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Abstract ─ A massively parallel Method of Moment 

(MoM) solver able to run on 200,000 CPU cores and solve 

matrices larger than 1.3 million unknowns is presented. 

The solver implements a novel LU decomposition 

algorithm based on the Communication Avoiding LU 

(CALU) scheme. By using a new pivoting policy, the 

communication between processes is improved enhancing 

the parallel speed up of the algorithm. Solver effectiveness 

and performance are demonstrated comparing the results 

with two of the most important math libraries used 

by direct dense solvers: the commercial MKL and the 

open source ScaLapack. Results show how simulation 

time is reduced significantly thanks to this novel LU 

decomposition algorithm making possible the simulation 

of incredibility electrically large problems using MoM. 

Index Terms ─ Communication avoiding, high 

performance, LU decomposition, massively parallel, 

method of moments. 

I. INTRODUCTION 
Nowadays the analysis of extremely large structures 

is of crucial interest in military (and also civil) 

electromagnetic applications. The use of higher working 

frequencies makes the analysis of these structures, 

despite the constant enhancement in computer power, a 

challenge. 

Among the pure numerical techniques employed in 

these analyses such as Finite Element Method (FEM) [1], 

Finite Difference Time Domain (FDTD) [2] or Method 

of Moments (MoM) [3], is the latter one that can provide 

the most accurate results for a wide variety of complex 

electromagnetic problems. However, the memory 

requirement and the computing complexity of MoM 

grow rapidly with O(N2) and O(N3), respectively, where 

N is the number of unknowns [4]. Thus, subject to these 

constraints, the applications of MoM for the simulation 

of extremely large structures are seriously limited. 

In order to breaks these restriction, researchers have 

been employing several types of eclectic approaches; 

hybrid algorithms, as for example, the hybridization 

of MoM with high frequency methods [5, 6] or fast 

algorithms such as the fast multiple method (FMM) [7, 

8]. These approaches reduce the memory requirement 

and the computation complexity; however, hybrid 

algorithms pay the price of losing accuracy, and the fast 

algorithms may be confronted with slow convergence or 

even divergence issues in applications involving 

complex structures and various materials.  

It is worth noting that another approach must be 

considered without the needed of changing MoM as 

main numerical method keeping, in this way, the 

accuracy on the results. Along with the latest 

developments on computer technology, the use of 

parallel High Performance Computing (HPC) techniques 

on supercomputer platforms, with thousands of terabytes 

(TB) of memory available for simulation, can expand 

massively the application of MoM for extremely large 

analyses. 

Working on the latter approach, authors have been 

developing during the last years their own numerical 

tools, being able to solve electromagnetic problem up to 

1.0 million unknowns [9] by using a direct dense LU out-

of-core solver [10]. Some of the previous work done by 

authors [4, 11] was focused on the use of LU 

factorization algorithms provided by the Intel Math 

Kernel Library (MKL) [12]. However, MKL does not 

always perform efficiently on some homemade 

platforms, especially when the communication 

components are based on Message Passing Interface 

(MPI) [13] techniques. Contrarily, if OpenMP [14] or 

other shared-memory parallel technique as the Basic 

Linear Algebra Subroutines (BLAS) [12] is used, MKL 

always performs well on Intel’s CPU. Thus, one 

straightforward idea can be the use of open source 

parallel math libraries based on MPI techniques that help 

MKL to deal with its problems with MPI. One of the 

most important open source libraries of this kind is the 

well-known ScaLapack library [14]. This combination 

can not only make full use of the high-speed network, 

but also the full performance of the CPU cores, 

improving the simulation speed. With this point of view 

in mind, the already mentioned direct dense LU out-of-

core solver was developed and expanded to 4096 CPU 
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cores with a parallel efficiency higher than 60% in [16]. 

However, it is worth to mention that the framework 

of ScaLapack is not the best scheme for parallelization. 

The computation and communication model of this 

framework were analyzed in detail in [16], concluding 

that the block of columns involved on each step of 

the factorization process (called panel factorization) is 

located in a critical position. The factorization process 

based on classic algorithm as Gaussian elimination with 

partial pivoting (GEPP) is not able to minimize the 

number of message exchange because of its pivoting 

strategy, which requires to permute the element of 

maximum magnitude to the diagonal position at each 

step in the panel factorization leading to a poor parallel 

performance. Then, better LU decomposition algorithms 

are required to break this poor parallel performance and 

improve the simulation time on supercomputer platforms 

with hundred thousand of CPU cores available. Under 

this scenario, authors have implemented a novel LU 

decomposition algorithm that drastically enhances the 

parallel performance of traditional LU decomposition 

algorithms enabling the possibility of running electrically 

large simulation on supercomputer efficiently. This 

novel LU decomposition algorithm takes, as starting 

point on its development, the Communication Avoiding 

LU (CALU) algorithm proposed and studied in [17] 

and [18]. However, mayor changes on the commutation 

scheme and the pivoting strategy help us to reduce the 

number and volume of the message exchanged between 

processes. 

