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Abstract ─ The dyadic Green's function of the magnetic 

vector-potential A (DGFA) for unbounded uniaxial 

anisotropic media is unavailable in literature but it is 

needed in numerical computation. The equation of the 

DGFA was directly derived from the Maxwell's equations. 

Through the Fourier transform and the inverse Fourier 

transform, the triple integral form of the DGFA in the 

spatial domain was obtained. And it was finally simplified 

to Sommerfeld integrals. In order to verify these formulas, 

we applied the singularity subtraction technique to 

evaluate the Sommerfeld integrals rapidly and compared 

the numerical results with the analytical solutions for 

degenerated cases for the isotropic unbounded media, as 

well as the simulated results from a commercial finite 

element software for uniaxial anisotropic unbounded 

media. Finally, the effect of the singularity subtraction 

method was discussed. 

 

Index Terms ─ Dyadic Green's function, magnetic 

vector-potential, unbounded, uniaxial anisotropic media. 

 

I. INTRODUCTION 
In the past decades, the computation of Green's 

functions has attracted intensive attention of many 

researchers. Both the scalar potential [1, 2] and vector 

potential methods for the computation of Green's 

functions are suggested. The scalar potential formulations 

are widely applied to the analysis of complex media  

[3]. The dyadic Green's functions (DGFs) of the vector 

potential are the kernel parts of the method of moment 

(MOM), which is a widely used method in electromagnetic 

forward and inverse problems [4-11]. So far, the DGFs 

have been obtained for multilayered isotropic media [12-

17], unbounded anisotropic media [18-20], multilayered 

anisotropic media [21]-24], etc. Michalski and Mosig 

[17] proposed the transmission line method to calculate 

the electric- and magnetic-type DGFs in a multilayered 

medium. Waves were decomposed into transverse electric 

(TE) and transverse magnetic (TM) modes in the 

transmission line analog the multilayered medium, and 

DGFs were first calculated in the spectral domain and 

transformed back to the spatial domain later. Electric-

type DGFs for general anisotropic media were obtained 

using the eigenvalue decomposition method by Huang 

and Lee [20]. The DGFs for the buried sources in 

stratified anisotropic media were formulated by Ali and 

Mahoud [24] with both complex tensor permittivities 

and tensor permeabilities. 

However, most of the above research work regarding 

DGFs focused on the calculation of electric or magnetic 

fields excited by an infinitesimal electric or magnetic 

dipole, i.e., the electric- or magnetic-type DGFs. The 

magnetic vector potential A generated by an infinitesimal 

electric dipole, i.e., the dyadic Green's function G̿𝐀J  

of the magnetic vector-potential A (DGFA), was not 

frequently studied for anisotropic media. But this 

auxiliary magnetic vector potential A was extensively 

applied to the solution of antenna radiation problems [25, 

26], forward scattering [27, 28] and inverse problems 

[29]. Fast and precise computation of the DGFA in 

various media is of great demand because it establishes 

a direct relation between A and the vector current source 

inside the media. Researchers have proposed some 

computational methods for the DGFA [17, 30-32]. Moran 

and Gianzero [31] presented an analytical solution of  

the DGFA for the uniaxial anisotropic media. It was 

formulated in the low frequency regime and usually used 

in well-logging measurements in which the dielectric 

constant was ignored and no anisotropy of magnetic 

properties was considered. Abubakar and Habashy [32] 

provided closed-form tensor Green's functions for an 

unbounded homogeneous transverse isotropic (TI)-

anisotropic medium. In their derivation, the permeability 

of the media was assumed as a scalar constant instead  

of the general complex form. Michalski and Mosig [17] 

derived DGFA from the Green's function of magnetic 
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field H which is derived by transmission line analog 

method. The mathematical form of the DGFA was not 

unique and they chose a compact and convenient form. 

In this paper, we presented a detailed but 

mathematically straightforward process for the 

computation of DGFA in the uniaxial anisotropic medium 

with both complex tensor permittivity and complex 

tensor permeability. Based on Maxwell's equations, the 

spatial domain DGFA in the triple integral was derived 

through the Fourier transforms and the inverse Fourier 

transforms. Using eigenvalue methods, Cauchy residue 

theorem and some mathematical identities, we finally 

simplified the triple integrals to Sommerfeld integrals. 

Because of the slow decaying and high oscillating 

properties, the Sommerfeld integrals can't be computed 

efficiently by the straightforward numerical integration 

methods. This process was accelerated by the singularity 

subtraction method [33] in which a special term was 

subtracted from each Sommmerfeld integrand to make 

the new integrand rapid decaying, where there is an 

analytical solution for the integration of each subtracted 

term. In addition, the singularity of the DGFA when the 

source point approaching the field point is discussed. 

This paper is organized as follows. In Section 2,  

the DGFA is formulated with both complex tensor 

permittivity and tensor permeability in unbounded 

uniaxial anisotropic media. In Section 3, a rapid 

computation algorithm is applied to the evaluation of 

Sommerfeld integrals which are deformed from the 

DGFA. Furthermore, in Section 4, we verify the derived 

DGFAs by comparing them with the analytical solutions 

in the circumstance of isotropic media, and, with 

simulated results from a commercial software in the 

circumstance of uniaxial anisotropic media. And then, 

we show the efficiency improvements on the convergence 

of the Sommerfeld integrand by the singularity subtraction 

method. The summary and conclusions are given in 

Section 5. 

 

II. FORMULATIONS AND EQUATIONS 
The magnetic vector potential formulation for a 

homogeneous medium is described in many textbooks. 

