
Performance of a Massively Parallel Method of Moment Solver and Its

Application

Yan Chen, Zhongchao Lin*, Daniel Garcia-Donoro, Xunwang Zhao, and Yu Zhang

School of Electronic Engineering

Xidian University, Xi’an, Shaanxi 710071, China

zclin@xidian.edu.cn

Abstract ─ A massively parallel Method of Moment

(MoM) solver able to run on 200,000 CPU cores and solve

matrices larger than 1.3 million unknowns is presented.

The solver implements a novel LU decomposition

algorithm based on the Communication Avoiding LU

(CALU) scheme. By using a new pivoting policy, the

communication between processes is improved enhancing

the parallel speed up of the algorithm. Solver effectiveness

and performance are demonstrated comparing the results

with two of the most important math libraries used

by direct dense solvers: the commercial MKL and the

open source ScaLapack. Results show how simulation

time is reduced significantly thanks to this novel LU

decomposition algorithm making possible the simulation

of incredibility electrically large problems using MoM.

Index Terms ─ Communication avoiding, high

performance, LU decomposition, massively parallel,

method of moments.

I. INTRODUCTION
Nowadays the analysis of extremely large structures

is of crucial interest in military (and also civil)

electromagnetic applications. The use of higher working

frequencies makes the analysis of these structures,

despite the constant enhancement in computer power, a

challenge.

Among the pure numerical techniques employed in

these analyses such as Finite Element Method (FEM) [1],

Finite Difference Time Domain (FDTD) [2] or Method

of Moments (MoM) [3], is the latter one that can provide

the most accurate results for a wide variety of complex

electromagnetic problems. However, the memory

requirement and the computing complexity of MoM

grow rapidly with O(N2) and O(N3), respectively, where

N is the number of unknowns [4]. Thus, subject to these

constraints, the applications of MoM for the simulation

of extremely large structures are seriously limited.

In order to breaks these restriction, researchers have

been employing several types of eclectic approaches;

hybrid algorithms, as for example, the hybridization

of MoM with high frequency methods [5, 6] or fast

algorithms such as the fast multiple method (FMM) [7,

8]. These approaches reduce the memory requirement

and the computation complexity; however, hybrid

algorithms pay the price of losing accuracy, and the fast

algorithms may be confronted with slow convergence or

even divergence issues in applications involving

complex structures and various materials.

It is worth noting that another approach must be

considered without the needed of changing MoM as

main numerical method keeping, in this way, the

accuracy on the results. Along with the latest

developments on computer technology, the use of

parallel High Performance Computing (HPC) techniques

on supercomputer platforms, with thousands of terabytes

(TB) of memory available for simulation, can expand

massively the application of MoM for extremely large

analyses.

Working on the latter approach, authors have been

developing during the last years their own numerical

tools, being able to solve electromagnetic problem up to

1.0 million unknowns [9] by using a direct dense LU out-

of-core solver [10]. Some of the previous work done by

authors [4, 11] was focused on the use of LU

factorization algorithms provided by the Intel Math

Kernel Library (MKL) [12]. However, MKL does not

always perform efficiently on some homemade

platforms, especially when the communication

components are based on Message Passing Interface

(MPI) [13] techniques. Contrarily, if OpenMP [14] or

other shared-memory parallel technique as the Basic

Linear Algebra Subroutines (BLAS) [12] is used, MKL

always performs well on Intel’s CPU. Thus, one

straightforward idea can be the use of open source

parallel math libraries based on MPI techniques that help

MKL to deal with its problems with MPI. One of the

most important open source libraries of this kind is the

well-known ScaLapack library [14]. This combination

can not only make full use of the high-speed network,

but also the full performance of the CPU cores,

improving the simulation speed. With this point of view

in mind, the already mentioned direct dense LU out-of-

core solver was developed and expanded to 4096 CPU

ACES JOURNAL, Vol. 32, No. 10, October 2017

1054-4887 © ACES

Submitted On: December 29, 2016
Accepted On: August 12, 2017

872

cores with a parallel efficiency higher than 60% in [16].

However, it is worth to mention that the framework

of ScaLapack is not the best scheme for parallelization.