The paper presents the performance of a massively 

parallel MoM solver where the mentioned novel LU 

decomposition algorithm is included. Thanks to this 

technique the solver is able to run on more than 200,000 

CPU cores and solve problems larger than 1.5 million 

unknowns. In order to demonstrate its effectiveness, 

the numerical results of three different benchmarks are 

compared with two of the most important math libraries 

used by direct dense solvers: the commercial MKL and 

the open source library ScaLapack. 

II. ELECTROMAGNETIC THEORY
A briefly review about the integral equation form 

and the basis functions employed by the solver to 

approximate the solution are given in this Section. 

The solver is based on the solution of surface 

integral equations in frequency domain for the equivalent 

electric and magnetic currents over the dielectric 

boundary surfaces and electric currents only over perfect 

electric conductors (PECs). The set of integral equations 

obtained are solved by using MoM, and specifically 

using the Galerkin’s method. The solver is able to handle 

inhomogeneous dielectrics categorized by a combination 

of various homogeneous dielectrics. Therefore, any 

composite metallic and dielectric electromagnetic 

structure can be represented by a finite number of linear, 

homogeneous and isotropic regions radiating in an 

unbounded linear, homogeneous and isotropic 

environment. 

The integral equation employed is a general form 

of the Poggio-Miller-Chang-Harrington-Wu (PMCHW) 

formulation [4]. When one of the boundary surfaces 

between the two different regions is PEC, the magnetic 

currents are equal to zero at the boundary surface and 

that equation degenerates into the electric field integral 

equation (EFIE).  

Flexible geometric modeling is achieved by using 

bilinear quadrilateral patches to characterize surfaces, 

as shown in Fig. 1 (a). Efficient approximation for the 

unknown currents is obtained by using the higher-order 

basis functions (HOBs) consisting of combinations of 

polynomials, which are of the following form: 

( , )
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i js
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where, p and s are the local coordinates, i and j  are the 

orders of basis functions, and 𝜶𝑝  and 𝜶𝑠  are covariant

unitary vectors [4]. The polynomials can also be used as 

the basis functions for wire structures. In this case, 

truncated cones are used for geometric modeling, as shown 

in Fig. 1 (b). In the thin-wire model, the circumferential 

variation of the currents on the wires is neglected, and in 

addition the length of the wire should be at least 10 times 

larger than its radius. 

  (a)  (b) 

Fig. 1. Geometric modeling for higher-order basis 

functions: (a) a bilinear quadrilateral patch defined by 

four vertices with the position vectors of 𝒓11, 𝒓21, 𝒓12

and 𝒓22 , and (b) a truncated cone defined by position

vectors and radii of its beginning and end, characterized 

by 𝒓1, 𝑎1, and 𝒓2, 𝑎2, respectively.

The orders can be adjusted according to the 

electrical size of a geometric element. The orders increase 

as the element becomes larger. The electrical size of a 

geometric element can be as large as two wavelengths. 

Typically, the number of unknowns for HOBs is reduced 

by a factor of 5–10 compared with that for traditional 

piecewise basis functions, e.g., the RWGs, and thus the 

use of HOBs drastically reduces the computation and 

saves memory requirement. 
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There are also some other advantages in using the 

polynomial basis functions. For example, the intermediate 

results obtained in evaluating the elements of the 

impedance matrix for lower-order can be used in the 

computation of the elements of the impedance matrix 

when using higher-order polynomials. In addition, the 

Green’s function for each pair of integration points 

belonging to two patches is needed to be evaluated only 

once. These advantages improve the efficiency of the 

matrix filling of the solver and help when the filling is 

performed using thousands of CPU cores. 

III. PARALLEL LU DECOMPOSITION
As it was commented previously, better LU 

decomposition algorithms are required to break the 

poor parallel performance given by traditional LU 

decomposition schemes. In this section details about 

the novel LU decomposition algorithm included in our 

parallel MoM solver are given. In order to provide a 

better understanding about how this new LU algorithm 

(refers as NLU from now) enhances the parallel 

performance of the traditional LU decomposition 

algorithm, the latter is also detailed in this section. The 

algorithm described here (refers as ScaLapack LU from 

now) is the one given in [15]. 

