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Abstract ─ A wideband filtering crossover based on ring 

resonators with sharp rejection is proposed in this paper. 

Four transmission zeros near the crossover passband 

can be adjusted conveniently by the even/odd-mode 

characteristic impedance of the coupled lines. A high 

selectivity wideband filtering crossover located at 3.0 GHz 

is designed and fabricated for verification. Good filtering 

performance and high selectivity for the crossover are 

realized and experimentally verified. 

Index Terms ─ Coupled lines, even/odd-mode, filtering 

crossover, transmission zero, wideband. 

I. INTRODUCTION 
Crossover is a very important component and can be 

integrated in Butler matrix, which exhibits two signal 

paths crossing over each other with perfect isolation 

and all ports matched. Air-bridge and bond-wire are 

always used to transport signals in different layers for 

conventional crossovers [1]-[2], resulting in complex 

structures and relatively high fabrication cost. Cascaded 

rings and branch-lines couplers are used to overcome 

these drawbacks [3]-[5]; however, multi-section rings 

and couplers enlarge the circuit size and the transmission 

insertion loss. The conductor-backed coupling lines can 

be used to realize wideband crossovers [6], which can 

avoid using cascaded structures. Moreover, microwave 

passive components including crossovers, filters, and 

couplers are always single elements, integrating two 

functions in one component is an effective method for 

size reduction, such as filtering balanced circuits [7] and 

filtering crossovers [8].   

In this paper, a wideband filtering crossover with 

sharp rejection is proposed. Four transmission zeros for 

the crossover passband with good isolation performance 

over a very wide frequency range can be realized [9]-

[10]. Using coupled lines and open stubs with different 

electrical wavelength, fifth-order passband can be easily 

achieved for the planar crossover. The desired crossover 

configuration can be obtained using even/odd-mode 

characteristic impedance of the coupled lines and 

characteristic impedance of the open stubs. A wideband 

filtering crossover located at 3.0 GHz with 3-dB bandwidth 

26.3% (2.58-3.37 GHz) is designed and fabricated for 

verification. All the circuits and structures are simulated 

with Ansoft Designer v3.0 and Ansoft HFSS v13.0, and 

constructed on the dielectric substrate with r = 2.65, 

h = 1.0 mm, and tanδ = 0.003. 

II. DESIGN OF PROPOSED WIDEBAND

CROSSOVER 
Figure 1 shows an improved crossover based on 

dual-mode ring resonator [6], four quarter-wavelength 

side-coupled lines (electrical length θ, even/odd-mode 

characteristic impedance Ze1, Zo1) are attached to the 

four input/output ports. Four microstrip lines with 

characteristic impedance Z0 = 50 Ω are connected to Ports 

1 to 4. Due to the symmetry of the single-band crossover, 

the even-odd-mode analysis is employed to simplify 

the analysis and to derive the impedance values [1]-[6], 

which are required to meet the following properties: 

11 22 33 44 =0,S S S S    

21 23 41 31 24=0 , 1.S S S S S     (1) 

Fig. 1. Ideal circuit of the improved crossover based on 

ring resonator [6]. 

By placing electric wall (E-wall) and E-wall, 

magnetic wall (H-wall) and H-wall, E-wall and H-wall, 

H-wall, and E-wall along the symmetry lines a-aˊ and 

b-bˊ, respectively, as shown in Figs. 2 (a)-(d); four 

even/odd eigen-admittances Yee, Yeo, Yoe, Yoo can be 

required [6]: 
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Fig. 2. Decomposed equivalent circuits of the crossover 

based on ring resonator: (a) even–even-mode circuit; (b) 

even–odd-mode circuit; (c) odd–even-mode circuit; (d) 

odd–odd-mode circuit. 

 

 
  (a) 

 
  (b) 

 

Fig. 3. (a) Simulated results of the crossover based  

on ring resonator, and (b) bandwidth versus coupling 

coefficient k. 

 

After further calculation, we find that different 

combinations of design values that can be used to realize 

a broadband performance for the crossover. Figures 3 

(a)-(b) show the simulated results of the crossover based 

on ring resonator versus Ze1, Zo1, and the bandwidth of 

the crossover increases with the coupling coefficient  

k increases (k = (Ze1-Zo1)/(Ze1+Zo1)), and the isolation 

between Ports 1 to 2, and 4 become worse as k increases. 

Due to the PCB fabrication precisions, the width for the 

transmission lines and coupled lines are always greater 

than 0.20 mm, so the maximum coupling coefficient k of 

the coupling lines in this work is nearly 0.45 (r = 2.65, 

h = 1.0 mm), and the characteristic impedance of the 

transmission lines is always less than 130 Ω, so the 

bandwidth of the crossover cannot increase infinitely. 

The ideal circuit of the proposed wideband filtering 

crossover is shown in Fig. 4, a two-stage coupling line is 

used to increase the bandwidth for Fig. 1, and four half-

wavelength open stubs (electrical length 2θ, characteristic 

impedance Z1) are attached in the input coupled lines, 

and four open/shorted coupled lines (Ze2, Zo2, θ) are 

shunted connected in the input/output Ports 1 to 4. As 

discussed in [7], [9], four transmission zeros realized by 

the half-wavelength open stubs and open/shorted coupled 

lines can be obtained as: 

 1 2/ 4, 3 / 4,tz tz      (4) 
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Fig. 4. Proposed wideband filtering crossover based on 

ring resonator. 