In the absence of magnetic sources (where 𝑀𝑖 = 0 , 

ρ𝑚𝑖 = 0), Maxwell's equations (with a time variation of 

𝑒𝑗𝜔𝑡) for an unbounded medium are given as: 

 ∇ × 𝐄 = −𝑗𝜔𝜇̿𝐇,  (1) 

 ∇ × 𝐇 = 𝑗𝜔𝜖𝐄̿ + J,  (2) 

 ∇ ∙ 𝜖𝐄̿ = 𝜌𝑒,  (3) 

 ∇ ∙ 𝜇̿𝐇 = 0,  (4) 

where 𝐄 is the electric field intensity, 𝐇 is the magnetic 

field intensity, J is the electric current densities, 𝜇̿ is the 

complex permeability tensor of the medium, and 𝜖 ̿is the 

complex permittivity tensor, which contains information 

about the dielectric constant and conductivity tensor of 

the medium. The complex permittivity 𝜖̿ is defined as  

following: 

 𝜖̿ = 𝜀 ̿ +
𝜎̿

𝑗𝜔
,  (5) 

where 𝜀 ̿  is the real permittivity tensor and 𝜎  is the 

conductivity tensor. 

In this paper, we assume the optic axis of the 

uniaxial anisotropic medium is in the z direction. The 

permeability, permittivity and conductivity of the medium 

are written as: 

𝜇̿ = [

𝜇𝑥 0 0
0 𝜇𝑥 0
0 0 𝜇𝑧

],  𝜀 ̿ = [
𝜀𝑥 0 0
0 𝜀𝑥 0
0 0 𝜀𝑧

], 

 𝜎 = [

𝜎𝑥 0 0
0 𝜎𝑥 0
0 0 𝜎𝑧

].  (6) 

From Equation (4), we can relate the magnetic field 

and the magnetic vector potential A by: 

 𝐇 = 𝜇̿−1∇ × 𝐀.  (7) 

By substituting (7) into (1) and using the vector 

identity that the curl of the gradient of any scalar function 

is zero, we can write the electric field as: 

 𝑬 = −𝑗𝜔𝑨 − ∇𝜙𝑒,  (8) 

where 𝜙𝑒 is a scalar electric potential. 

By substituting (7) and (8) into (2), we obtain the 

equation of the magnetic vector potential A and the 

scalar potential 𝜙𝑒 as: 

 𝛻 × 𝜇̿−1𝛻 × 𝐀 − 𝜔2𝜖𝐀̿ + 𝑗𝜔𝜖(̿∇𝜙𝑒) = J.  (9) 

For anisotropic media, we use the gauge by Chew 

[34]: 

 ∇ ∙ 𝜖𝐀̿ + 𝜒𝑗𝜔𝜙𝑒 = 0,  (10) 

where 𝜒  is an arbitrary function of position 𝐫̅ , and 

𝜒 = 𝛼|𝜖̿ ∙ 𝜇̿ ∙ 𝜖|̿. Note that 𝛼 can be chosen arbitrarily. 

For different selection, the DGFA will be different. But 

the electric and magnetic field computed using DGFA 

will not change. In order to simplify the subsequent 

mathematical derivations and numerical calculation, we 

choose 𝛼 =
1

𝜖𝑥
4𝜇𝑥

2, where 𝜖𝑥 = 𝜀𝑥 +
𝜎𝑥

𝑗𝜔
. And then, 

 𝜒 = 𝜇𝑧𝜖𝑧
2,  (11) 

where 𝜖𝑧 = 𝜀𝑧 +
𝜎𝑧

𝑗𝜔
. For this value of 𝜒, the gauge in 

(10) will degenerate into the Lorentz gauge if the medium 

is isotropic.  

Substituting (10) and (11) into (9), we obtain the 

equation of magnetic vector potential A as: 

 ∇ × 𝜇̿−1∇ × 𝐀 − 𝜔2𝜖𝐀̿ +
1

𝜇𝑧𝜖𝑧
2 𝜖∇̿(∇𝜙𝑒) = J.  (12) 

Our choice of 𝛼 =
1

𝜖𝑥
4𝜇𝑥

2 guarantees that the three terms  

in the left side of Equation (12) have the same order  

of coefficient magnitude. And Equation (12) can be 

expressed in a more compact form as: 

 Z̿EA = J,  (13) 

where 𝑍̿𝐸  is a second order differential matrix, and its 

detailed expression is shown in the Appendix A. 

If the current source is a unit point source, Equation 

(13) becomes the equation of the DGFA G̿AJ(r ̅, r̅′) in  
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the spatial domain as following: 

 Z̿EG̿AJ(r ̅, r̅′) = 𝜹(r ̅,r̅′)𝐈̿,  (14) 

where 𝐈̿ is the unit dyadic, and the unitary point source 

excitation is located at 𝐫̅′ = 𝐱̂x′ + 𝐲̂y′ + 𝐳̂z′. 
By applying the spatial Fourier transform to (14), we 

obtain the equation of DGFA 𝐆𝐀J(𝐤̅, 𝐫̅
′) in the spectral 

domain as following: 

 Z̿AG̿AJ(k ̅, r̅′) = 𝑒
𝑗k ̅∙ r̅′𝐈̿,  (15) 

where 𝐤̅  is the wave vector, which is given as r̅′ =

𝐱̂kx + 𝐲̂ky + 𝐳̂kz , and 𝑍̿𝐴  is the electric wave matrix 

about (𝑘𝑥, 𝑘𝑦 , 𝑘𝑧), whose complete expression is shown 

in the Appendix B. 

