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Abstract ─ In this paper an envelope tracking power 

amplifier is designed and implemented using 

MRF6S27015N MOTOROLA transistor in LDMOS 

technology. First, the amplifier is designed using load 

pull simulation and its parameters are optimized to 

increase the power added efficiency. Next, envelope 

detector and envelope amplifier are designed and 

simulated and finally ET is applied to the amplifier 

which results in more than 50% of PAE in a wide range 

of input power with bandwidth of 200 MHz. Envelope 

detector circuit is fabricated using schotkey diode and 

envelope amplifier is manufactured using a mosfet, an 

op amp, and a comparator. 

 

Index Terms ─ Envelope amplifier, envelope elimination 

and restoration, power amplifier. 

 

I. INTRODUCTION 
Power amplifier is the most important part in a 

communication system because it uses the most amount 

of energy in the system. So, good efficiency of power 

amplifier can decrease amount of heat generated, and 

therefore boost performance of the total system. Back 

off may be used to maintain linearity of the power 

amplifier, but this may result in decreasing the 

efficiency. Some techniques are proposed to overcome 

this problem like LINC,   modulation, Doherty, and 

EER Polar modulator. The first two techniques show 

high linearity with a moderate efficiency [1, 2] and  

the latter two techniques show high efficiency with  

a moderate linearity characteristic [3, 4]. However, 

applying the digital predistortion (DPD) technique to 

the latter two techniques can enhance the moderate 

linearity adequately. Envelope tracking power amplifiers 

are used to increase efficiency of the power amplifier 

[5-10]. ET uses a linear PA and a controlled supply 

voltage, which tracks the input envelope. When the 

supply voltage tracks the instantaneous envelope 

modulation signal, it is called Wide Bandwidth ET 

(WBET) [11]; when the supply voltage tracks the long-

term average of the input envelope power, it is called 

Average ET (AET) [12]; when the supply voltage 

switches to different step levels according to the input 

envelope power, it is called Step ET (SET) [13].  

EER (envelope elimination and restoration) uses a 

combination of a high efficiency switch-mode PA with 

an envelope re-modulation circuit [14]. To employ high 

efficiency operation of EER and at the same time 

reduce the strict necessities of bandwidth and time-

alignment, the “hybrid” EER structure was proposed in 

[15]. Total system efficiency is determined by the 

product of the envelope amplifier efficiency and the RF 

transistor drain/collector efficiency. As a result, a high-

efficiency envelope amplifier is vital for the EER/ET 

system. High efficiency envelope amplifier is usually 

realized by a DC/DC converter, where the switching 

frequency is required to be several times the signal 

bandwidth. For narrow bandwidth applications, most 

high efficiency switching mode DC/DC converters are 

realized by traditional delta modulation [16] or pulse 

width modulation (PWM) [17] modulators. Envelope 

amplifier block diagram is shown in Fig. 1, which 

consists of an OPAMP to realize the voltage source, 

and a MOSFET to realize the current source. This 

envelope amplifier consists of a voltage source and a 

current source. Although the current source has high 

efficiency, the voltage source has low efficiency. 

Therefore, we like to get most of the output current 

from the current source. To control the current of the 

voltage source, we use a hysteretic current feedback 

control to realize the soft power division between 

switch stage and linear stage amplification. The load 

voltage is controlled by the linear voltage source, and 

the load current is a mixture of the linear stage current 

and the switch stage current. 
 

II. ET AMPLIFIER DESIGN 

A. RF amplifier design 

Si-LDMOS is a popular device choice for base-

station high-power amplifiers, since LDMOS technology 

can provide reliable and cost effective solutions [18]. 

Envelope tracking techniques, in which a wideband 

envelope amplifier makes variable supply biasing to the 

RF stage, have established excellent performance using 
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a variety of device technologies including Si LDMOS 

and GaN FETs [19]. Nonetheless, the RF PA should 

have suitable characteristics to be appropriate for the 

envelope tracking operation and achieve the optimal 

performance such as low deviation of the output 

capacitance, since a large variation of the voltage 

dependent output capacitance will corrupt the average 

efficiency as the optimum impedance matching for the 

output of the PA changes with the supply voltage [17]. 

Besides, extra nonlinearity like AM-PM distortion from 

the nonlinear capacitance and AM-AM distortion from 

the envelope amplifier, and memory effects due to the 

limited bandwidth of the RF PA and the envelope 

amplifier is produced by the dynamic supply biasing. 

However, digital pre-distortion (DPD) techniques may 

be used to correct the nonlinearity of the dynamically 

biased amplifier. In this paper, the amplifier is  

designed and implemented using the MRF6S27015N 

MOTOROLA transistor in LDMOS technology and is 

simulated using ADS2008 software where nonlinear 

analysis is performed using harmonic balance method 

[20]. The design of the amplifier is at the central 

frequency of 2.1 GHz and the bandwidth of the RF 

amplifier is 200 MHz, which is high with respect to the 

other works. The amplifier is biased in class AB. 

Output current diagrams of the transistor is used to 

choose appropriate Vgs, which can be selected between 

2.3 volt and 3.8 volt to work in class AB and is 

optimized to increase the efficiency. 
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Fig. 1. Envelope amplifier block diagram. 

 

Load pull simulation is used to select the optimum 

output impedance seen from the output of the transistor 

that increases the efficiency which is 5.7 + j12.6. Power 

added efficiency and gain of the transistor when it sees 

output impedance of 5.7 + j12.6, is shown in Fig. 2. 