 

The half-wavelength open stubs are all wide 

passband structures [11], they can be seen as an ideal 

open circuit in the center frequency of the crossover. In 

addition, we can find that two transmission zeros ftz3, ftz4 

don’t change with Z1, Ze1, and Zo1, so when the even/odd-

mode characteristic impedance Ze1, Zo1 are fixed, the 

bandwidth of the wideband crossover can be adjusted by 

the characteristic impedance of the open stubs Z1, and the 

out-of-band performance of the crossover can be further 

improved by the two transmission zeros ftz3, ftz4. The 

simulated results of the wideband filtering crossover 

with/without four transmission zeros are shown in Figs. 
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5 (a)-(c). The passband order can be increased from third 

to fifth, and four transmission zeros can be used to 

realize a wide passband for the crossover with sharp 

rejection, the two transmission zeros ftz3, ftz4 nearly  

do not change the bandwidth of the wideband filtering 

crossover, and the in-band performance can be also 

adjusted by the characteristic impedance Z1 of the four 

half-wavelength open stubs. 

 

 
 (a) 

 
 (b) 

 
 (c) 

 
Fig. 5. Simulated results of the wideband filtering 

crossover. (a) With/without transmission zeros, (b) |S31|, 

|S11| versus Z1, and (c) |S31|, |S21| versus Ze2, Zo2. (Z0 = 50 Ω, 

Z1 = 120 Ω, Ze1 = 170 Ω, Zo1 = 108 Ω, Ze2 = 180 Ω,  

Zo2 = 75 Ω). 

 

Referring to the discussions and the simulated results, 

the 3-dB bandwidth of the filtering crossover is chosen 

as 26%, and the final parameters for Fig. 4 are Z0 = 50 Ω, 

Ze1 = 175 Ω, Zo1 = 112 Ω, Z1 = 125 Ω. The simulated results 

of Fig. 6 are illustrated in Fig. 7, and five transmission 

zeros are located at 1.5, 2.0, 2.2, 3.6 and 4.5 GHz, the 

passband |S31| is greater than -1.2 dB, the isolation |S21| 

and |S41| are less than -18 dB for 0~10.0 GHz. 
 

  
 

Fig. 6. Geometry of the wideband filtering crossover.  

(l1 =18.0, l2 = 15.5, l3 = 8.45, l4 = 13.0, l5 = 36.3, l6 = 18.25, 

l7 = 18.25, w0 = 2.7, w1 = 0.24, w2 = 0.27, w3 = 0.23, w4 = 0.3, 

g1 = g2 = 0.45, g2 = 0.35, d = 0.6, all in mm). 
 

 
 (a) 

 
 (b) 

 

Fig. 7. Simulated and measured results of the crossover. 

(a) |S31|, |S11|, and (b) |S21|, |S41|. 

 

III. EXPERIMENT AND RESULTS 
The photograph, measured results of the wideband 

crossovers are also shown in Figs. 6-7. For the wideband 
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crossover, five measured transmission zeros are located 

at 1.6, 2.0, 2.3, 3.5 and 4.7 GHz, the 3-dB bandwidth is 

26.3% (2.58-3.37), the in-band |S31| is greater than -2.3 dB, 

the isolation |S21| and |S41| are less than -18.5 dB for 

0~10.0 GHz (3.3f0).  

For the purpose of comparison, Table 1 illustrates 

the measured results for some crossovers with proposed 

wideband filtering crossover. It can be seen that, the 

proposed filtering crossover has wideband isolation for 

|S21| and |S41|, and the upper stopband for |S31| can be 

extended up to 2.8f0 (|S31|< -25 dB), and further circuit 

size reduction can be also realized by using folded lines 

in multi-layer circuits. 

 

Table 1: Comparisons of measured results for some 

crossovers 

Crossover 

Structures 

TZs, |S31| 

0-2f0, 

Isolation 

|S21|/|S41|, dB 

Stopband 

|S31|, dB 

Filtering 

Response 

Ref. [3] 0 (1.0 GHz) 25%, <-20 <-10, 1.50f0 No 

Ref. [4] 0 (2.5 GHz) 14.0%, <-20 --- No 

Ref. [6] 0 (2.5 GHz) 200%, <-12 --- No 

Ref. [8] 4 (2.0 GHz) 100%, <-20 <-25, 2.50f0 Yes 

This work 5 (3.0 GHz) 330%, <-19 <-25, 2.80f0 Yes 

 
IV. CONCLUSIONS 

In this paper, a wideband filtering crossover with 

sharp rejection based on ring resonator is proposed,  

four transmission zeros can be easily realized by the 

adding open stubs and open/shorted coupled lines. The 

proposed wideband filtering crossover has advantages  

of high selectivity, wide stopband and wideband. Good 

agreements between simulated and measured responses 

of the structures are demonstrated. 
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