The computation and communication model of this

framework were analyzed in detail in [16], concluding

that the block of columns involved on each step of

the factorization process (called panel factorization) is

located in a critical position. The factorization process

based on classic algorithm as Gaussian elimination with

partial pivoting (GEPP) is not able to minimize the

number of message exchange because of its pivoting

strategy, which requires to permute the element of

maximum magnitude to the diagonal position at each

step in the panel factorization leading to a poor parallel

performance. Then, better LU decomposition algorithms

are required to break this poor parallel performance and

improve the simulation time on supercomputer platforms

with hundred thousand of CPU cores available. Under

this scenario, authors have implemented a novel LU

decomposition algorithm that drastically enhances the

parallel performance of traditional LU decomposition

algorithms enabling the possibility of running electrically

large simulation on supercomputer efficiently. This

novel LU decomposition algorithm takes, as starting

point on its development, the Communication Avoiding

LU (CALU) algorithm proposed and studied in [17]

and [18]. However, mayor changes on the commutation

scheme and the pivoting strategy help us to reduce the

number and volume of the message exchanged between

processes.

The paper presents the performance of a massively

parallel MoM solver where the mentioned novel LU

decomposition algorithm is included. Thanks to this

technique the solver is able to run on more than 200,000

CPU cores and solve problems larger than 1.5 million

unknowns. In order to demonstrate its effectiveness,

the numerical results of three different benchmarks are

compared with two of the most important math libraries

used by direct dense solvers: the commercial MKL and

the open source library ScaLapack.

II. ELECTROMAGNETIC THEORY
A briefly review about the integral equation form

and the basis functions employed by the solver to

approximate the solution are given in this Section.

The solver is based on the solution of surface

integral equations in frequency domain for the equivalent

electric and magnetic currents over the dielectric

boundary surfaces and electric currents only over perfect

electric conductors (PECs). The set of integral equations

obtained are solved by using MoM, and specifically

using the Galerkin’s method. The solver is able to handle

inhomogeneous dielectrics categorized by a combination

of various homogeneous dielectrics. Therefore, any

composite metallic and dielectric electromagnetic

structure can be represented by a finite number of linear,

homogeneous and isotropic regions radiating in an

unbounded linear, homogeneous and isotropic

environment.

The integral equation employed is a general form

of the Poggio-Miller-Chang-Harrington-Wu (PMCHW)

formulation [4]. When one of the boundary surfaces

between the two different regions is PEC, the magnetic

currents are equal to zero at the boundary surface and

that equation degenerates into the electric field integral

equation (EFIE).

Flexible geometric modeling is achieved by using

bilinear quadrilateral patches to characterize surfaces,

as shown in Fig. 1 (a). Efficient approximation for the

unknown currents is obtained by using the higher-order

basis functions (HOBs) consisting of combinations of

polynomials, which are of the following form:

(,)

1 1 1 1

i js
ij

p s

p s p s

p s

 ，

α
F

α α , (1)

where, p and s are the local coordinates, i and j are the

orders of basis functions, and 𝜶𝑝 and 𝜶𝑠 are covariant

unitary vectors [4]. The polynomials can also be used as

the basis functions for wire structures. In this case,

truncated cones are used for geometric modeling, as shown

in Fig. 1 (b). In the thin-wire model, the circumferential

variation of the currents on the wires is neglected, and in

addition the length of the wire should be at least 10 times

larger than its radius.

 (a) (b)

Fig. 1. Geometric modeling for higher-order basis

functions: (a) a bilinear quadrilateral patch defined by

four vertices with the position vectors of 𝒓11, 𝒓21, 𝒓12

and 𝒓22 , and (b) a truncated cone defined by position

vectors and radii of its beginning and end, characterized

by 𝒓1, 𝑎1, and 𝒓2, 𝑎2, respectively.

The orders can be adjusted according to the

electrical size of a geometric element. The orders increase

as the element becomes larger. The electrical size of a

geometric element can be as large as two wavelengths.

Typically, the number of unknowns for HOBs is reduced

by a factor of 5–10 compared with that for traditional

piecewise basis functions, e.g., the RWGs, and thus the

use of HOBs drastically reduces the computation and

saves memory requirement.