A. ScaLapack LU algorithm 
Let us consider an N×N dense complex matrix 

divided in blocks of size nb×nb and distributed across a 

Pr×Pc process grid. Choosing a value of Pc approximately 

equal to Pr, the communication volume is minimized, 

and in consequent, the high parallel efficiency is improved. 

Also, the communication complexity regarding column 

panel is higher than the complexity involved in the row 

panel. Therefore, it is better to set Pc slightly larger than 

Pr [16]. Figure 2 shows the main steps involved on the 

ScaLapack LU decomposition and it will be used as 

additional help when describing the algorithm. 

After distributing the matrix on the processes grid, 

the LU decomposition algorithm starts with k=1 in Fig. 

2 (a) where k is the number of the block of columns that 

are involved on the factorization step. This block of 

columns is called column panel. The size of this panel 

is [N-(k-1)×nb] rows by nb columns where the row size 

decreases when the factorization process advances. The 

panel is marked in green in Fig. 2 (a) and labeled as 

Zkk + L(k). The operation performed during this step can 

be written as: 

( )
( )

kk kk

kkk
k

   
   

  

Z L
P P U

L L
, (2) 

where P is the permutation matrix corresponding to the 

partial pivoting scheme, Zkk + L(k) is the column panel 

previously mentioned and Lkk, Ukk, and L(k) are the result 

of the factorization process. In order to save computational 

resources, Zkk is generally overwritten by the lower 

triangular matrix Lkk and the unit upper triangular matrix 

Ukk. Figure 2 (b) shows the row exchange process where 

the element of maximum magnitude is permuted to 

the diagonal position in the panel factorization (this 

movement is given by matrix P). It is worth to remind 

that this row exchange process requires a large volume 

of message communication leading on poor parallel 

performance. Submatrices Lkk, Ukk, and L(k) are also 

displayed on the figure. 
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Fig. 2. ScaLapack LU decomposition: (a) panel 

factorization, (b) row exchange, (c) broadcast L𝑘𝑘  and

panel row update, and (d) broadcast L(𝑘) and U(𝑘)  and

trailing update. Note that the subscript (k) changing to 

the superscript (k) indicates that the current operation is 

complete. 

The next step corresponds to the row panel update 

process (see green submatrix marked in Fig. 2(c)) using 

the submatrices obtained previously. The update is given 

by: 
( ) 1k

kk (k)

U L U , (3) 

where U(k) is the original row panel and Lkk is the lower 

triangular matrix of the column panel. Once the 

unknown U(k) is obtained, the original row panel U(k) is 

overwritten saving computational resources as the 

previous case. 

The last step performs the update of the trailing 

submatrix Z(k), marked in orange in Fig. 2 (c). This 

update uses the results of both panel factorization and 

row panel update. The resulting Z(k) submatrix is given 

by: 
( ) ( ) ( )

( )

k k k

k Z Z L U . (4) 

Once the new Z(k) submatrix is obtained, k is 

incremented and a new block of columns is factorized 
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continuing this process until the original matrix is 

decomposed completely. 

B. Novel LU algorithm 

The main different between the ScaLapack LU 

algorithm and our NLU resides on the way that the 

column panel is decomposed. This decomposition is 

located on a critical position on the LU algorithm being, 

in the case of the ScaLapack, unable to minimize the 

number of message exchanged due to the partial pivoting 

scheme. However NLU, adopting a different pivoting 

strategy, is able to reduce the number and amount of 

communication during this process enhancing the 

parallel performance. 

It is worth mentioning that there are no differences 

between the ScaLapack LU algorithm and NLU for 

the others steps on the factorization process. Once the 

decomposition of the column panel is done, the algorithms 

follow the same scheme regarding the row update and 

the trailing submatrix update. For this reason, and in 

order to give a better description of our algorithm, only 

the decomposition of the column panel is detailed here. 

Let us consider the same N×N dense complex 

matrix than the previous case. The column panel shown 

in Fig. 2 (a) (remember green columns on the left) is 

extracted and redisplayed in Fig. 3 as A. The distribution 

of the matrix on the process grid is performed as the 

previous case. However, for simplicity, we assume that 

the total number of processes is P=24. According to the 

criteria of choosing Pr and Pc aforementioned, the best 

choice is Pr = 4 and Pc = 6 obtaining four pieces of A: 

0 1 2 3

T
T T T T   A A A A A , (5) 

where the matrix A is of size [N-(k-1)×nb] by nb and A0, 

A1, A2 and A3 are distributed on processes P0, P1, P2, and 

P3, respectively. Without loss of generality, we assume 

the size of Ai is mi×nb with i=0, 1, 2, 3 and mi about 

[N-(k-1)×nb]/4. Generally, these four submatrices are 

referenced as local panels. 

