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Abstract — An electromagnetic interference (EMI)
suppression technique for gigahertz (GHz)
frequency region of hard disk interconnector,
namely trace suspension assembly interconnector
(TSAI) is presented. The BSR-1 absorber is
selected and filled in between conductor traces of
the interconnector. The attenuation of radiated and
conducted EMIs are calculated and analyzed by
using simulation software based on finite integral
technique. From the results, it is found that the
proposed technique can suppress radiated EMI
from 16 pV to 0.5 pV in all frequency regions up
to 20 GHz and the conducted EMI can be
suppressed up to 0.7 Watt in a range of 0.9 GHz —
4.0 GHz with the same structure of TSAI

Index Terms - Electromagnetic coupling,
electromagnetic interference, interconnector, and
interference suppression.
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I. INTRODUCTION

To improve the data transfer rate of high speed
hard disk drives (HDDs), the operating frequency
has to be increased. However, the effects of EMI
have to be suppressed because these effects can
degrade the recording head in HDD as reported in
[1, 2]. EMI can be classified as two types, which
are radiated and conducted EMI. The EMI
mechanism of both, including the three
components includes source, path, and victim [3].

The radiated EMI from a cell phone, which
causes the recording head degradation, has been
reported [1, 2]. As the results, the signal integrity
affected by an external EMI can cause latent
failure to the sensitive components in HDDs [4, 5].
For conducted EMI, the EMI can interfere with
both analog and digital signals, which is used in
the read/write channels of HDDs [6]. In addition,
the write-to-read crosstalk in trace suspension
assembly interconnector (TSAI) is an example of
the conducted EMI, which is reported in [7, 8].
Consequently, the effects of radiated and

1054-4887 © 2013 ACES

984



985

conducted EMI on the TSAI are a new challenge
to design with low EMI.

A flexible printed circuit ribbon without a
cover layer connects the HDD heads to an
amplifier via TSAI behaving like an antenna [9].
Then, the TSAI can pick up the EMI signal and
can cause failures in magnetic recording heads,
which are severe problems [3]. Thus, one
approach to mitigate the EMI is the overcoat of the
interconnector traces with absorbing magnetic
material [10, 12]. A drawback of this technique is
an increase in the size of the TSAI, hence, it is
undesirable for HDD applications.

The aim of this study is to find a new EMI
suppression technique on TSAI based on the
filling commercialized BSR-1 [13] absorber in the
gap between copper traces of TSAIL. A physical
advantage over the previous approach [10, 12] is
that the original TSAI dimensions have not been
changed. The absorption properties of the BSR-1
with the radiated and conducted EMI on TSAI are
presented. The results throughout this study are
determined by using the finite integral technique
in CST Microwave Studio [14].

II. INTERFERENCE MODEL FOR TSAI

The form factors of HDD have several
dimensions, which consist of 1.8-, 2.5-, and 3.5-
inch. The 2.5-inch drive is the main market of
HDD technology that mostly uses in present [15].
Then, the selected TSAI is approximately 35 mm
in length, which is used in 2.5-inch drives and is
used in this simulation. As show in Fig. 1 (a), the
TSAI is comprised six copper traces, which are 1
heater trace for flying height control, 2 read traces,
1 ground trace, and 2 write traces. From Fig. 1 (b),
it is only two out of six copper traces, which are
chosen to exhibit the effect to the active
components of radiated [16] and conducted EMI
[10].

The selected TSAI structure is supported by a
20 pum of stainless steel with the grooves being
filled by BSR-1 between two copper traces are
modeled. A 10 um polyimide dielectric substrate
has a permittivity of 3.5 and a dielectric loss
tangent of 0.003. To investigate the EMI
suppression properties of BSR-1 on TSAI, the
simulations begin with the magnetic film thickness
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(tm) of zero (no filling BSR-1 absorber), 3, 6, 9,
12, 15, and 18 pm (100% filling BSR-1 absorber).
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Fig. 1. (a) Cross-sectional geometry of TSAI [8]
and (b) model of conduction EMI and radiation
EMI.

