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Abstract ─ Two novel high selectivity balanced filters 

based on transversal signal-interaction concepts with 

wideband common mode suppression are proposed in 

this paper. Four and six transmission zeros near each 

passband are realized to improve the selectivity for the 

differential mode. In addition, the common mode can be 

suppressed with insertion loss greater than 15 dB over a 

wide frequency band. Two prototypes (r = 2.65, h = 0.5 mm, 

tan δ = 0.003) with 3-dB fractional bandwidths of 31.3% 

and 32% for the differential mode with upper stopband 

greater than 18 dB are designed and fabricated. Good 

agreements can be observed between measured results 

and theoretical expectations.  

 

Index Terms ─ Balanced filter, differential/common mode, 

open/shorted coupled lines, transmission zeros, transversal 

signal-interaction concepts. 

 

I. INTRODUCTION 
Balanced circuits have recently attracted special 

attention in communication systems for their higher 

immunity to the environmental noises, better dynamic 

range, and lower electromagnetic interference [1]. Many 

different balanced filters with selective filtering of 

differential mode (DM) signal and suppression for 

common-mode (CM) response are illustrated in [2]-[12]. 

In [2], the multi-stage branch-line topologies on a single-

layer microstrip line were utilized to design a class  

of wideband balanced filters, but these filters have 

disadvantages of large overall circuit area. Some 

differential ultra-wideband (UWB) balanced bandpass 

filters based on double-sided parallel-strip line (DSPSL) 

are illustrated in [3], however, the upper stopbands for 

the differential mode are a little narrow. In [4], wideband 

differential filters employing the transversal signal-

interaction concept are used to improve the common 

mode suppression, as well as the simple design theory 

with large insertion loss. In [5], the low-loss balanced 

filter with wideband common mode suppression using 

microstrip-slotline coupling are realized, but the numbers 

of transmission zeros near the differential mode 

passband are difficult to increase. In addition, the T-

shaped resonator in [6] and ring resonator in [7]-[8] were 

applied to design balanced filters. In [9], the common-

mode suppression of the balanced bandpass filter can be 

kept at a high level by adding a varactor to the center  

of the resonator. In [10], a balanced SIW filter using 

source-load coupling is proposed. To further improve the 

selectivity of the balanced filters, coupled lines and 

quarter/half-wavelength open/shorted stubs have been 

widely used [11-12]. 

In this paper, two novel balanced filter circuits based 

on transversal signal-interaction concepts with multiple 

transmission zeros for the differential/common mode are 

proposed. Four and six transmission zeros near the 

differential mode passband can be easily realized using 

the transversal signal interference concept, and five and 

seven transmission zeros can be also used to realize 

wideband common mode suppression. Two prototypes 

of the balanced filters operating at 3.0 GHz are constructed 

on the dielectric substrate with r = 2.65, h = 0.5 mm, and 

tan δ = 0.003. 

 

II. ANALYSIS OF PROPOSED BALANCED 

FILTERS 
In this section, two balanced filters based on 

transversal signal-interaction concepts are analyzed in 

detail. The differential mode and common mode circuit 

are used to analyze the transmission characteristics of the 

two balanced filters in Part A and Part B, the simulated 

results of the two balanced filters are given in Part C.  

 

A. Balanced filter analysis (Structure I) 

Figure 1 (a) shows the ideal circuit of the proposed 

balanced filter structure with four transmission zeros. 

Four open/shorted coupled lines (even/odd-mode 

characteristic impedance Zoe2 and Zoo2, electrical length 

θ) with two quarter-wavelength transmission lines 

(characteristic impedance Z1, electrical length θ) on each 

side are shunted connected in the input/output ports  

1, 1', 2, 2'. Four open coupled lines (even/odd-mode 

characteristic impedance Zoe1 and Zoo1, electrical length 

θ) are located in the center of the equivalent circuit with 

two shorted stubs (characteristic impedance Z1, electrical 
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length θ) and an open stub (characteristic impedance Z1, 

electrical length 2θ). The characteristic impedances of the 

microstrip lines at the input/output ports are Z0 = 50 Ω.  

When the differential mode signals are excited from 

ports 1 and 1' in Fig. 1 (a), a virtual short appears along 

the symmetric lines, as shown in Fig. 1 (b). The odd-mode 

equivalent circuits for the differential mode are shown in 

Fig. 2 (a), and the even/odd-mode input admittances for 

the differential mode are: 
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When Ye/o-DM=0, the resonator frequencies in the 

passband for the odd-mode for the differential mode can  

be calculated as: 
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    (a) 

 
  (b)   (c) 

 

Fig. 1. (a) The ideal circuit of the balanced filter, (b) 

equivalent circuit for the differential mode, and (c) 

equivalent circuit for the common mode. (Structure I). 