Equation (15) can be rewritten as: 

 G̿AJ(k ̅, r̅′) = 
𝑍𝐴
𝑎

|𝑍𝐴|
𝑒𝑗k ̅∙ r̅′,  (16) 

where 𝑍̿𝐴
𝑎 is the adjoint matrix of 𝑍̿𝐴, whose determinant 

is |𝑍̿𝐴|. 
Applying the spatial inverse Fourier transform,  

we obtain the relationship between the spatial domain 

DGFA 𝐆𝐀J(𝐫̅, r̅′)  and the spectral domain DGFA 

𝐆𝐀J(𝐤̅, 𝐫̅
′) as: 

 𝐆𝐀J(𝐫̅, r̅′) =
1

(2𝜋)3
∭

𝑍𝐴
𝑎

|𝑍𝐴|
𝑒−𝑗𝐤 ̅∙ (𝐫̅−r̅′)𝑑𝐤 ̅

+∞

−∞
.  (17) 

Actually, from Equations (8) and (10), we can obtain 

the expression of E in term of A in the spatial domain as: 

 𝐄 = −𝑗𝜔𝐀 −
𝑗

𝜔𝜇𝑧𝜖𝑧
2 ∇∇ ∙ 𝜖𝐀̿.  (18) 

Therefore, if E and A in Equation (18) are excited 

by the same unit point source, the DGF 𝐆𝐄J(𝐤̅, 𝐫̅
′) of 

electric field and the DGFA 𝐆𝐀J(𝐤̅, 𝐫̅
′) in the spectral 

domain can be related by: 

G̿EJ(k ̅, r̅′) = −𝑗𝜔(𝐈̿ −
𝟏

𝜔2𝜇𝑧𝜖𝑧
2  

 [

𝑘𝑥
2𝜀𝑥 𝑘𝑥𝑘𝑦𝜀𝑥 𝑘𝑥𝑘𝑧𝜀𝑧

𝑘𝑥𝑘𝑦𝜀𝑥 𝑘𝑦
2𝜀𝑥 𝑘𝑦𝑘𝑧𝜀𝑧

𝑘𝑥𝑘𝑧𝜀𝑥 𝑘𝑦𝑘𝑧𝜀𝑥 𝑘𝑧
2𝜀𝑧

])𝐆𝐀𝐉(𝐤̅, 𝐫̅
′).  (19) 

Substituting (15) into (19), we obtain the spectral 

domain DGF of electric field as: 

 𝑊̿𝐸G̿EJ(k ̅, r̅′) = 𝑗𝜔𝑒
𝑗k ̅∙ r̅′,  (20) 

where 𝑊̿𝐸  is electric wave matrix and its detailed 

expression is shown in the Appendix C. 

Equation (20) is in accord with the results shown in 

the paper [20], [24]. 
 

III. EVALUATION 

The spatial DGFA 𝐆𝐀J in Equation (17) is not easy 

to compute due to its triple integral. It is noted, however, 

that 𝑍̿𝐴 is a sixth order polynomial of 𝑘𝑧, and thus, has 

six different roots. So it can be written as: 

 |𝑍̿𝐴| = α6∏ (𝑘𝑧 − 𝑘𝑧,𝑖
𝑢 )(𝑘𝑧 − 𝑘𝑧,𝑖

𝑑 )3
𝑖=1 ,  (21) 

where the subscript 𝑖 = (1,2,3) . The wave vectors  

𝑘𝑧,𝑖
𝑢  and 𝑘𝑧,𝑖

𝑑  are couple positive and negative roots 

corresponding to upward and downward propagating 

wave, respectively. Let's define 𝑘𝜌 = √𝑘𝑥
2 + 𝑘𝑦

2, so 𝑘𝑧,𝑖
𝑢  

and 𝑘𝑧,𝑖
𝑑  depend only on 𝑘𝜌. The coefficient 𝛼6 =

1

𝜇𝑥
2𝜇𝑧

. 

Substituting (21) into (17), we obtain the spatial 

domain DGFA as: 

𝐆𝐀J(𝐫̅, 𝐫̅
′) =

1

(2𝜋)3
 

 ∭
𝑍𝐴
𝑎(𝑘𝑧)

𝛼6∏ (𝑘𝑧−𝑘𝑧,𝑖
𝑢 )(𝑘𝑧−𝑘𝑧,𝑖

𝑑 )3
𝑖=1

𝑒−𝑗𝐤 ̅∙ (𝐫̅−r̅′)𝑑𝐤 ̅
+∞

−∞
.  (22) 

In order to avoid singularities in the evaluation of 

𝐆𝐀J, we apply the Cauchy residue theorem to (22). The 

triple integral of 𝐆𝐀𝐉 is reduced to a double integral as: 

𝐆𝐀J(𝐫̅, 𝐫̅
′) =

𝑗

(2𝜋)2
∑ 

3

𝑖=1

 

 

{
 

 ∬
𝑍𝐴
𝑎(𝑘𝑧,𝑖

𝑢 )

𝑑𝑒𝑡𝑍𝐴(𝑘𝑧,𝑖
𝑢 )

+∞

−∞
𝑒−𝑗𝑘̅𝑖

𝑢∙ (𝐫̅−r̅′)𝑑𝑘𝑥𝑑𝑘𝑦 , 𝑧 ≥ 𝑧′

∬
𝑍𝐴
𝑎(𝑘𝑧,𝑖

𝑑 )

𝑑𝑒𝑡𝑍𝐴(𝑘𝑧,𝑖
𝑑 )

+∞

−∞
𝑒−𝑗𝑘̅𝑖

𝑑∙ (𝐫̅−r̅′)𝑑𝑘𝑥𝑑𝑘𝑦 , 𝑧 ≤ 𝑧′
,  (23) 

where the subscript 𝑖 = (1,2,3) is a cyclic index with a 

period of 3, and ℎ = (𝑢, 𝑑) for: 

 𝑘̅𝑖
ℎ = 𝑥̂𝑘𝑥 + 𝑦̂𝑘𝑦 + 𝑧̂𝑘𝑧,𝑖

ℎ ,  (24) 

 d𝑒𝑡𝑍̿𝐴(𝑘𝑧,𝑖
ℎ ) = 2𝛼6𝑘𝑧,𝑖

ℎ ∑ (|𝑘𝑧,𝑖
ℎ |

2
− |𝑘𝑧,𝑖+𝑚

ℎ |
2
)2

𝑚=1 .  (25) 

