and a vice versa. For the 
first segment on the bottom plate, calculate 
distances to all segments on the top plate and 
segment voltages, using either inc

yE  in (11a) or 
inc
yH  in (12a) for TEz and TMz polarizations, 

respectively. Repeat this for all segments on the 
bottom plate and find out the voltages on the top 
plate caused by the segments on the bottom 
plate. 

 Do the same for the segments on the top plate 
and find out the voltages on the bottom plate 
caused by the segments on the top plate. This 
will yield second round  V . 

 Use the same impedance matrix nmZ  and 
calculate second round segment currents  I  

from       VZI 1  and scattered/total fields 
using either sc

yE   in (11d/11e) or sc
yH  in 

(12d/12e) for TEz and TMz cases, respectively. 
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 Repeat the procedure and find out third round 
segment currents and scattered/total fields 
caused by these current. 

 Repeat the whole procedure until a desired 
accuracy is reached. 
 

An alternative way is to find out first round 
segment currents and then use the Image Method 
(IM). First, all segment currents of upper and 
lower plates are obtained. Then, boundaries are 
removed and image segments are added with 
respect to the upper and lower plates. Finally, field 
contributions from the currents of segments and 
image-segments are superposed at the receiver. 

Two examples for the Mi-MoM procedure are 
given in Figs. 5 and 6. Figure 5 shows propagation 
factor (PF) (calculated field divided by its free-
space value in dB) vs. z  at a fixed x  inside the 
parallel plate waveguide calculated with mode 
summation and Mi-MoM methods. As shown, 
very good agreement is obtained. As expected, 
Mi-MoM suffers from end-point effects, since 
segments before the first one and after the last one 
are neglected [6]. In order to overcome 
insufficiency of the MoM end-point effects one 
needs to extend the horizontally at least one or two 
wavelengths at both ends. 

 

 
 

Fig. 5. Propagation factor vs. z  (TMz case): 
(Solid) Mode sum, (Dashed) Mi-MoM 
( 100a m, 0z , 50x m, 5x  m, 5.2090 ak ). 

 
Figure 6 shows field vs. x  at two different z  

points, again calculated with mode summation and 
Mi-MoM methods. As observed, the agreement is 
very good. Note that, the agreement in Fig. 5 is 
better than the agreement in Fig. 6; this is merely 

because of the frequency used in these examples 
( 5.2090 ak  in Fig. 5, but 500 ak  in Fig. 6). 
The accuracy of Mi-MoM solution increases with 
frequency (i.e., with ak0 ).   

 

 
 
Fig. 6. Field vs. x  (TEz case): (Solid) Mode sum, 
(Dashed) Mi-MoM, 1a m, 0z , 4.0x m, 

500 ak . 

 
Fig. 7. The field map (TEz case): (Top) Mode sum 
with 42 modes, (Bottom) Mi-MoM with 40 
iterations, 1a m, 0z , 0.3x  m ( 500 ak , 

0.01dz dx  m,  45bw , no tilt). 
 
Figures 7-9 belong to comparisons for 

directive antennas. As observed, the agreement 
between Mi-MoM results and the reference data is 
impressive even for these highly 
resonating/oscillatory variations.  
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Fig. 8. Field vs. z at 0.2x  m: (Top) TEz case, 
(Bottom) TMz case, (Solid) Mode sum with 282 
modes, (Dashed) Mi-MoM with 50 iterations 
( 1a m, 0z , 0.4x  m, 2000 ak , 

0.0025dz dx  m,  80bw , no tilt). 
 

 
 
Fig. 9. Field vs. z  at 0.2x  m: (Top) TEz case, 
(Bottom) TMz case, (Solid) Mode sum with 298 
modes, (Dashed) Mi-MoM with 50 iterations 
( 1a m, 0z , 0.4x  m, 2000 ak , 

0.0025dz dx  m,  45bw ,  20elv ). 
 
The final example belongs to a more realistic 

case. Figure 10 presents Mi-MoM vs. SSPE 
comparisons inside a PEC parallel plate 
waveguide with some irregularities on the bottom 
plate. Figure 10a presents the structure. Here, two 
Gaussian-shaped hills are shown on the bottom 
plate. Figure 10b shows 3D field map inside the 

plate. Figure 10c belongs to the z   variations of 
the field at 4.0x m for the TEz polarization 
computed with Mi-MoM and SSPE methods. 

 

 
 
Fig. 10. (a) PEC waveguide with irregular bottom 
plate, (b) Field map produced with the SSPE, (c) 
Field vs. z  at 0.4x  m, both for TEz case, (Solid) 
SSPE, (Dashed) Mi-MoM with 50 iterations 
( 1a m, 0z , 0.4x  m, 2000 ak , 

 80bw , no tilt, 0.0025dz dx  m). 
 

VI. CONCLUSIONS 
A novel Multi-Iteration Method of Moment 

(Mi-MoM) procedure is introduced to model the 
propagation inside resonating structures. A two-
dimensional (2D) parallel plate, non-penetrable 
waveguide is chosen as the test structure.  

Mi-MoM results are tested against reference 
data generated from analytical exact mode 
summation method and are calibrated. Both the 
line source excitation and directive antennas are 
used during these tests. The Mi-MoM approach 
may increase applicability and efficiency of the 
MoM which has widely been used in modeling 
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antenna (radiation), propagation, and scattering 
problems for several decades. 

Note that, /10 segmentation is enough for 
many applications, but up to /100 discretization 
will be necessary for high-accuracy computations. 
Finally, direct solution of the MoM matrix system 
can be achieved up to 8000-10000 segments with a 
student PC. Beyond this, acceleration techniques 
are mandatory [5-7]. 
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