     
 (a) 

     
 (b) 
 

Fig. 2. (a) Odd-mode equivalent circuit of differential 

mode circuit, and (b) even/odd-mode equivalent circuit 

of common mode circuit. (Structure I). 
 

Figures 3 (a)-(d) plot the odd-mode resonant 

frequencies versus θ and the simulated results of the 

circuit in Figs. 1 (b)-(c). Due to the superposition of 

signals for Paths 1 and 2, four transmission zeros (ftz1,  
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ftz2, ftz3, ftz4) can be easily achieved for the proposed 

balanced filter [13]. The 3-dB bandwidth of the 

differential mode is mainly determined by the odd-

modes fo1 and fo2. In addition, the odd-modes fo1 and fo2 

move towards f0 as Z1 increases, and the 3-dB bandwidth 

of the differential mode increases as the coupling 

coefficient k1 (k1 = (Zoe1-Zoo1)/ (Zoe1+Zoo1)) increases. The 

unwanted even/odd modes for the common mode can be 

suppressed less than -30 dB by the five transmission 

zeros. Four transmission zeros (ftz1, ftz2, ftz3, ftz4) move 

away from f0 as the characteristic impedance Z1 increases. 

In this way, the out-of-band harmonic suppression of the 

differential mode can be adjusted by the characteristic 

impedance Z2 without changing the bandwidth of the 

differential mode. Next, to further improve the selectivity 

and the common mode suppression of the balanced filter 

with four transmission zeros, another high selectivity 

balanced filter structure with six transmission zeros close 

to the differential mode passband, and wideband common 

mode suppression will be presented.  
 

 
  (a) 

 
  (b) 

 
 (c) 

 
 (d) 

 
Fig. 3. (a) Analysis of resonator frequencies versus θ. (b) 

phase of |Sdd21| (Z0 = 50 Ω, Z1 =50 Ω, Z2 =100 Ω, Zoe1 =160 Ω, 

Zoo1 =90 Ω, Zoe2 =150 Ω, Zoo2 =110 Ω, f0 = 3.0 GHz, θ= 90°). 

(c) |Sdd21|& |Scc21| versus Z2. (d) fo1, fo2/f0, △f3dB versus Zoe1, 

Zoo1, Z1. (Structure I). 

 
B. Balanced filter analysis (Structure II) 

Figure 4 (a) shows the ideal circuit of the balanced 

filter structure with two half-wavelength open stubs (Z3, 

2θ), instead of two quarter-wavelength short stubs (Z1, θ), 

and the other part is the same as the balanced filter of 

Structure I.  

As discussed in Part A, when the differential/ 

common mode are excited from ports 1 and 1' in Fig. 4 

(a), a virtual short/open appears along the symmetric 

lines. The even/odd-mode equivalent circuits for the 

differential/common mode are shown Figs. 5 (a)-(b), and 

the input admittance for the differential mode of Fig. 5 

(a) can be illustrated as: 
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When Ye/o-DM=0, the resonator frequencies in the 

passband for the even -mode for the differential mode  

can be calculated as: 
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Figures 6 (a)-(c) show the even/odd-mode resonant 

frequencies for the differential mode circuit versus θ and 

the simulated results of the circuit in Figs. 4 (b)-(c). Due 

to the superposition of signals for Paths 1 and 2, six 

transmission zeros (ftz1, ftz2, ftz3, ftz4, ftz5, ftz6) can be easily 

achieved for the proposed balanced filter [13]. Compared 

with the balanced filter of Structure I, two additional 

transmission zeros (ftz5, ftz6) are located at 0.5f0 and 1.5f0, 

which can be used to further improve the differential 

mode passband selectivity and the common mode 

suppression level from 0 to ftz1, ftz2 to 2 f0. In addition, the 

locations of two transmission zeros (ftz5, ftz6) do not 

change with all parameters of the circuit, and the 

locations of another four transmission zeros (ftz1, ftz2, ftz3, 

ftz4) do not change with Zoe1, Zoo1, Z1 and Z3. The 3-dB 

bandwidth of the differential mode is mainly determined 

by the even-modes fe1 and fe2, and the 3-dB bandwidth of 

the differential mode decreases and differential/common 

mode suppression becomes better with the decrease of k1 

(k1= (Zoe1-Zoo1)/(Zoe1+Zoo1)). The common mode can be 

suppressed less than -30 dB by the seven transmission 

zeros. Compared with the balanced filter of Structure I, 

the selectivity and common mode suppression of the 

balanced filter of Structure II has been further improved. 
 