The decomposition of the column panel A is divided 

in three steps. The first step performs the decomposition 

of each of the submatrices A0, A1, A2 and A3 using 

partial pivoting. This decomposition process is done 

independently in each MPI processes without any 

interaction between them. Thus, this step is called local 

decomposition step where no communication between 

processes is required. Equation 6 shows the decomposition 

of each submatrix of the column panel A: 
(1) (1) (1)

0 0 0

(1) (1) (1)

1 1 1

(1) (1) (1)

2 2 2

(1) (1) (1)

3 3 3









0

1

2

3

A P L U

A P L U

A P L U

A P L U

, (6) 

where (1)

iP  is the permutation matrix with the information 

of the pivoting and (1)

iL  and (1)

iU are the corresponding 

submatrices result of the factorization process. Then, a 

set of local pivoting rows is obtained and permuted to the 

first nb rows of each submatrix using the permutation 

matrix (1)

iP . Figure 3 shows this process under the label 

step 1 where the small matrices on the right contains the 

rows selected for pivoting during the local decomposition 

step. 

A

A0

A1

A2

A3

Communication

Communication

Communication

P0

P1

P2

P3

Combination

Combination

Combination

Local 

decomposition

Local 

decomposition

Local 

decomposition

Step 1 Step 2 Step 1 Step 2 Step 3Step 1

Fig. 3. Illustration of column factorization in our parallel 

MoM LU decomposition algorithm. 

The second step combines the local pivoting rows 

pair to pair using a recursive scheme. For example, the 

local pivoting rows of (1)

0A  and (1)

1A  are combined in 

one pair while the rows of (1)

2A  and (1)

3A  are combined to 

form another pair (see the label step 2 on the left in Fig. 

3). These new pairs are called new local column panels 

which are treated as new panels for decomposition. 

Equation 7 shows the decomposition of this new local 

column panels:  
(1)

(2) (2) (2)0

0 0 0(1)

1

(1)

(2) (2) (2)2

1 1 1(1)

3

 
 

 

 
 

 

A
P L U

A

A
P L U

A

. (7) 

Once this new local decomposition step is carried 

out, a new set of local pivoting rows is obtained and 

permuted to the first nb rows of the column panel 

(submatrices marked in brown and gray in Fig. 3). Both 

local decomposition and combination step are called 

iteratively until only one block of pivoting rows is 

obtained. The total number of operations needed to 

obtain the final pivoting block is equal to log2Pr. 

Continuing with the decomposition of A, the final local 

decomposition step is given by: 
(2)

(3) (3) (3)0

0 0 0(2)

1

 
 

 

A
P L U

A
. (8) 

Once this local decomposition is done, the final 
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pivoting rows are obtained. These pivoting rows are 

similar to the one used to form the permutation matrix  

P employed in (2). However, if one permutes these 

pivoting rows to the first nb rows of A, then the LU 

decomposition without pivoting could be performed. In 

practice, even the LU decomposition is unnecessary 

because the latest local decomposition gives the upper 

triangular matrix U which is the same as the ultimately 

U we expect to obtain such as (3)

0U  in (8). So the only 

operation needed after executing this pivoting technique 

is a multiplication of an upper triangular matrix (3)

0U  by 

a block of column of A as shown in (9): 

     (3)  -1

0: ,1: : ,1:b b b bn m n n m nA A U , (9) 

where A is the permuted column panel with the pivoting 

rows already located in the first  𝑛𝑏 rows of the matrix. 

It is obviously that the communication appears only in 

the step of the combination of the local pivot rows, as 

implied by the arrows labeled with “communication” in 

Fig. 3. 

The above description was simplified for the case of 

Pr = 4 but, actually this procedure can be easily extended 

to a situation with Pr = 8, 16, 32 and so on. With some 

additional but easy work, Pr could be an arbitrary quantity, 

rather than just power of 2. Of course, the extension from 

binary tree to quad tree or octree is not a big deal.  

It is worth to mention that the combination step 

between local pivoting rows is not straightforward. In a 

first stage, it is necessary to determine which two pivoting 

blocks are combined. Then, as these two associated 

pivoting blocks are located at two different MPI processes, 

one also needs to define the communication pattern 

between them. Finally, after the combination, one needs 

to know which MPI process will perform the new local 

decompositions. In this work, the binary tree reduction 

method [17] is employed to guide the combination step. 