𝑘𝑧,𝑖
𝑢  and 𝑘𝑧,𝑖

𝑑  are couple positive and negative roots, 

so it's easily verified that there are the same result for  

any two points with the symmetry of (𝑥′, 𝑦′) plane in 

Equation (23). So here we only derive the DGFA for  

𝑧 ≥ 𝑧′. Let 

 𝐆A(𝑘𝑧,𝑖
𝑢 ) =

𝑍𝐴
𝑎(𝑘𝑧,𝑖

𝑢 )

𝑑𝑒𝑡𝑍𝐴(𝑘𝑧,𝑖
𝑢 )

,  (26) 

and by simplifying Equation (26), we obtain  𝑖 = (1,2) 
for: 

 G̿A(kz,i
u )=

[
 
 
 g

i,1
(kρ)kx

2
g

i,2
(kρ)kxky g

i,3
(kρ)kx

g
i,2
(kρ)kxky g

i,4
(kρ)ky

2
g

i,5
(kρ)ky

g
i,3
(kρ)kx g

i,5
(kρ)ky g

i,6
(kρ) ]

 
 
 

 , (27) 

and  𝑖 = 3 for: 

 G̿A(kz,3
u )= [

g
3,1
(kρ)kx

2
g

3,2
(kρ)kxky 0

g
3,2
(kρ)kxky g

3,3
(kρ)ky

2 0

0 0 0

],  (28) 

where g
i,j
(kρ) is the function of kρ , 𝑖 = (1,2,3) , 𝑗 =

(1,2,3,4,5,6). 
Substituting (27) and (28) into (23), we can see that 

each term in Equation (23) for z ≥ z′ is reduced to a 

Sommerfeld integral [33] as: 

𝐆𝐀J

(𝑖,𝑗)
=
1

2𝜋
𝐹𝑖,𝑗(𝜖, 𝜇, 𝜌, 𝜑) 

 ∫ 𝑓𝑖,𝑗(𝑘𝑧,𝑖
𝑢 |𝑘𝜌)Jn(𝑘𝜌𝜌)𝑘𝜌

𝑚+∞

0
𝑑𝑘𝜌,  (29) 

where 𝐹𝑖,𝑗(𝜖, 𝜇, 𝜌, 𝜑)  is the coefficient expression of 

(𝜖, 𝜇, 𝜌, 𝜑) , 𝜖 = (𝜖𝑥, 𝜖𝑧) , 𝜇 = (𝜇𝑥, 𝜇𝑧) , 𝑚 = (0,1,2,3) . 

(𝜌, 𝜑) are the cylindrical coordinates of the projection  

of the source point on the (𝑥, 𝑦)  plane, and 𝜌 =
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√(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2. Jn is the Bessel function of order 

𝑛 = (0,1). 𝑓𝑖,𝑗(𝑘𝑧,𝑖
𝑢 |𝑘𝜌) is the function of 𝑘𝑧,𝑖

𝑢  which is 

expressed by 𝑘𝜌, and it shows as (30) for 𝑙 = (−1,0,1): 

 𝑓𝑖,𝑗(𝑘𝑧,𝑖
𝑢 |𝑘𝜌) = (𝑘𝑧,𝑖

𝑢 )𝑙  𝑒−𝑗𝑘𝑧,𝑖
𝑢 (𝑧−𝑧′).  (30) 

So the spatial domain DGFA is a symmetric matrix, 

and it can be written as: 

 𝐆𝐀J(𝐫̅, 𝐫̅
′) = [

𝐺11 𝐺12 𝐺13
𝐺12 𝐺22 𝐺23
𝐺13 𝐺23 𝐺33

],  (31) 

where  

 𝐺11 = 𝐆𝐀J

(1,1)
+ 𝐆𝐀J

(2,1)
+ 𝐆𝐀J

(3,1)
,  (32) 

 𝐺12 = 𝐆𝐀J

(1,2)
+ 𝐆𝐀J

(2,2)
+ 𝐆𝐀J

(3,2)
,  (33) 

 𝐺13 = 𝐆𝐀J

(1,3)
+ 𝐆𝐀J

(2,3)
,  (34) 

 𝐺22 = 𝐆𝐀J

(1,4)
+ 𝐆𝐀J

(2,4)
+ 𝐆𝐀J

(3,3)
,  (35) 

 𝐺23 = 𝐆𝐀J

(1,5)
+ 𝐆𝐀J

(2,5)
,  (36) 

 𝐺33 = 𝐆𝐀J

(1,6)
+ 𝐆𝐀J

(2,6)
.  (37) 

Because the Sommerfeld integrands of (29) have 

slow decaying and intensive oscillation, straightforward 

numerical integration methods are not efficient. In order 

to reach an accurate but efficient evaluation of (29),  

we need to change the integrands by the singularity 

subtraction method [31]. In this way, an equation with 

the same decaying and oscillation of Equation (29) was 

designed as: 

 𝑀(𝑖,𝑗)(𝑘𝜌,𝑖
∗ ) = ∫ 𝑓𝑖,𝑗

∗ (𝑘𝜌,𝑖
∗ )Jn(𝑘𝜌,𝑖

∗ 𝜌𝑖
∗)𝑘𝜌,𝑖

𝑚+∞

0
𝑑𝑘𝜌,𝑖

∗ ,  (38) 

where 𝑘𝜌,𝑖
∗  is the asymptotic form of 𝑘𝑧,𝑖

𝑢 , and  

 lim
𝑘𝜌→∞

𝑘𝑧,𝑖
𝑢 ≈ 𝑗𝑄𝑖(𝜖, 𝜇)𝑘𝜌 = 𝑗𝑘𝜌,𝑖

∗ ,  (39) 

