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Abstract ─ Discrete body of revolution (DBoR) enhanced 

method of moments (MoM) is a specialized technique 

to analyze electromagnetic scattering from the object 

with discrete cylindrical periodicity. By exploiting the 

block circulant property of the impedance matrix of 

MoM, both filling time and storage requirement for the 

matrix are reduced. The matrix-vector product can be 

further accelerated by using the fast Fourier transform 

(FFT) technique. However, the matrix filling time and 

memory requirement of DBoR-FFT are the same as 

those of DBoR-MoM, which are still expensive when 

the number of unknowns in each sector becomes larger. 

Meanwhile, the DBoR-FFT scheme works inefficiently 

for the small number of periodic sectors. In this paper, 

the adaptive cross approximation (ACA) technique  

is employed to enhance the DBoR-MoM. Numerical 

examples are given to demonstrate the efficiency of the 

proposed method. 
  
Index Terms ─ Adaptive cross approximation, discrete 

body of revolution, electromagnetic scattering, method 

of moments. 
 

I. INTRODUCTION 
Method of moments (MoM) is a popular tool to 

analyze the electromagnetic scattering from the 

conducting objects [1-3]. For objects with general shape, 

MoM costs 3( )O N  CPU time and 2( )O N  memory, 

where N is the number of unknowns, which prohibits its 

application to electrically large objects. 

There are mainly two types of techniques to 

conquer this difficulty. On one hand, a series of fast 

algorithms have been proposed for general geometry 

[2-4]. Among them, adaptive cross approximation 

(ACA) algorithm [4] is one of the popular techniques. It 

makes use of the fact that the approximate rank of 

submatrix is deficient when the source group and the 

observation group are sufficiently separated. Hence the 

submatrix can be computed efficiently by invoking 

low-rank decomposition technique. On the other hand, 

specialized codes are developed to save the time and  

memory cost of the ordinary MoM for the structures 

bearing the symmetry, uniformity or periodicity. Bodies 

of revolution [5-7], bodies of translation [8], and 

periodic frequency selective surface [9] are several 

well-known structures. Recently, discrete body of 

revolution (DBoR) based integral equation approach 

[10-14] is proposed to analyze the structures with 

discrete cylindrical periodicity. 

Many structures encountered in practical application 

possess discrete cylindrical periodicity, such as windmill, 

turbine and jet-engine. In the original DBoR schemes 

[10-11], a matrix equation with multiple right-hand 

sides has to be solved since the decomposition of 

incident field are required. A direct solution scheme of 

DBoR is discussed in [13-14], and it usually requires a 

parallel out-of-core solver for the electrically large 

geometries whereas the in-core solution is preferred in 

most situations. An efficiently iterative DBoR solver, 

which is free of decomposition of incident field, is 

proposed in [12]. It exploits the block circulant property 

of the whole impedance matrix, thus the storage 

requirement and filling time of the matrix are of order 
2 /N M , where M denotes the number of discrete sectors. 

The time complexity of one matrix-vector product 

scales 2( )O N  if FFT technique is not adopted, and 

scales 2O[( log ) / ]N M M  if fast Fourier transform 

(FFT) technique is adopted. 

However, the efficiency of DBoR-FFT is still 

required to be improved since FFT works inefficiently 

when the number of discrete sectors M is small and the 

storage requirement and filling time are of 2( / )O N M , 

which is still large. In this paper, a DBoR-ACA scheme 

is developed which exploits ACA to accelerate the 

solution of DBoR. Numerical experiments demonstrate 

that DBoR-ACA is an efficient solution scheme.  

The remainder of this paper is organized as follows. 

In Section II, the theory and the formulations are given. 

Three numerical experiments are presented in Section 

III to show the efficiency of the proposed method. 

Section IV concludes this paper.  
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II. THEORY AND FORMULATIONS 

A. DBoR-MoM and DBoR-FFT 

As shown in Fig. 1, consider a DBoR geometry 

comprised of M discrete cylindrically periodic sectors, 

each sector occupying an angular width of 2 /  M  . 