More specifically, two pivoting blocks located on adjacent 

MPI processes are the one chosen to be combined. After 

a combination, only half of the current MPI processes 

will perform the new local decomposition step. This 

reduction in the number of the working processes is 

continuously done until only one process performs the 

last local decomposition step, meanwhile the other 

processes will be waiting for the final permutation matrix. 

Compared with the original CALU algorithm studied 

in [16, 17] the major difference with NLU resides in the 

communication pattern involved in the combination step. 

As shown in Fig. 3 all the processes are paired up to get 

a new pivoting block. In the original CALU algorithm 

each process exchanges their own pivoting blocks with 

its partner and then both the processes perform the same 

local decomposition, while in NLU only a unidirectional 

communication is performed and only the receiver-

process performs the local decomposition. After several 

tests, we concluded that this variation provides a better 

implementation and makes the algorithm easier to 

achieve when using supercomputer platforms. Also, the 

extension from binary tree to quad tree or octree is much 

straightforward using the unidirectional communication 

version than the omnidirectional scheme. 
 

C. Analysis of algorithm complexity 

Before going to the numerical results section,  

the analysis of the computation complexity and the 

communication pattern of NLU algorithm is carried out. 

In order to perform a complete analysis, a comparison 

with the computation complexity of the ScaLapack LU 

algorithm is also done. As it was commented previously, 

the main different between the ScaLapack algorithm  

and NLU resides on the way that the column panel is 

decomposed. Therefore, the communication during the 

panel factorization is discussed in detail here. 

Let us take, for example, the k’th step of LU 

decomposition shown in Fig. 2. Assuming that the size 

of L(k) is m×nb and the size of Lkk is nb×nb, the amount of 

multiplication and addition operations can be calculated 

as it is shown later. We ignore the division operation 

because there are only few of those during the algorithms. 

Furthermore, let us assume that the communication 

latency is α and the communication bandwidth is 1/β. 

Thus, the communication time T taken to send a message 

of size L is: 

 T L   . (10) 

Now, let us consider the ScaLapack LU algorithm 

first. For every column in the panel, a binary-exchange 

of size 2 nb data items is performed [19], being nb the 

number of columns in the panel. The communication 

complexity of this binary-exchange is log2Pr given a 

total communication time of: 

 
 , 2

2

2 2

2 log

         log 2 log

 

 

    

 
b

b b r

b r

com s

r

mT n n P

n P n P
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In order to calculate the computation time taken by 

ScaLapack, we can consider that the panel factorization 

is a LU decomposition of a non-square matrix. Thus, the 

computation time can be evaluated according to the 

standard LU decomposition time that is: 

 
2

, ( )
3

b

fact s b

n
T m n   , (12) 

where γ is the time for each multiplication or addition 

operation, m is the number of row in the column panel 

and nb is the number of columns. 

In the case of NLU, one can see from Fig. 3 that the 

number of point-to-point communications performed by 

the busiest MPI process (P0) is log2Pr. A final broadcast 

operation is also necessary at the end of the preprocess 

step, so the communication complexity of this broadcast 

operation (also log2Pr) has to be added to the total 

communication time. Assuming that the number of element 

to be broadcasted is 
2 / 2
b

n , the total communication time 

is given by: 
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Generally, m is much greater than nb, so it is clear 

that the operations described by (6) and (9) contribute the 

most amount of calculation in this case. Both operations 

have almost the same times of multiplication and addition 

as ScaLapack. So the computation time in NLU is about 

2 times more than in ScaLapack: 

 2

, 2( )
3

b

fact c b

n
T m n   . (14) 

Comparing the communication time given by (11) 

and (13), it can be concluded that NLU requires less 

communication time than ScaLapack. In the other hand, 

comparing the computation time given by (12) and (14) 

one can see how NLU pays a double price during the 

calculation. However, we have to take into account the 

order of magnitude of the variables involved on the 

calculation each time. The γ time employed by the 

computer to perform a multiplication or addition is much 

smaller than the latency time α and the inverse of the 

communication bandwidth β. Furthermore, NLU can 

utilize many excellent sequential factorization algorithms 

directly in the local decomposition step, such as recursive 

sequential LU, performing the floating point operation  

at machine peak performance, which means that the 

operation time γ in (14) is generally smaller than the  

time employed in (12). Thus, even employing a larger 

computational time, the NLU provides a shorter global 

time for matrix factorization. In order to demonstrate  

this affirmation, the next section presents the numerical 

results where the computational time of different 

benchmarks is compared. 