Our aim in design of the power amplifier is to increase 

the efficiency. So, we optimized the amplifier to reach 

our goal and we changed Vgs, Vds, width and length of 

the matching transmission lines to reach to a good 

efficiency. Also, matching of the transistor is optimized 

in ADS software. Table 1 shows line width and line 

length of the optimized transmission lines. RO4003 

substrate is used with 3.5r   and tan .0027  . Input 

matching and output matching schematics are shown in 

Fig. 3 and Fig. 4. Optimising the matching circuit in 

ADS software, input and output return losses are shown 

in Fig. 5 and Fig. 6. 

 

 
 

Fig. 2. Gain and power added efficiency versus output 

power for optimum output impedance. 
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Fig. 3. Input matching circuit. 
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Fig. 4. Output matching circuit. 
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Fig. 5. Input matching 
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Fig. 6. Output matching. 

 

Increasing the output power of the transistor will 

increase the PAE. However, our input signal has a high 

peak to average ratio and probability of the peak power 

is very low. Consequently, it is wise to design the 

matching for the case that happens most of the time, 

which is mean power. Therefore, because Vds changes 

with respect to the input power, we optimized the 

power amplifier for the Vds related to the mean power. 

 

Table 1: Size of the matching transmission lines 

Line Number 
Line Length 

(mil) 

Line Width 

(mil) 

Z1 940 25 

Z2 360 85 

Z3 170 145 

Z4 85 85 

Z5 370 800 

Z6 136 800 

Z7 800 20 

Z8 80 705 

Z9 100 900 

Z10 100 805 

Z11 200 805 

Z12 95 600 

Z13 80 405 

Z14 100 135 

Z15 705 40 

Z16 720 25 

Z17 100 44 

Z18 900 20 

 

B. Changing Vds 

In the next step, we changed Vds of the power 

amplifier from 8v up to 28v by 4v to show the 

possibility of increase in PAE by envelope tracking. 

Power added efficiency and output power of the RF 

power versus input power at center frequency of 2.1 GHz 

by changing Vds from 8v up to 28v by 4v is shown in 

Fig. 7 and Fig. 8 respectively. When the input power is 

10 dBm and Vds is 8v, this simulation shows about 

17% of more PAE than the condition of Vds=28v.  

Figure 7 shows that we can increase P1dB of the 

transistor when the input power is large by applying 

ET. 
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Fig. 7. PAE versus input power at center frequency by 

changing Vds. 
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Fig. 8. Output power versus input power at center 

frequency by changing Vds. 

 
C. Applying ET 

When Vds is 8v, the PAE decreases in the peak 

power, and when Vds is 28v the PAE is low in low 

power. To overcome this problem, we can apply 

envelope tracking to our amplifier. By changing the 

Vds with respect to the input power, we can see that the 

PAE remains above 50% for a wide range of input 

power. Figure 9 shows PAE versus input power at center 

frequency by applying envelope tracking respectively. 
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Fig. 9. PAE versus input power at center frequency by 

applying envelope tracking. 
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D. Envelope detector 

Envelope detector is shown in Fig. 10, which 

consists of a Schottky diode and an LC circuit by 

L=190 (nH) and C=18 (pF). HSMS286K Schottky diode 

produced by Agilent is used. Envelope detector is 

simulated in ADS software by the signal shown in Fig. 

11 and the output signal is obtained. 
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Fig. 10. Envelope detector. 
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Fig. 11. Input and output signal of the envelope detector. 

 

III. FABRICATION AND TEST 
Manufactured circuit is shown in Fig. 12 which 

consists of 3 parts: 1) Wilkinson power divider, 2) 

envelope detector, and 3) transistor. In part 1 a Wilkinson 

power divider is used to divide the input signal to two 

equal parts. One part is fed to the transistor and one part 

is fed to an envelope detector circuit. 

 

 

 

Fig. 12. Manufactured circuit. 

 

Manufactured envelope amplifier circuit is shown 

in Fig. 13 and its block diagram is shown in Fig. 1, 

which consists of a mosfet, an op-amp, and a comparator 

where their part number is given in Table 2. Also, Table 

3 compares previous works with this paper. 

Gain versus input power at center frequency by 

changing Vds, output power versus input power at center 

frequency by changing Vds, and PAE versus input power 

at center frequency by changing Vds are shown in Fig. 

14 up to Fig. 16. 

 

Table 2: Envelope amplifier 

Device Number Producer 

OP-AMP THS3095 
TEXAS 

INSTRUMENT 

MOSFET FDFSP106A FAIRCHILD 

COMPARATOR LM119J NATIONAL 

 

 
 

Fig. 13. Manufactured envelope amplifier circuit. 

 

Table 3: Comparison to previous envelope amplifiers 

 
Power 

(dBm) 

Envelope Amplifier BW 

(MHz) 

Efficiency 

(%) 

[4] 29.7 10 82 

[5] 23.2 20 65 

[6] 28.9 10 76 

[7] 27 10 71 

[8] 30.8 4 75.5 

[9] 33 4 89 

[10] 28 1.25 82 

This 

work 
40 1 65 

 

 
 

Fig. 14. Gain versus input power at center frequency by 

changing Vds. 
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Fig. 15. Output power versus input power at center 

frequency by changing Vds. 
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Fig. 16. PAE versus input power at center frequency by 

changing Vds. 

 

IV. CONCLUSION 
In this research an ET amplifier in the frequency 

range of 2 GHz to 2.2 GHz has been designed and 

fabricated using MRF6S27015N MOTOROLA transistor 

in LDMOS technology which has 10 watts output 

power. Also, implementation of the envelope amplifier 

and envelope detector has been described. It has been 

shown that the PAE remains above 50% for a wide 

range of input power for a bandwidth of 200 MHz. 
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