ACES JOURNAL, Vol. 32, No. 10, October 2017873

There are also some other advantages in using the

polynomial basis functions. For example, the intermediate

results obtained in evaluating the elements of the

impedance matrix for lower-order can be used in the

computation of the elements of the impedance matrix

when using higher-order polynomials. In addition, the

Green’s function for each pair of integration points

belonging to two patches is needed to be evaluated only

once. These advantages improve the efficiency of the

matrix filling of the solver and help when the filling is

performed using thousands of CPU cores.

III. PARALLEL LU DECOMPOSITION
As it was commented previously, better LU

decomposition algorithms are required to break the

poor parallel performance given by traditional LU

decomposition schemes. In this section details about

the novel LU decomposition algorithm included in our

parallel MoM solver are given. In order to provide a

better understanding about how this new LU algorithm

(refers as NLU from now) enhances the parallel

performance of the traditional LU decomposition

algorithm, the latter is also detailed in this section. The

algorithm described here (refers as ScaLapack LU from

now) is the one given in [15].

A. ScaLapack LU algorithm
Let us consider an N×N dense complex matrix

divided in blocks of size nb×nb and distributed across a

Pr×Pc process grid. Choosing a value of Pc approximately

equal to Pr, the communication volume is minimized,

and in consequent, the high parallel efficiency is improved.

Also, the communication complexity regarding column

panel is higher than the complexity involved in the row

panel. Therefore, it is better to set Pc slightly larger than

Pr [16]. Figure 2 shows the main steps involved on the

ScaLapack LU decomposition and it will be used as

additional help when describing the algorithm.

After distributing the matrix on the processes grid,

the LU decomposition algorithm starts with k=1 in Fig.

2 (a) where k is the number of the block of columns that

are involved on the factorization step. This block of

columns is called column panel. The size of this panel

is [N-(k-1)×nb] rows by nb columns where the row size

decreases when the factorization process advances. The

panel is marked in green in Fig. 2 (a) and labeled as

Zkk + L(k). The operation performed during this step can

be written as:

()
()

kk kk

kkk
k

Z L
P P U

L L
, (2)

where P is the permutation matrix corresponding to the

partial pivoting scheme, Zkk + L(k) is the column panel

previously mentioned and Lkk, Ukk, and L(k) are the result

of the factorization process. In order to save computational

resources, Zkk is generally overwritten by the lower

triangular matrix Lkk and the unit upper triangular matrix

Ukk. Figure 2 (b) shows the row exchange process where

the element of maximum magnitude is permuted to

the diagonal position in the panel factorization (this

movement is given by matrix P). It is worth to remind

that this row exchange process requires a large volume

of message communication leading on poor parallel

performance. Submatrices Lkk, Ukk, and L(k) are also

displayed on the figure.

Z(k)

U(k)

(k-1)nb+1 k×nb+1

L(k)

the kth panel column

()
()

kk kk

kkk
k

A L
P P U

L L

.

th
e kth

 p
an

el ro
w

kkZ

k×
n

b
+

1

Z(k)

Lk k

Uk k
U(k)

L
(k)

r
o

w
 e

x
c

h
a

n
g

e

th
e

 k
th p

a
n

e
l r

o
w

t h e k t h p a n e l c o l u m n

 (a) (b)

Z(k)

Lkk

Ukk

L
(k)

() 1k

kk (k)

U L U

th
e kth

 p
an

el ro
w

the kth panel column

Lk k

Uk k
U

(k)

L
(k)

th
e

 k
th p

a
n

e
l r

o
w

t h e k t h p a n e l c o l u m n

() () ()

() k k k

kZ Z L U

 (c) (d)

Fig. 2. ScaLapack LU decomposition: (a) panel

factorization, (b) row exchange, (c) broadcast L𝑘𝑘 and

panel row update, and (d) broadcast L(𝑘) and U(𝑘) and

trailing update. Note that the subscript (k) changing to

the superscript (k) indicates that the current operation is

complete.