In the analysis, the mesh is generated for sector 
1S  and 

then rotated to obtain the meshes for other sectors 
iS ,  

i = 2, 3, …, M. The meshes must remain conformal on 

truncated boundary between two neighbor sectors for 

current continuity and satisfy cylindrically periodical 

condition to take advantage of DBoR, as discussed in 

[11]. The surface current density ( )J r  is expanded by 

the RWG basis functions [1] divided into sectors: 

 
1 1

( ) ( )
 

 J r f r
QM

q q

m m
m q

I , (1) 

where Q  denotes the number of unknowns in each 

sector, and  N M Q  is the number of total unknowns. 
q

mI  and f q

m
represent the corresponding expansion 

coefficient and the RWG function for qth basis function 

in mth sector. r mS  is position vector. The impedance 

matrix Z  of combined field integral equation (CFIE) is 

correspondingly partitioned into blocks. As shown in 

Eq. (2), each block is denoted as Znm
, which represents 

the interactions between sector 
nS  and sector 

mS , each 

with the size of Q Q : 
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Fig.1. A geometry with M cylindrical periodic sectors. 

 

Similar to the procedure for electric field integral 

equation in [12], Znm
for CFIE can be represented as  

Zm n
 since it depends only on the value of m n . Also, 

due to the rotational symmetry, it exists 
  Z Zm n M m n

. 

As a result, only Z i
, i=0, 1,…, M-1, are required to be 

computed and stored. One can also use 2Q  times FFT 

of M-points to compute the matrix-vector product [12] 

since the impedance matrix is in the block circulant 

form. In this letter, the scheme without FFT is referred 

to as DBoR-MoM whereas the scheme with FFT is 

referred to as DBoR-FFT. 

 

B. DBoR-ACA  

DBoR-FFT does not work well when the number 

of discrete sectors M is small. A scheme of DBoR-ACA 

is developed by employing the ACA algorithm to 

compress each block of Z i
. A multilevel spatial 

partitioning is used to group the RWG functions in each 

sector. The groups are recorded using octree data at all 

levels. The touching groups at the finest level are near 

groups and the others are well-separated groups. The 

interactions of near groups are computed via DBoR-

MoM directly, while the interactions of others are 

accelerated by the ACA algorithm. Consider two well-

separated groups, one group containing s testing 

functions residing in sector 
1S , and the other group 

containing t basis functions residing in sector 
mS . The 

interactions between them lead to a submatrix Z s t , 

which is one of the submatrices of block 
1 ZM m

. Here, 

the superscript s t  denotes the size of the submatrix. 

Suppose that Z s t  is rank-deficient with an effectively 

approximate rank r. The rank r is usually far smaller 

than s and t when both s and t are large. By utilizing the 

ACA algorithm, the matrix Z s t  can be approximated as: 

 s t s t s r r t    Z Z U V , (3) 

where U s r  and V r t  are two decomposition matrices. 

The rank r is determined adaptively by ACA algorithm 

to satisfy the following condition: 

 s t s r r t s t    Z U V Z , (4) 

where   denotes the truncated tolerance of the ACA 

algorithm and is set as 310  in this paper. The details of 

the ACA algorithm to fulfill (3) are referred to [4]. 

DBoR-ACA fills only a fraction of entries for each 

block Z i
. As shown by numerical observation in [4], 

both the memory and CPU time requirements of the 

ACA algorithm scale as 
4

3 logN N  for electrically 

moderate size problems, while those of MoM scale 2N . 

Thus DBoR-ACA can reduce both the memory 

requirement and simulation time for DBoR-MoM. 

Table 1 lists a comparison of predictions of the 

computational complexity for the scheme of DBoR-

MoM, DBoR-FFT, and DBoR-ACA, where MVP time 

denotes the time required to compute matrix-vector 

product once. 

 

FAN, HE, CHEN: AN EFFICIENT ACA SOLUTION FOR ELECTROMAGNETIC SCATTERING 1152



Table 1: Predictions of computational complexity 

 
DBoR 

MoM FFT ACA 

Matrix-filling 

time 
2 /N M  2 /N M  

4
3 log /N N M

 

Storage of 

matrix 
2 /N M  2 /N M  

4
3 log /N N M

 

MVP time 2N  
2 log /N N M

 

4
3 logN N

 

 