 

IV. NUMERICAL RESULTS AND 

DISCUSSION 
This section shows the comparison of the 

computational times for three different benchmarks 

between NLU and two of the most important math 

libraries used by direct dense solvers: the commercial 

MKL and the open source ScaLapack. The benchmarks 

considered here have consisted of the use of different 

matrix sizes, the use of different number of CPU cores 

and a comparison on the parallel efficiency of the 

algorithms. These benchmarks have been run on three 

different high performance computing (HPC) platforms 

that are described next. 

 

A. Description of the computational resources 

The first platform is the HPC cluster of Xidian 

University (XDHPC), which is equipped with 100 

compute nodes connected by 56 Gbps InfiniBand 

network. Each node has two twelve-core Intel Xeon 

2690 V2 2.2 GHz CPUs. The second platform is the 

MilkyWay-2 (Tianhe-2), which has 16,000 compute 

nodes. Each compute node is equipped with two Intel 

Xeon E5-2600 processors and three Intel Xeon Phi 

accelerators. All compute nodes are connected by a 

homemade 150 Gbps network. The third platform is the 

Sunway BlueLight MPP, a Chinese petaflop homegrown 

supercomputer. Sunway BlueLight uses ShenWei SW-3 

1600, a 16-core 64-bit MIPS-compatible CPU. The total 

number of compute nodes on the system is 8704 

connected by InfiniBand QDR network. 

 

B. Numerical results for different matrix size 

This benchmark has consisted of two tests using 

different matrix size and checking the factorization time 

of the algorithms. The first test employs a matrix size of 

20,000~100,000 using 240 CPU cores in a process grid 

of 15x16, while the second test makes use of a matrix 

size of 80,000~180,000 in 720 CPU cores with a process 

grid of 24x30. The computing time obtained using the 

Intel MKL, ScaLapack and NLU are listed in Table 1. 

The improvement in percentage regarding the computing 

time using our solver versus MKL and ScaLapack is 

listed in the last two columns of the table. For example, 

the percentage corresponding with the improvement 

against MKL was calculated by using the following 

expression: (TMKL-TNLU) / TMKL × 100%. The percentage 

corresponding to ScaLapack was calculated in a similar 

way. According to Table 1, the performances of our 

solver are clearly better than both MKL and ScaLapack 

for all the cases. 
 

C. Numerical results for different CPU cores 

The second benchmark has consisted of the 

simulation of two real world applications using different 

number of CPU cores. The first simulation analyzes the 

radar cross section (RCS) of an airplane. The second  

test calculates the radiation pattern of an airborne wire 

array antenna. XDHPC platform was used to run this 

benchmark. 

Testing-I: The RCS of the airplane shown in Fig. 4 

is calculated in this test. The size of the airplane is 18.92 m 

by 13.56 m by 5.05 m and the simulation frequency is 

500 MHz, given a total number of unknowns of 203,436. 

The computing time consumed by NLU and MKL using 

240~2048 CPU cores is listed in Table 2. The last row  

of data indicates the improvement in the computing  

time with respect to MKL. According to this table, the 

performance of our solver gets better when the number 

of CPU cores increases (in consequence more 

communication message are required) improving between 

5.5%-8% the computational time given by MKL. The 

comparison between the RCS values obtained using our 

LU decomposition algorithm and the MKL library for 

the azimuth cut are shown in Fig. 5 where a very good 

agreement is appreciated. This behavior is expected as 

both decomposition algorithms are solving the same 
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matrix although, as aforementioned, NLU improves the 

computational time around 8% in the best case. 

 

Table 1: Computing time for NLU, MKL and ScaLapack 

CPU 

Cores 

Size of 

Matrix 

Time of LU 

Decomposition (Unit: s) 
NLU 

VS 

MKL 

NLU 

VS 

ScaL NLU MKL ScaL 

240 

20,000 12.20 15.35 13.10 20.52% 6.83% 

40,000 61.41 70.86 68.17 13.34% 9.91% 

60,000 175.01 194.71 196.61 10.12% 10.99% 

80,000 397.96 417.31 449.60 4.64% 11.48% 

100,000 714.77 758.18 796.24 5.72% 10.23% 

720 

80,000 173.04 200.01 192.38 13.49% 11.18% 

100,000 316.15 351.01 346.82 9.93% 9.70% 

120,000 506.72 556.97 578.68 9.02% 14.20% 

140,000 781.27 822.87 851.76 5.06% 9.02% 

160,000 1093.43 1180.17 1264.40 7.35% 15.64% 

180,000 1490.39 1607.81 1693.76 7.30% 13.65% 

 