The next step corresponds to the row panel update

process (see green submatrix marked in Fig. 2(c)) using

the submatrices obtained previously. The update is given

by:
() 1k

kk (k)

U L U , (3)

where U(k) is the original row panel and Lkk is the lower

triangular matrix of the column panel. Once the

unknown U(k) is obtained, the original row panel U(k) is

overwritten saving computational resources as the

previous case.

The last step performs the update of the trailing

submatrix Z(k), marked in orange in Fig. 2 (c). This

update uses the results of both panel factorization and

row panel update. The resulting Z(k) submatrix is given

by:
() () ()

()

k k k

k Z Z L U . (4)

Once the new Z(k) submatrix is obtained, k is

incremented and a new block of columns is factorized

CHEN, LIN, GARCIA-DONORO, ZHAO, ZHANG: PERFORMANCE OF A MASSIVELY PARALLEL METHOD OF MOMENT SOLVER 874

continuing this process until the original matrix is

decomposed completely.

B. Novel LU algorithm

The main different between the ScaLapack LU

algorithm and our NLU resides on the way that the

column panel is decomposed. This decomposition is

located on a critical position on the LU algorithm being,

in the case of the ScaLapack, unable to minimize the

number of message exchanged due to the partial pivoting

scheme. However NLU, adopting a different pivoting

strategy, is able to reduce the number and amount of

communication during this process enhancing the

parallel performance.

It is worth mentioning that there are no differences

between the ScaLapack LU algorithm and NLU for

the others steps on the factorization process. Once the

decomposition of the column panel is done, the algorithms

follow the same scheme regarding the row update and

the trailing submatrix update. For this reason, and in

order to give a better description of our algorithm, only

the decomposition of the column panel is detailed here.

Let us consider the same N×N dense complex

matrix than the previous case. The column panel shown

in Fig. 2 (a) (remember green columns on the left) is

extracted and redisplayed in Fig. 3 as A. The distribution

of the matrix on the process grid is performed as the

previous case. However, for simplicity, we assume that

the total number of processes is P=24. According to the

criteria of choosing Pr and Pc aforementioned, the best

choice is Pr = 4 and Pc = 6 obtaining four pieces of A:

0 1 2 3

T
T T T T A A A A A , (5)

where the matrix A is of size [N-(k-1)×nb] by nb and A0,

A1, A2 and A3 are distributed on processes P0, P1, P2, and

P3, respectively. Without loss of generality, we assume

the size of Ai is mi×nb with i=0, 1, 2, 3 and mi about

[N-(k-1)×nb]/4. Generally, these four submatrices are

referenced as local panels.

The decomposition of the column panel A is divided

in three steps. The first step performs the decomposition

of each of the submatrices A0, A1, A2 and A3 using

partial pivoting. This decomposition process is done

independently in each MPI processes without any

interaction between them. Thus, this step is called local

decomposition step where no communication between

processes is required. Equation 6 shows the decomposition

of each submatrix of the column panel A:
(1) (1) (1)

0 0 0

(1) (1) (1)

1 1 1

(1) (1) (1)

2 2 2

(1) (1) (1)

3 3 3

0

1

2

3

A P L U

A P L U

A P L U

A P L U

, (6)

where (1)

iP is the permutation matrix with the information

of the pivoting and (1)

iL and (1)

iU are the corresponding

submatrices result of the factorization process. Then, a

set of local pivoting rows is obtained and permuted to the

first nb rows of each submatrix using the permutation

matrix (1)

iP . Figure 3 shows this process under the label

step 1 where the small matrices on the right contains the

rows selected for pivoting during the local decomposition

step.

A

A0

A1

A2

A3

Communication

Communication

Communication

P0

P1

P2

P3

Combination

Combination

Combination

Local

decomposition

Local

decomposition

Local

decomposition

Step 1 Step 2 Step 1 Step 2 Step 3Step 1

Fig. 3. Illustration of column factorization in our parallel

MoM LU decomposition algorithm.

The second step combines the local pivoting rows

pair to pair using a recursive scheme. For example, the

local pivoting rows of (1)

0A and (1)

1A are combined in

one pair while the rows of (1)

2A and (1)

3A are combined to

form another pair (see the label step 2 on the left in Fig.

3). These new pairs are called new local column panels

which are treated as new panels for decomposition.