 𝜌𝑖
∗ =

𝜌

𝑄𝑖(𝜖,𝜇)
,  (40) 

𝑄𝑖(𝜖, 𝜇)  is the coefficient expression of (𝜖, 𝜇) , 𝜖 =
(𝜖𝑥, 𝜖𝑧), 𝜇 = (𝜇𝑥, 𝜇𝑧). And there is an analytical solution 

for 𝑀𝑖,𝑗(𝑘𝜌,𝑖
∗ ) by the following identity [35]: 

∫ 𝑒−𝑘𝜌𝛼Jn(𝑘𝜌𝜌)𝑘𝜌
𝑚+∞

0
𝑑𝑘𝜌 =  

 (−1)𝑚𝜌−𝑛
𝑑𝑚

𝑑𝛼𝑚
[
(√𝜌2+𝛼2−𝛼)

𝑛

√𝜌2+𝛼2
],  (41) 

where 𝜌 > 0, 𝑛 > −𝑚 − 1. 

With the subtraction 𝑀𝑖,𝑗(𝑘𝜌,𝑖
∗ ), Equation (29) can 

be deformed as: 

 𝐆𝐀J

(𝑖,𝑗)
= 𝐆𝐀J

(𝑖,𝑗)
− 𝑮̃𝐀J

(𝑖,𝑗)
+ 𝐆𝑖,𝑗,  (42) 

where 𝐆𝑖,𝑗 is the analytical solution of 𝑮̃𝐀J

(𝑖,𝑗)
, and  

 𝑮̃𝐀J

(𝑖,𝑗)
=

1

2𝜋
𝐹𝑖,𝑗(𝜖, 𝜇, 𝜌, 𝜑)𝑀(𝑖,𝑗)(𝑘𝜌,𝑖

∗ ).  (43) 

If 𝜌 = 0, there are singularities in Equation (29).  

So here we will discuss how to deal with this problem. 

As 𝜌 approaches zero, the asymptotic behaviors of the 

cylindrical wave functions for 𝑘𝜌𝜌 → 0 are: 

 J0(𝑘𝜌𝜌)~1,  (44) 

 J0(𝑘𝜌𝜌)~
𝑘𝜌𝜌

2
.  (45) 

Substituting (44) and (45) into (29), we can easily 

obtain the DGFA for 𝜌 → 0 as: 

 𝐆𝐀J(𝐫̅, 𝐫̅
′) = [

𝐺11 0 𝐺13
0 𝐺22 𝐺23
𝐺13 𝐺23 𝐺33

],  (46) 

where  

𝐺11 = 𝐺22 = ∫ 𝐶1𝑘𝑧,1
𝑢 𝑒−𝑗𝑘𝑧,1

𝑢 (𝑧−𝑧′)𝑘𝜌
+∞

0
+  

 𝐶2
𝑒−𝑗𝑘𝑧,2

𝑢 (𝑧−𝑧′)

𝑘𝑧,2
𝑢 𝑘𝜌

3 + 𝐶3
𝑒−𝑗𝑘𝑧,3

𝑢 (𝑧−𝑧′)

𝑘𝑧,3
𝑢 𝑘𝜌𝑑𝑘𝜌,  (47) 

𝐺13 = 𝐺31 = 𝐶4(𝑥 − 𝑥′) 

 ∫  
+∞

0
𝑘𝜌
3(𝑒−𝑗𝑘𝑧,1

𝑢 (𝑧−𝑧′) − 𝑒−𝑗𝑘𝑧,2
𝑢 (𝑧−𝑧′))𝑑𝑘𝜌,  (48) 

𝐺23 = 𝐺32 = 𝐶5(𝑦 − 𝑦′) 

 ∫  
+∞

0
𝑘𝜌
3(𝑒−𝑗𝑘𝑧,1

𝑢 (𝑧−𝑧′) − 𝑒−𝑗𝑘𝑧,2
𝑢 (𝑧−𝑧′))𝑑𝑘𝜌,  (49) 

𝐺33 = 

 ∫ 𝐶6
𝑒
−𝑗𝑘𝑧,1

𝑢 (𝑧−𝑧′)

𝑘𝑧,1
𝑢 𝑘𝜌

3 + 𝐶7𝑘𝑧,2
𝑢 𝑒−𝑗𝑘𝑧,2

𝑢 (𝑧−𝑧′)𝑘𝜌𝑑𝑘𝜌
+∞

0
,  (50) 

𝐶𝑖 , 𝑖 = [1,2,3,4,5,6,7], is the coefficient expression of 

(𝜖, 𝜇), 𝜖 = (𝜖𝑥, 𝜖𝑧), 𝜇 = (𝜇𝑥, 𝜇𝑧). 
When z = z′, it is easily verified that 𝐺11 = 𝐺22 = ∞, 

𝐺33 = ∞ , 𝐺13 = 𝐺31 = 0  and 𝐺23 = 𝐺32 = 0 . In this 

way, the DGFA becomes a diagonal dyad. 
 

IV. NUMERICAL VALIDATION 
The aforementioned derivations indicate the solution 

process of DGFA. However, it is difficult to verify the 

solutions because most commercial numerical simulation 

software computes field intensity E and H instead of 

magnetic vector potential A. Therefore, in this work, we 

verified our derivations for the DGFA in three steps. 

First, we calculated the 𝐆𝐀J for a degenerated case, i.e., 

for the unbounded isotropic medium since there was an 

analytical solution for 𝐆𝐀J in the isotropic media. In the 

second step, by using (18), also in the circumstance of  

an isotropic medium, we computed E from A which is 

assumed to be generated by an infinitesimal electric 

dipole source. We compared these calculated E field 

values to the results simulated by the commercial 

software COMSOL. Finally, following the similar 

procedure, we compared E field values computed from 

𝐆𝐀J  and those from COMSOL simulations but for 

uniaxial anisotropic media. 