 
    (a) 

 
   (b)  (c) 

 

Fig. 4. (a) The ideal circuit of the balanced filter, (b) 

equivalent circuit for the differential mode, and (c) 

equivalent circuit for the common mode. (Structure II). 

    
 (a) 

    
 (b) 

 
Fig. 5 (a) Even/odd-mode equivalent circuit of differential 

mode circuit, and (b) even/odd-mode equivalent circuit 

of common mode circuit. (Structure II). 
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 (c) 
 

Fig. 6. (a) Analysis of resonator frequencies versus θ for 

the differential mode. (b) |Sdd21|& |Scc21| versus Z3  

(Z0 = 50 Ω, Z1 =50 Ω, Z2 =70 Ω, Zoe1 =160 Ω, Zoo1 =90 Ω, 

Zoe2 =150 Ω, Zoo2 =110 Ω, f0 = 3.0 GHz, θ= 90°). (c) △f3dB, 

|Sdd21|, |Scc21| versus Zoe1, Zoo1. (Structure II). 
 

C. Proposed two balanced bandpass filters 

Referring to the discussions and the simulated 

results in Part A and B, the final parameters for the filters 

of Figs. 1, 4 are listed as below: Z0 = 50 Ω, Z1 = 50 Ω,  

Z2 = 100 Ω, Zoe1= 160 Ω, Zoo1 = 90 Ω, Zoe2 = 150 Ω,  

Zoo1 = 110 Ω; Z0 = 50 Ω, Z1 = 50 Ω, Z2 = 70 Ω, Z3 = 90 Ω, 

Zoe1 = 160 Ω, Zoo1 =90 Ω, Zoe2 =150 Ω, Zoo1 =110 Ω. The 

structure parameters for two balanced filters (52.28 mm 

× 35.85 mm, 55.48 mm × 36.26 mm) shown in Figs. 7 

(a)-(b) are: l1 = 15.31 mm, l2 = 17.5 mm, l3 = 6.66 mm, 

l4 = 10.42 mm, l5 = 15.46 mm, l6 = 16.06 mm, l7 = 10.6 mm, 

l8 = 12.55 mm, l9 = 11.65 mm, l10 = 4.2 mm, l11 = 9.42 mm, 

l12 = 4 mm, w0 = w3= w5 =1.34 mm, w1 = 0.2 mm,  

w2 = 0.35 mm, w4 = 0.3 mm, s1 = s2 = 0.2 mm, t1 =t2 = 1.89 mm, 

d = 0.7 mm; l1 = 15.79 mm, l2 = 17.5 mm, l3 = 4.55 mm, 

l4 = 10.42 mm, l5 = 4 mm, l6 = 18 mm, l7 = 16.96 mm,  

l8 = 17.56 mm, l9 = 12.3 mm, l10 = 8.75 mm, l11 = 13.76 mm, 

l12 = 4.3 mm, l13 = 9.32 mm, l14 = 4 mm, w0 = w5 = 1.34 mm, 

w1 = 0.2mm, w2 = 0.76 mm, w3 = 0.45 mm, w4 = 0.3 mm, 

s1 = s2 = 0.2 mm, t1 = t2 = 1.89 mm, d = 0.7 mm.   

Figures 8-9 illustrate the simulated results of the  

two balanced filters with four/six transmission zeros 

(Simulated with ANSYS HFSS v.13.0). For the 

differential mode of balanced filter of Structure I, four 

simulated transmission zeros are located at 1.52, 2.23, 

3.88 and 4.64 GHz, the in-band insertion loss is less than 

0.5 dB with 3-dB bandwidth approximately 30.7% 

(2.54-3.46 GHz); for the common mode, the insertion 

loss is greater than 17 dB from 0 GHz to 8.5 GHz, 

indicating good wideband rejection. Moreover, for the 

differential mode of the balanced filter of Structure II, 

five simulated transmission zeros are located at 1.44, 

2.29, 3.63, 4.1 and 4.87 GHz, the 3-dB bandwidth is 29% 

(2.44-3.31 GHz) with return loss greater than 13 dB  

(2.56-3.34 GHz); for the common mode, over 15-dB 

common mode suppression is achieved from 0 GHz to 

8.92 GHz. 
 

  
 (a) (b) 

 

Fig. 7. Geometries of two proposed balanced filters: (a) 

Structure I, and (b) Structure II. 