Table 2: Computing time for NLU and MKL 

CPU Cores 240 720 960 1200 2048 

NLU Time 20091.5 2127.08 1588.10 1274.39 858.88 

MKL Time 19257.7 2131.75 1650.88 1386.33 909.58 

Time Saved -4.33% 0.22% 3.80% 8.07% 5.57% 

 

 
 

Fig. 4. Airplane model for RCS calculation using RWG. 
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Fig. 5. RCS comparison using NLU and MKL. 

 

Testing-II: The analysis of an airborne wire array 

antenna with 72 × 14 elements is performed in this test. 

The simulation model is shown in Fig. 6. The dimensions 

of the full array are 10 m × 2.5 m × 0.018 m. Each element 

of the array is fed by a short pin, and the amplitude at the 

feed of the array is designed by a –35 dB Taylor 

distribution both along length and width. The operation 

frequency of the array is 1.0 GHz given a total number 

of unknowns of 259,128. 
 

 
 

Fig. 6. Simulation model of the wire antenna array. 
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Fig. 7. Gain comparison in dB for NLU and MKL. 

 

Table 3: Computing time for NLU and MKL 

CPU Cores 240 720 960 1200 2048 

NLU Time 11033.6 4407.73 3295.77 2743.26 1673.46 

MKL Time 11174.0 4472.85 3501.06 2909.09 1788.27 

Time Saved 1.26% 1.46% 5.86% 5.70% 6.42% 

 

The computing time consumed by our LU 

decomposition algorithm and MKL using 240~2048 

CPU cores is shown in Table 3, where the improvements 

in the time are listed in the last row as the previous test. 

The comparison between the 2D gain patterns are given 

in Fig. 7 where a very good agreement is appreciated.  

It is worth mention that according to Table 3, as the 

number of CPU cores increases the improvement in the 

computing time given by our solver is greater. 

 

D. Numerical results for parallel efficiency 

The last benchmark has consisted of the simulation 

of two massively parallel simulations used to measure 

the parallel efficiency of the algorithms. The parallel 

efficiency can be defined as: 

 100%
p

T
pT

  , (15) 

where T is the total time taken by a single process and 𝑇𝑝 

is the total time taken by p processes. In practice, if the 

problem cannot fit into a single computing node, the time 

for the smallest number of processes is taken as reference. 

 Antenna Array
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The calculation of the radiation pattern of a 

rectangular microstrip patch antenna array formed by  

37 × 9 elements mounted on an aircraft is considered 

first. The simulation model of the array and the airplane 

are shown in Figs. 8 and 9. The dimensions of each patch 

element of the array are 205.6 mm × 154.8 mm providing 

a total dimension for the full array of 10 m × 2.5 m × 

0.018 m. The material parameters of the substrate are  

εr = 4.2 and μr = 1.0 and the operation frequency of the 

array is 440 MHz. The dimensions of the airplane were 

55 m long by 47.6 m wide and 15.8 m high obtaining a 

total number of unknowns for the simulation of 308,371. 

 

z
x

y
o

 
 

Fig. 8. Model of the microstrip patch array antenna. 
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Fig. 9. Computational model with the aircraft and array. 

 

The solving time taken by NLU using 600~12000 

CPU cores is shown in Table 4, where the last two 

columns give the memory required in the form of value 

and percentage. Milkyway-2 platform was used to run 

this benchmark. Setting the solving time given by  

the 600 CPU cores simulation as the reference, the  

speed up listed in the fourth column is calculated by  

SP = 7504.08/TP, and the parallel efficiency listed in  

fifth column is calculated by SP/(P/600), where P is  

the number of the CPU cores and TP and SP is the 

corresponding solving time and speedup. Figure 10 

shows the variation of speedup and parallel efficiency  

on CPU cores. According to the figure, efficiency higher 

than 65% can still be achieved when the parallel scale 

extends by 20, from 600 to 12000 CPU cores. Although 

more CPU cores usually mean shorter simulation time, 

the efficiency may deteriorate rapidly when the memory 

ratio is less than 2%. It should be pointed out that the 

maximum memory ratio should better less than 80% 

because of the operating system’s requirement. Therefore, 

in order to avoid an extreme degradation on the parallel 

performance, the number of CPU cores should be choose 

carefully. Figure 11 shows the simulation results for  

this benchmark, where a -25 dB side lobe level in both 

yoz and xoy planes is appreciated fitting in the design 

specifications. 