In the unbounded homogeneous isotropic space, the 

DGFA becomes an analytical scalar instead of a dyad. 

And it is expressed as: 

 g(𝐫̅, 𝐫̅′) = 𝜇
𝑒−𝑗𝑘|𝐫̅−𝐫̅′|

4𝜋|𝐫̅−𝐫̅′|
.  (51) 

In the computation, for case 1, we set that the 

permeability 𝜇 = 10𝜇0 , the permittivity 𝜀 = 10𝜀0, and 

electric conductivity 𝜎 = 0.0001S/m, where 𝜇0  and 𝜀0 

are the permeability and permittivity in the free space. 

We choose a computation domain of 6 m × 6 m × 6 m, 

where 216 observation points are uniformly distributed. 

The electric dipole source is located in the center of  

the region, and the the operation frequency is 1 GHz.  

The 𝐆𝐀J  dyadics of those 216 points evaluated by the 

Sommerfeld integrals in Equation (42) only show non-
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zero diagonal values while having zero values in all  

the off-diagonal elements. Figure 1 shows the good 

agreements between DGFA computation and the 

analytical solutions for those non-zero diagonal elements. 

Only 72 of 216 points (sampled uniformly per three points) 

are shown to make the comparisons more discernable. 

 

 
 

Fig. 1. Comparisons of the diagonal values of 𝐆𝐀J and 

the analytical solutions: (a) depicts the real part, and (b) 

depicts the imaginary part. 

 

We define the relative error as: 

 𝐸𝑟𝑟𝑖𝑖 = √
‖g−[𝐆𝐀J]𝑖𝑖‖

2

‖g‖2
,  (52) 

where ‖ ‖ is L2 norm and 𝑖𝑖 = (𝑥𝑥, 𝑦𝑦, 𝑧𝑧). Using this 

definition, we calculated the relative numerical error for 

the evaluation of 𝐆𝐀J and found that 𝐸𝑟𝑟𝑥𝑥 = 3.0772 ×
10−7 ,  𝐸𝑟𝑟𝑦𝑦 = 3.0772 × 10

−7 , and 𝐸𝑟𝑟𝑧𝑧 = 3.0650 ×

10−7. 

In order to save computation of resource for COMSOL 

simulation of electromagnetic wave propagating inside  

a homogeneous isotropic medium, we decreased the 

computation domain to 0.3 m × 0.3 m × 0.3 m . We 

performed the simulations for two cases. In case 2, we 

set 𝜇 = 𝜇0, 𝜀 = 𝜀0 and 𝜎 = 0.0001 S/m. In case 3, we 

set 𝜇 = 0.1𝜇0, 𝜀 = 0.1𝜀0 and 𝜎 = 0.0001 S/m. The 216 

observation points are also uniformly distributed within 

the domain. The electric dipole polarized by (1,1,1) is 

located in the center of the region and radiates 1 GHz 

electromagnetic waves. In the COMSOL simulation 

models, the source location as well as its polarization and 

the electrical parameters such as 𝜇, 𝜀 and 𝜎 are the same 

as those used in the DGFA computation. The mesh sizes 

are set to be ‘EXTRA FINE’ and the thickness of the 

perfect match layers (PML) is set as 0.15 m which are 

located outside the computation domain. The mesh sizes 

and PML thickness are the same for all the COMOSL 

simulations presented in this paper. When we computed 

E from A using (18), numerical central differential 

method was applied to gradient and divergence operation. 

The comparisons for the electric fields among 

analytic solutions, calculations from DGFA 𝐆𝐀J  and 

simulations by COMSOL are shown in Fig. 2. Here, only 

54 (sampled uniformly per four points) representative 

points of 216 are chosen to make the comparisons more 

discernable. Moreover, we only show the x-component 

comparisons for case 2 while y-component comparisons 

for case 3. Comparisons for other components are not 

presented since they are similar as those for the x-

component or the y-component. In order to evaluate the 

computation error, we give an error definition similar as 

(52): 

 𝐸𝑟𝑟𝑖 = √
‖𝐸𝑎𝑛𝑎−𝐸𝑖‖

2

‖𝐸𝑎𝑛𝑎‖
2 ,  (53) 

where 𝑖 = (𝐶𝑂𝑀𝑆𝑂𝐿, 𝐷𝐺𝐹𝐴) and 𝐸𝑎𝑛𝑎 is the analytical 

solution calculated using (51). 
 

 
 

Fig. 2. Comparisons of electric fields computed by 

analytical methods, using DGFA and from COMSOL 

simulations in an isotropic medium: (a) and (b) are for 

case 2; (c) and (d) are for case 3; (a) and (c) depict the 

real parts while (b) and (d) depict the imaginary parts. 

 

Figures 2 (a) and (b) show the comparisons of 𝐸𝑥 in 

case 2. The relative error between calculations using 

DGFA and the analytical solutions is 9.441 × 10−8. The 

relative error between COMSOL simulations and the 

analytical solutions is 9.9 × 10−3. We can see that the  

x-components of E computed in three ways show good 

agreements. Figures 2 (c) and (d) show the comparisons 

of 𝐸𝑦 in case 3. The relative error between calculations 

using DGFA and the analytical solutions is 1.2608 ×
10−7. The relative error between COMSOL simulations 

and the analytical solutions is 3.14 × 10−2. There is an 

obvious mismatch between COMSOL simulations and 
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analytical solutions in Fig. 2 (c). Actually, not only the 

𝐸𝑦 real part has this mismatch, but also the real part of 

𝐸𝑥 and 𝐸𝑧 which are not shown here. This mismatch may 

be due to that the imaginary part is around 50 times larger 

than the real part and thus the numerical iteration 

precision cannot be maintained for the real parts which 

have much smaller values. 