III. NUMERICAL RESULTS 
To demonstrate the efficiency of the DBoR-ACA 

scheme in comparison with DBoR-MoM and DBoR-

FFT, codes are developed for all schemes and numerical 

examples are presented for typical geometries. In the 

simulations, the frequency f is 300 MHz unless 

otherwise specified. The electric field of incident wave 

is ˆexp( ) E i x j z  , where   is the wavelength. The 

discrete rotational axis of DBoR is z axis. CFIE is 

employed with combination coefficient of 0.5. The 

resulting matrix equations are iteratively solved by 

restarted GMRES [16] where the restarted number is set 

to be 30. The stop criterion for iteration is relative 

residual norm less than 310 . The bistatic radar cross 

section (RCS) results are observed at the plane with 

fixed azimuthal angle 0s  and varied polar angles 

.s  All the simulations are carried out in single 

precision arithmetic on a computer equipped with a 

2.83 GHz Intel® Core2 Quad processor, with one core 

being used.  

 

A. Efficiency test for a conducting ring 

The first example is selected to test the 

performance of different schemes varying with number 

of sectors. The configuration is a conducting ring with 

inner radius a=2 m, outer radius b=3 m, and height 

h=0.1 m, as shown in Fig. 2 (a). To take advantage of 

DBoR, the mesh has to be changed each time when the 

number of sectors is increased. Here, the total number 

of unknowns is kept at a fixed level approximately. 

Table 2 lists the number of unknowns corresponding to 

each number of sectors. 

 

Table 2: The number of unknowns and number of 

sectors for the first example 

M 8 16 32 64 80 100 128 

N 47304 46560 46752 46848 44880 45600 45312 

 
Figure 2 (a) plots the memory requirement for 

DBoR-MoM and DBoR-ACA. The memory requirement 

of DBoR-FFT is same as that of DBoR-MoM. It can be 

observed that the memory requirement of DBoR-MoM 

is scaled as 1/ M , while the DBoR-ACA grows a few 

larger than (1/ )O M  as M increases. The reason is that 

the dividing strategy of the DBoR-ACA group is 

controlled by both the octree structure and the sectors. 

Increasing number of divided sectors brings two 

burdens which lessening the compressed efficiency of 

DBoR-ACA against the case when ACA algorithm is 

utilized for objects of general shape. The first one is 

that it produces more groups belonging simultaneously 

to more than one sector, which resulting in more groups 

with small number of unknowns. The second burden is 

that the size of the largest group of DBoR-ACA is 

reduced since the size of each sector is reduced. But 

even for as many as 128 sectors, the performance of 

DBoR-ACA has not been reduced by much.  

Figure 2 (b) shows the CPU time cost of one MVP. 

It can be found that the computational time for DBoR-

MoM and DBoR-ACA changes slightly as number of 

sectors increases, whereas the computational time of 

DBoR-FFT reduces dramatically. The complexity of 

DBoR-FFT is consistent with 2( log / )O N N M  for 

large value of number of sectors M, however the 

computational time is even greater than that of DBoR-

MoM for 32M . It is because the implementation of 

FFT with small number of points is not that efficient. In 

addition, it destroys the CPU cache friendly feature of 

the submatrices of original DBoR-MoM. It can be 

observed that a slightly decrease of the CPU time for 

DBoR-MoM for large number of sectors. This owes to 

a slightly decreasing of the total number of unknowns 

as given in Table 2. The slightly increase of the CPU 

time for DBoR-ACA with large number of sectors  

is ascribed to the same burdens for the memory 

requirement. It should be noted that the DBoR-ACA 

scheme takes more CPU time to perform one MVP than 

the DBoR-FFT scheme does for large M. For DBoR 

configuration of practical engineering M is usually not 

very big, hence, DBoR-ACA is still a faster solver by 

considering the filling time of the impedance matrix 

together. Table 3 shows the case for 128 sectors. Here 

the total time denotes the whole analysis time including 

the time for pre-processing, matrix filling and solving, 

and RCS calculating. It can be observed that FFT takes 

effect in accelerating the DBoR-MoM. However, the 

total simulation time of DBoR-ACA is still less than 

that of DBoR-FFT due to saving of matrix filling time. 
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Fig. 2 Comparisons of the complexity for DBoR-MoM, 

DBoR-FFT, and DBoR-ACA schemes by increasing the 

number of divided sectors while keep approximately the 

total number of unknowns of 46000. (a) Memory, and 

(b) CPU time for one matrix-vector multiplication. 
 