Table 4: Parallel efficiency and memory ratio for NLU 

0 
CPU 

Cores 

Solving 

Time (s) 

Speed- 

up 

Parallel 

Efficiency 

(%) 

Memory 

(GB) 

Memory 

Ratio (%) 

308,371 

600 7504.08 1 100 

1417 

70.90 

1200 3799.00 1.97 98.76 35.45 

2400 2112.25 3.55 88.81 17.73 

3600 1471.84 5.09 84.97 11.82 

4800 1158.78 6.47 80.94 8.86 

7200 858.42 8.74 72.84 5.91 

9600 650.32 11.53 72.11 4.43 

12000 551.97 13.59 67.97 3.55 
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Fig. 10. Parallel efficiency for microstrip. 
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Fig. 11. 2D gain patterns for: (a) yoz plane and (b) xoy 

plane. 

 

The parallel efficiency of NLU is further tested  

by the simulation of the bistatic RCS of the airplane 

shown in Fig. 12 at frequencies of 1.5 GHz and 2.5 GHz. 

Milkyway-2 platform was also used to run this simulation. 
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The dimensions of the airplane are 18.92 m × 14.56 m × 

5.05 m, given a number of unknowns of 273,808 for  

the first frequency and 671,777 for the second one. The 

excitation is a z-axis polarized plane wave propagating 

along the negative x-axis direction. 

 

 
 

Fig. 12. Airplane model for efficiency test II. 

 

The computing time consumed by NLU in the 

simulation is shown in Table 5. The number of processes 

used at 1.5 GHz ranges between 1536 and 25920 CPU 

cores while this number ranges from 25920~107520 CPU 

cores at 2.5 GHz. According the table, it can be seen how 

the efficiency is still higher than 50% even when using 

more than 100,000 CPU cores, as long as the memory 

ratio is larger than 2% approximately. The results of the 

RCS are listed in Fig. 13. 

 

E. Numerical results for practical engineering 

The RCS of the airplane shown in Fig. 12 is now 

calculated at a higher frequency to demonstrate the 

ability of the solver to calculate electric super-lager 

targets. The working frequency in this case is 3.2 GHz 

given a total number of unknowns of 1,270,200, which 

requires 23.4 TB of memory. A total number of 201,600 

CPU cores are employed to solve the problem. The 

computing time and simulation result are listed in Table 

6 and Fig. 14, respectively. 

 

Table 5: Parallel efficiency for test II 

Unknowns 
CPU 

Cores 

Solving 

Time (s) 

Parallel 

Efficiency 

Memory 

(GB) 

Memory 

Ratio 

273,808 

1,536 2376.71 100% 

1117.32 

27.28% 

12,960 437.88 80.41% 3.23% 

25,920 246.81 45.51% 1.62% 

671,777 

25,920 2388.10 100% 

6724.66 

9.73% 

76,800 1629.09 83.43% 3.28% 

107,520 1264.98 57.06% 2.35% 
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Fig. 13. Bistatic RCS results for: (a) 3D-RCS at 1.5 GHz, 

(b) 3D-RCS at 2.5 GHz, and (c) 2D-RCS on xoy at 1.5 GHz 

and 2.5 GHz. 

 

Table 6: Solving matrix equation using 200,000 CPU 

cores 
CPU 

Cores 
Unknowns 

Process 

Grid 

Block 

Size 

Filling 

Time (s) 

Solving 

Time (s) 

201,600 1,270,200 400×504 128 23.10 3021.05 
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Fig. 14. Bistatic RCS results at 3.2 GHz for: (a) 3D-RCS 

and (b) 2D-RCS for azimuth cut. 
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V. CONCLUSION 
A massively parallel MoM solver able to run on 

200,000 CPU cores and solve matrices larger than 1.3 

million unknowns has been presented. Details about a 

novel LU decomposition algorithm have been given 

demonstrating its improvements in the simulation time 

in comparison with commercial Intel MKL and open 

source ScaLapack Libraries. The new algorithm is about 

10~20 percent faster than the open source ScaLapack 

framework. Also, compared with the commercial Intel 

MKL on InfiniBand interconnected platform when 

thousands of CPU cores are used, it still has 5~10 percent 

advantage in performance. Furthermore, one can see how 

the algorithm can still achieve a high parallel efficiency 

even when 200,000 CPU cores are used presenting a new 

powerful tool for solving very challenging electromagnetic 

problems in reasonable time. 
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