 

 
 

Fig. 3. Comparisons of electric fields computed using 

DGFA and from COMSOL simulations in an uniaxial 

anisotropic medium: (a) and (b) are for case 4; (c) and 

(d) are for case 5; (a) and (c) depict the real parts while 

(b) and (d) depict the imaginary parts. 

 

In aforementioned two steps, we verified the 

derivation of 𝐆𝐀𝐉 in the circumstance of isotropic media. 

Now let us check its correctness inside a uniaxial 

anisotropic media. Since there is no analytical solution 

for the E field in uniaxial anisotropic media, we only 

compare the electric fields computed using 𝐆𝐀J  and 

simulated by COMSOL. The simulation domain, 

observation points, the source dipole position as well as 

its polarization are the same as in previous case 2 and 

case 3. However, we use following dielectric parameters 

in case 4: 

𝜇̿ = 𝜇0 [
1 0 0
0 1 0
0 0 5

] , 𝜀 ̿ = 𝜀0 [
1 0 0
0 1 0
0 0 5

], 

 𝜎 = [
0.001 0 0
0 0.001 0
0 0 0.005

] S/m.  (54) 

And we use following dielectric parameters in case 5: 

𝜇̿ = 𝜇0 [
1 0 0
0 1 0
0 0 0.1

] , 𝜀 ̿ = 𝜀0 [
1 0 0
0 1 0
0 0 0.1

], 

 𝜎 = [
0.001 0 0
0 0.001 0
0 0 0.0001

] S/m.  (55) 

Figure 3 shows the comparisons of z-component of 

E between calculations using DGFA and simulations  

by COMSOL. Here, we also choose 54 representative 

points. We can see that 𝐸𝑧 values are highly consistent 

for two computation methods for both real parts and 

imaginary parts in two cases. If the relative error between 

these two results is defined as: 

   𝐸𝑟𝑟𝐶𝐷 = √
‖𝐸𝐷𝐺𝐹𝐴−𝐸𝐶𝑂𝑀𝑆𝑂𝐿‖

2

‖𝐸𝐷𝐺𝐹𝐴‖
2 .  (56) 

The error for case 4 is 2.32 × 10−2, and, 3.33 × 10−2 

for case 5. 

In our work, we use the singularity subtraction 

method [31] to accelerate the integral process of 

Equation (29), which is calculated segment by segment 

on the Sommerfeld integral path until the desired 

accuracy is obtained [31]. If the efficiency improvement 

is defined as: 

 𝐸𝑓𝑓𝑖 =
𝐼𝑆𝑁𝑤𝑜−𝐼𝑆𝑁𝑤

𝐼𝑆𝑁𝑤𝑜
,  (57) 

where ISN is the number of the segments for the 

Sommerfeld integrals, and subscript wo/w means 

without/with subtraction. 
 

 
 

Fig. 4. Efficiency improvements for different cases 

through the singularity subtraction method: (a) is for case 

2, case 4 and case 5; (b) is for extreme cases in which 

observation points get closer to the 𝑧′ plane. 

 

Figure 4 shows the efficiency improvements by the 

subtraction method. Figure 4 (a) displays the results for 

case 2, case 4 and case 5. It is clear that the efficiency 

improvements are different for different observation 

points. When the observation points are far from the 

source point in the z direction, i.e., when |𝑧 − 𝑧′| values 

are large, the efficiency improvements are not obvious. 

However, when |𝑧 − 𝑧′|  becomes smaller, efficiency 

improvements become obvious, and reach about 30%  
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in case 2, case 4 and case 5. We further decrease the 

distance in the z direction between the source point and 

field points to verify the efficiency improvement. Figure 

4 (b) shows the results for ∆z = |𝑧 − 𝑧′|  of 10−1λ , 

 10−2λ , 10−3λ  and 10−4λ . All the computation is 

performed in the same background medium with 

dielectric parameter shown in (54). And 100 observation 

points are uniformly distributed in the computation 

domain. Clearly, after the subtraction, the smaller is  

∆z , the larger is the efficiency improvement. If the 

observation points are placed in the source plane, i.e., 

|z − z′| = 0, it is easy to verify that Equation (29) can’t 

converge, but Equation (42) can converge with very  

few number of the integral segments under the desired 

accuracy. Therefore, the efficiency improvement by the 

singularity subtraction method becomes more significant 

when the observation points get closer to the source point 

in the z direction.  

 

V. SUMMARY AND CONCLUSIONS 
In this paper, the DGFA formula for the unbounded 

uniaxial anisotropic media were derived. Starting from 

Maxwell's equations and through the forward and inverse 

spatial Fourier transforms, DGFA formula in the integral 

forms were obtained for three-dimensional cases. Based 

upon Cauchy residue theorem, the closed form of DGFA 

formula were finally simplified to one-dimensional 

Sommerfeld integrals. By applying the singularity 

subtraction method and Gaussian quadrature, we can 

efficiently and accurately evaluate these Sommerfeld 

integrals. The numerical accuracy was only restricted  

by the Gaussian quadrature. In an effort to verify our 

derivations for those formula, we compared our results 

with analytical and simulated results in the circumstance 

of isotropic and uniaxial anisotropic media respectively. 