 

III. MEASURED RESULTS AND 

DISCUSSIONS 
For comparisons, the measured S-parameters of the 

two balanced filters are also illustrated in Figs. 8-9. For 

the differential mode of the balanced filter of Structure I, 

the 3-dB bandwidth is 31.3% (2.57-3.51 GHz) with 

return loss greater than 13 dB, four measured transmission 

zeros are located at 1.03, 2.32, 3.9 and 4.63 GHz, the 

insertion loss in the passband is less than 0.6 dB and 

greater than 20 dB from 3.75 to 8.9 GHz (2.97f0); for the 

common mode, the insertion loss is greater than 15 dB 

from 0 GHz to 8.8 GHz (2.93f0). For the differential 

mode of the balanced filter of Structure II, six measured 

transmission zeros are located at 1.21, 1.61, 2.26, 3.72, 

4.14 and 4.96 GHz with 3-dB bandwidth of 32% (2.48-

3.44 GHz), the insertion loss is less than 0.7 dB with return 

loss greater than 10 dB from 2.4 GHz and 3.53 GHz, an 

upper stopband with insertion loss greater than 20 dB is 

realized from 3.59 to 8.94 GHz (2.98f0); in addition, the 

insertion loss for the common mode is greater than 15 dB 

from 0 to 9 GHz (3f0). The slight frequency discrepancies 

of measured passbands for the differential mode are 

mainly caused by the imperfect soldering skill of the 

shorted stubs and folded transmission line of the two 

balanced filters.  

To further illustrate the characteristics of the two 

balanced filters, Table 1 illustrates the comparisons of 

measured results for several balanced filter structures. 

Compared with other balanced filters [3]-[12], more 

transmission zeros near the passband are obtained for the 

two balanced filter structures, and the upper stopbands 

for the differential mode of the two balanced filters stretch 

up to 2.97f0 (|Sdd21|<-20 dB) and 2.98f0 (|Sdd21|<-20 dB). 

The insertion losses are lower with 0.6 dB and 0.7 dB for 

the proposed balanced filters. 
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 (a) 

 
 (b) 
 

Fig. 8. Photograph, measured and simulated results of 

Structure I: (a) differential mode and (b) common mode. 
 

 
   (a) 

 
   (b) 
 

Fig. 9. Photograph, measured and simulated results of 

Structure II: (a) differential mode and (b) common mode. 

Table 1: Comparisons of measured results for some 

balanced filters 

Filter 

Structures 

TZs, |Sdd21| 

0-2f0, (f0) 

FBW 

|Sdd21| 

Stopband 

|Sdd21|, dB 
|Scc21|, dB 

Ref. [3] 
0 

(3.0 GHz) 
110% <-20, 2.2 f0 <-15, (0-8) 

Ref. 

[6] - II 

2 

(6.85 GHz) 
70.7% <-20, 2.77 f0 <-13.5, (0-19.5) 

Ref. [8] 
4 

(2.4 GHz) 
17% <-15, 2.75 f0 <-18.8, (0-6.5) 

Ref. 

[11] - I 

3 

(5.0 GHz) 
67.6% <-15, 2.7 f0 <-15, (1.9-8.3) 

Ref. 

[11] - II 

5 

(5.0 GHz) 
37.8% <-15,2.8 f0 <-20, (1.2-9.3) 

Ref. [12] 
3 

(3.0 GHz) 
82% <-15,2.1 f0 <-10, (1.65-3.95) 

Structure 

I 

4 

(3.0 GHz) 
31.3% <-20, 2.97f0 <-15, (0-8.8) 

Structure 

II 

6 

(3.0 GHz) 
32.0% <-20, 2.98f0 <-15, (0-9) 

 

IV. CONCLUSION 
In this paper, two novel balanced filters based on 

transversal signal-interaction concepts with multiple 

transmission zeros are proposed. Four and six 

transmission zeros close to the differential mode 

passband can be easily achieved using the transversal 

signal-interaction concepts. In addition, wideband 

common mode suppression can easily realized by the 

multiple transmission zeros. High selectivity and 

wideband common mode suppression are obtained for 

the two balanced filters, indicating good candidates for 

microwave wireless applications. 
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