The simulations of the radiated EMI are
shown in Fig. 1 (b). The TSAI is exposed to the 1
V/m incident field of 20 GHz bandwidth Gaussian
pulse. It achieves the maximum coupling, when
the propagating field is oriented, such that an E-
field is perpendicular to the plan of incident (the
elevation angle # = 90°, and azimuth angle ¢ =
90°) [17].

The radiated noise can be measured when the
50 Q of load impedances are terminated at both
ends of TSAIL The occurrence of the radiating
noise voltage at the far-end terminal of the TSAI is
determined by coupling voltage (Vpg) where the
active components are located [17]. The radiated
EMI suppression effected by using BSR-1 on the
TSAI is defined as the shielding effectiveness
(SE), which is given by equation (1) [18],

SE = 2010g(V rpiou - filled !V ttin - ﬁ/led) (D)

For the conducted EMI simulation, the port
label is defined to calculate S-parameters obtained



from the CST simulation software as shown in
Fig. 1 (b). Both reflection coefficient (S;;) and
transmission coefficient (S),) are evaluated to
analyze the conducted EMI on the interconnector
[11]. The evaluation of conducted EMI suppressed
on TSAI by using BSR-1 can be estimated by
power absorption, which is defined as the ratio of
loss power to input power (Ploss/Pin), using the
following equation [13],

Plass/Pin :1_(]Sll|2 +|S21|2) . (2)

The electromagnetic properties of BSR-1 are
depicted in Fig. 2. The major parameters
determining the absorbability comprise a real-part
permeability (') an imaginary-part permeability
(") and a magnetic loss tangent (tan d,,). The tan
Om represents an absorption performance of the
material. As seen in Fig. 2, the maximum tan 6,,
occurs around 10 GHz — 14 GHz, this means that
the material provides a good absorption
performance around 10 GHz [19].
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Fig. 2. Material properties of BSR-1.

The absorption ability of BSR-1 material is
indicated by reflective loss (RL). It is given by
equation (3) [19],

Z, —50
Z, +50

7 - H=ju"
" 8'—j5"—j0/(6()80)

(440 [ oo o) |

RL =-201log 3)

and
o=2xnf , ®)]
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where Z. . u,u',e,¢ ,¢,,0,f,d,and c represent

impedance of incidence wave, real part of
permeability, image part of permeability, real part
of permittivity, image part of permittivity,
permittivity of vacuum, conductivity, frequency of
electromagnetic wave, thickness of material, and
light speed, respectively [19].

As seen in Fig. 3, the RL of BSR-I
significantly decreases with increasing ¢, and
frequency according to the details in [19]. This can
be explained by the magnetic loss, which is
inversely proportion when frequency and ¢, were
increased [19]. It is likely to be one of good
candidates for EMI suppressor at this frequency
region. Hence, the EMI absorption ability on TSAI
is also explained in this study.
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Fig. 3. Reflective loss of BSR-1with various
magnetic film thickness (7).

III. RESULTS AND DISCUSSIONS

A. Suppression characteristics for the radiated
EMI

In this section, the effects of BSR-1 absorber
on the coupling voltage (Vg) and shielding
effectiveness (SE) are analyzed. The Vgg versus
frequency with various #, for the examined
structures are shown in Fig. 4. A considerable
amount of decoupling at GHz is observed with
increasing ¢, because the decrement of Vg with
increasing #,, is evaluated. For 7, > 15 um, the
lowest of Vgg is obtained at all frequency regions.
Besides, the fluctuation of Vig from dimensional
resonance at around 17 GHz — 19 GHz is
removed. It is a desirable characteristic for the
decoupling signal because both fewest and
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smoothest of Vgg are achieved. This effect is due
to a higher magnetic loss from a higher surface
impedance of absorber with increasing absorber
thickness [19]. In addition, the suppression of
radiated EMI is obtained by increasing #, because
of the attenuated Vg by increment of #,.
Furthermore, the TSAI with #, > 15 pum can
suppress a large of coupling voltage from 16 uV
into 0.5 uV at all regions.
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Fig. 4. Coupling voltage (Vpe) with various
magnetic film thicknesses (#,,).