Table 3: Comparisons of the CPU time and memory 

requirement for the conducting ring with 128 cylindrical 

sectors and each with 354 unknowns 

 
DBoR 

MoM FFT ACA 

Memory (MB) 125 125 26 

Matrix filling time (s) 72 73 13 

Number of iteration 39 39 39 

Iteration time (s) 105 19 42 

Total time (s) 180 95 58 

 

B. Computation complexity test for a conducting ring 

The second example is a conducting ring with 

inner radius a = 2 m, outer radius b = 4 m, and height  

h = 0.1 m. This example is to show the complexity of 

various DBoR schemes for electrically increasing large 

problems. The ring is discretized with a mesh size of  

h = 0.05 m and the frequency f  is increased from 

214.3 MHz to 333.3 MHz. This leads to an increase of 

the total number of unknowns from 54528 to 129600 as 

the relation 2N f . The ring is modeling with 64 

sectors. The size of group box at finest level is 0.2 in 

DBoR-ACA scheme. The complexity of memory 

requirements and CPU time of one MVP for DBoR-

MoM and DBoR-ACA are illustrated in Fig. 3 (a) and 

Fig. 3 (b), respectively. The memory requirement of 

DBoR-FFT is same as that of DBoR-MoM. It can be 

observed the practical implementation is consistent with 

the prediction of the complexity as listed in Table 1. 

Also both the memory requirement and CPU time cost 

of DBoR-ACA are less than those of DBoR-FFT when 

the number of unknowns becomes large in each sector. 
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Fig. 3. Comparisons of the complexity between DBoR-

MoM, DBoR-FFT, and DBoR-ACA algorithms for a 

conducting ring varying with number of unknowns. (a) 

Memory, and (b) CPU time for one matrix-vector 

product.  

 

C. Bistatic RCS for a conducting jet-engine inlet 

The last example is a conducting jet-engine inlet as 

shown in Fig. 4 (a). The configuration has 16 sectors 

and each sector has 4932 unknowns. The size of group 

box at finest level of DBoR-ACA algorithm is 0.4 m. 

This example is to show the efficiency for the small 

number of sectors of various DBoR schemes. The 

geometry and dimension of one sector of jet-engine is 

shown in Fig. 4 (b) and of shell is shown in Fig. 4 (c). 

For the cylindrical shell, the radius is 2.1 m and the 

height is 4.0 m for the inner side and the thickness is 

0.1 m. The jet-engine is placed at a distance of 0.1 m 

above the bottom of the shell. The bistatic RCS results 

are illustrated in Fig. 5 for the various DBoR schemes 

and fast multipole solver in FEKO®. It can be observed 

that they are in agreement with each other. Table 4 

shows the CPU time and memory requirement for this 

example. It can be found that DBoR-FFT fails to 

accelerate DBoR-MoM while DBoR-ACA successes to 

spend less memory and less CPU time.   
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Fig. 4. The geometry and mesh of: (a) jet-engine inlet, 

(b) single sector of jet-engine, and (c) single sector of 

the shell. 
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Fig. 5. The bistatic radar cross section of conducting 

jet-engine inlet. 

Table 4: Comparison of the CPU time and memory 

requirement for the jet-engine inlet with 16 sectors and 

each sector with 4932 unknowns 

 DBoR 

 MoM FFT ACA 

Memory (MB) 3008 3008 396 

Matrix filling time (s) 1530 1532 244 

Number of iteration 344 344 348 

Iteration time (s) 4953 9013 1072 

Total time (s) 6490 10552 1321 

 

IV. CONCLUSION 
The DBoR-MoM has been extended to CFIE for 

the analysis of electromagnetic scattering from discrete 

body of revolution in free space. The ACA technique 

was exploited to accelerate both matrix-filling operation 

and matrix-vector product of the DBoR-MoM. 

Numerical examples validate the efficiency and 

accuracy of the proposed method in comparison with 

DBoR-MoM and DBoR-FFT. The numerical results 

suggest that DBoR-FFT fails to accelerate DBoR-MoM 

for the DBoR with small number of sectors whereas  

the proposed DBoR-ACA method is appropriate for 

accelerating the solution of all types of cylindrically 

periodic geometries. At the end, it is worthwhile to note 

that a faster scheme can be obtained if sparsified ACA 

[17] is applied into the DBoR. 
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