These comparisons showed that the results obtained 

from the DGFA and those by analytical methods and 

numerical simulations agreed well. The effect of the 

singularity subtraction was validated by several numerical 

experiments. Hence, the derivation and evaluation of 

DGFA presented in this paper are reliable and efficient.  
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APPENDIX A. EXPRESSIONS OF 𝒁̿𝑬 

 𝑍̿𝐸 = [

𝑍𝐸,11 𝑍𝐸,12 𝑍𝐸,13
𝑍𝐸,21 𝑍𝐸,22 𝑍𝐸,23
𝑍𝐸,31 𝑍𝐸,32 𝑍𝐸,33

], (A1) 

where: 

 𝑍𝐸,11 =
𝜀𝑥
2

𝜇𝑧𝜀𝑧
2

𝜕2

𝜕𝑥2
+

1

𝜇𝑧

𝜕2

𝜕𝑦2
+

1

𝜇𝑥

𝜕2

𝜕𝑧2
+ 𝜔2𝜀𝑥, (A2) 

 𝑍𝐸,12 = −
1

𝜇𝑧

𝜕2

𝜕𝑥𝜕y
+

𝜀𝑥
2

𝜇𝑧𝜀𝑧
2

𝜕2

𝜕𝑥𝜕𝑦
, (A3) 

 𝑍𝐸,13 = −
1

𝜇𝑥

𝜕2

𝜕𝑥𝜕z
+

𝜀𝑥

𝜇𝑧𝜀𝑧

𝜕2

𝜕𝑥𝜕𝑧
, (A4) 

 𝑍𝐸,21 = 𝑍𝐸,12, (A5) 

 𝑍𝐸,22 =
1

𝜇𝑧

𝜕2

𝜕𝑥2
+

𝜀𝑥
2

𝜇𝑧𝜀𝑧
2

𝜕2

𝜕𝑦2
+

1

𝜇𝑥

𝜕2

𝜕𝑧2
+ 𝜔2𝜀𝑥, (A6) 

 𝑍𝐸,23 = −
1

𝜇𝑥

𝜕2

𝜕𝑦𝜕z
+

𝜀𝑥

𝜇𝑧𝜀𝑧

𝜕2

𝜕𝑦𝜕𝑧
, (A7) 

 𝑍𝐸,31 = 𝑍𝐸,13, (A8) 

 𝑍𝐸,32 = 𝑍𝐸,23, (A9) 

 𝑍𝐸,33 =
1

𝜇𝑥
(
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
) +

1

𝜇𝑧

𝜕2

𝜕𝑧2
+ 𝜔2𝜀𝑧. (A10) 

 

APPENDIX B. EXPRESSIONS OF 𝒁̿𝑨 

 𝑍̿𝐴 = [

𝑍𝐴,11 𝑍𝐴,12 𝑍𝐴,13
𝑍𝐴,21 𝑍𝐴,22 𝑍𝐴,23
𝑍𝐴,31 𝑍𝐴,32 𝑍𝐴,33

], (B1) 

where: 

 𝑍𝐴,11 = 𝜔2𝜀𝑥 −
𝑘𝑥
2𝜀𝑥
2

𝜇𝑧𝜀𝑧
2 −

𝑘𝑦
2

𝜇𝑧
−

𝑘𝑧
2

𝜇𝑥
, (B2) 

 𝑍𝐴,12 = (
1

𝜇𝑧
−

𝜀𝑥
2

𝜇𝑧𝜀𝑧
2) 𝑘𝑥𝑘𝑦, (B3) 

 𝑍𝐴,13 = (
1

𝜇𝑥
−

𝜀𝑥

𝜇𝑧𝜀𝑧
) 𝑘𝑥𝑘𝑧, (B4) 

 𝑍𝐴,21 = 𝑍𝐴,12, (B5) 

 𝑍𝐴,22 = 𝜔2𝜀𝑥 −
𝑘𝑥
2

𝜇𝑧
−

𝑘𝑦
2𝜀𝑥
2

𝜀𝑧
2𝜇𝑧

−
𝑘𝑧
2

𝜇𝑥
, (B6) 

 𝑍𝐴,23 = (
1

𝜇𝑥
−

𝜀𝑥

𝜇𝑧𝜀𝑧
) 𝑘𝑦𝑘𝑧, (B7) 

 𝑍𝐴,31 = 𝑍𝐴,13, (B8) 

 𝑍𝐴,32 = 𝑍𝐴,23, (B9) 

 𝑍𝐴,33 = 𝜔2𝜀𝑧 −
𝑘𝑥
2

𝜇𝑥
−

𝑘𝑦
2

𝜇𝑥
−

𝑘𝑧
2

𝜇𝑧
. (B10) 

 

APPENDIX C. EXPRESSIONS OF 𝒁̿𝑨 

 𝑊̿𝐸 = [

𝑊𝐸,11 𝑊𝐸,12 𝑊𝐸,13

𝑊𝐸,21 𝑊𝐸,22 𝑊𝐸,23

𝑊𝐸,31 𝑊𝐸,32 𝑊𝐸,33

], (C1) 

where: 

 𝑊𝐸,11 = 𝜔
2𝜀𝑥 −

𝑘𝑦
2

𝜇𝑧
−

𝑘𝑧
2

𝜇𝑥
, (C2) 

 𝑊𝐸,12 =
𝑘𝑥𝑘𝑦

𝜇𝑧
, (C3) 

 𝑊𝐸,13 =
𝑘𝑥𝑘𝑧

𝜇𝑥
, (C4) 

 𝑊𝐸,21 = 𝑊𝐸,12, (C5) 

 𝑊𝐸,22 = 𝜔
2𝜀𝑥 −

𝑘𝑥
2

𝜇𝑧
−

𝑘𝑧
2

𝜇𝑥
, (C6) 

 𝑊𝐸,23 =
𝑘𝑦𝑘𝑧

𝜇𝑥
, (C7) 

 𝑊𝐸,31 = 𝑊𝐸,13, (C8) 

 𝑊𝐸,32 = 𝑊𝐸,23, (C9) 

 𝑊𝐸,33 = 𝜔
2𝜀𝑧 −

𝑘𝑥
2

𝜇𝑥
−

𝑘𝑦
2

𝜇𝑥
. (C10) 
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