Figure 5 shows the SE of TSAIL which is
calculated from equation (1). It is seen that the SE
is above 10 dB for frequency below 1 GHz as well
as rapidly increasing as a function of frequency
from 1 GHz to 10 GHz. In addition, the SE
reaches the maximum of 30 dB at 12 GHz. After
that, SE is dramatically decreased from frequency
over 13 GHz and attains 10 dB at 19 GHz.
However, the SE is decreasing below 10 dB for 19
GHz — 20 GHz range, which is the undesirable
characteristic for the radiated EMI suppression. As
the results, the shielding of radiated EMI over 10
dB at 0 GHz — 19 GHz and the highest of 30 dB at
12 GHz are achieved for TSAI with 100% filling
BSR-1 absorber. Hence, TSAI with 100% filling
of BSR-1 absorber is the best choice to suppress
the radiated EMI, which is appropriate at 0 GHz to
19 GHz region with the greatest performance at 12
GHz.

B. Suppression characteristics for the

conducted EMI

The Sy, and S,; versus frequency with various
tm are depicted in Fig. 6. Both Sy, and S, decrease
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with the increasing of #, and frequency. This is
because the absorption of the conducted currents
caused by magnetic loss (see in Fig. 3) is
proportional to #,, and frequency [19]. From Fig. 6,
it is clearly observed that a magnitude of §;; and
S5, decrease with increasing #,,. For all regions, the
S, obtains below -10 dB with the #, above 3 um
and provides the minimum with #, of 18 pm
(100% filling BSR-1 absorber). For the S, it
decreases as frequency increases, however, the
level of S, decreased when ¢, increased. In
addition, the maximum attenuation at over 1 GHz
is achieved with 100% filling BSR-1 absorber.
Also, the suppression ability of TSAI in case of
conducted EMI can be controlled in 1 GHz to 20
GHz by varying #,,.
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Fig. 5. Frequency dependence of shielding
effectiveness (SE) in dB.
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Fig. 6. S-parameters with various magnetic film
thickness (7).



Figure 7 shows Pi/Pin as a function of
frequency with various #,. It is found that the
Pross/ Pin rapidly increases as frequency increases. It
is according to the results shown in Fig. 6. From
Fig. 8, Pioss/Pin 0f the 100% filling BSR-1 on TSAI
begins to rise up to 0.7 GHz and tends to decrease
around 0.3 GHz. This means that the filling BSR-1
absorber on TSAI can tune the absorption
frequency region. Furthermore, the pure power
absorbed is calculated by the difference between
P/ Pin with and without 100% filling BSR-1
absorber, which is represented by APs/Pi, as a
solid line in Fig. 8. It is found that the AP)ys/Piy
initiates rise at 0.1 GHz and rapidly increases to
0.7 W. This means that the conducted EMI can be
suppressed up to 0.7 W and normalized by 1 W of
the input power in a range of 0.9 GHz — 4.0 GHz.
Thus, the proposed technique is an outstanding
approach to suppress the conducted EMI in the
GHz region.
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Fig. 7. The ratio of loss power to input power
(Pioss/ Pin), With various magnetic filling thickness

(1)

IV. CONCLUSIONS

A novel electromagnetic interference
suppression technique using magnetic material in
the gap between the trace suspension assembly
interconnector (TSAI) is  proposed. The
attenuations of radiated and conducted emissions
are analyzed by using simulation software based
on finite integral technique. From the radiated
results, it is found that the proposed technique,
especially the 100% filled TSAI provides the
lowest of 0.5 puV of the coupling voltage. In
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addition, the shielding effectiveness of the 100%
filled TSAI shows the greatest performance at 12
GHz according to the electromagnetic properties
of the absorber material. For conducted emission,
the results show that the power absorption
decreased with increasing the absorber thickness
and the large of absorbability of 0.7 W in a range
of 0.9 GHz — 4.0 GHz is provided. Hence, this
technique is an alternative technique that is
suitable for practical TSAI design to provide a
good immunity for EMI reduction at GHz region.
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Fig. 8. The ratio of loss power to input power
(Pios/Pin) and the difference of Pi/Pin between
TSAI with and without 100% filling BSR-1
absorber (APyyss/Pin).
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