Equation 7 shows the decomposition of this new local

column panels:
(1)

(2) (2) (2)0

0 0 0(1)

1

(1)

(2) (2) (2)2

1 1 1(1)

3

A
P L U

A

A
P L U

A

. (7)

Once this new local decomposition step is carried

out, a new set of local pivoting rows is obtained and

permuted to the first nb rows of the column panel

(submatrices marked in brown and gray in Fig. 3). Both

local decomposition and combination step are called

iteratively until only one block of pivoting rows is

obtained. The total number of operations needed to

obtain the final pivoting block is equal to log2Pr.

Continuing with the decomposition of A, the final local

decomposition step is given by:
(2)

(3) (3) (3)0

0 0 0(2)

1

A
P L U

A
. (8)

Once this local decomposition is done, the final

ACES JOURNAL, Vol. 32, No. 10, October 2017875

pivoting rows are obtained. These pivoting rows are

similar to the one used to form the permutation matrix

P employed in (2). However, if one permutes these

pivoting rows to the first nb rows of A, then the LU

decomposition without pivoting could be performed. In

practice, even the LU decomposition is unnecessary

because the latest local decomposition gives the upper

triangular matrix U which is the same as the ultimately

U we expect to obtain such as (3)

0U in (8). So the only

operation needed after executing this pivoting technique

is a multiplication of an upper triangular matrix (3)

0U by

a block of column of A as shown in (9):

 (3) -1

0: ,1: : ,1:b b b bn m n n m nA A U , (9)

where A is the permuted column panel with the pivoting

rows already located in the first 𝑛𝑏 rows of the matrix.

It is obviously that the communication appears only in

the step of the combination of the local pivot rows, as

implied by the arrows labeled with “communication” in

Fig. 3.

The above description was simplified for the case of

Pr = 4 but, actually this procedure can be easily extended

to a situation with Pr = 8, 16, 32 and so on. With some

additional but easy work, Pr could be an arbitrary quantity,

rather than just power of 2. Of course, the extension from

binary tree to quad tree or octree is not a big deal.

It is worth to mention that the combination step

between local pivoting rows is not straightforward. In a

first stage, it is necessary to determine which two pivoting

blocks are combined. Then, as these two associated

pivoting blocks are located at two different MPI processes,

one also needs to define the communication pattern

between them. Finally, after the combination, one needs

to know which MPI process will perform the new local

decompositions. In this work, the binary tree reduction

method [17] is employed to guide the combination step.

More specifically, two pivoting blocks located on adjacent

MPI processes are the one chosen to be combined. After

a combination, only half of the current MPI processes

will perform the new local decomposition step. This

reduction in the number of the working processes is

continuously done until only one process performs the

last local decomposition step, meanwhile the other

processes will be waiting for the final permutation matrix.

Compared with the original CALU algorithm studied

in [16, 17] the major difference with NLU resides in the

communication pattern involved in the combination step.

As shown in Fig. 3 all the processes are paired up to get

a new pivoting block. In the original CALU algorithm

each process exchanges their own pivoting blocks with

its partner and then both the processes perform the same

local decomposition, while in NLU only a unidirectional

communication is performed and only the receiver-

process performs the local decomposition. After several

tests, we concluded that this variation provides a better

implementation and makes the algorithm easier to

achieve when using supercomputer platforms. Also, the

extension from binary tree to quad tree or octree is much

straightforward using the unidirectional communication

version than the omnidirectional scheme.

C. Analysis of algorithm complexity

Before going to the numerical results section,

the analysis of the computation complexity and the

communication pattern of NLU algorithm is carried out.

In order to perform a complete analysis, a comparison

with the computation complexity of the ScaLapack LU

algorithm is also done. As it was commented previously,

the main different between the ScaLapack algorithm

and NLU resides on the way that the column panel is

decomposed. Therefore, the communication during the

panel factorization is discussed in detail here.

Let us take, for example, the k’th step of LU

decomposition shown in Fig. 2. Assuming that the size

of L(k) is m×nb and the size of Lkk is nb×nb, the amount of

multiplication and addition operations can be calculated

as it is shown later. We ignore the division operation

because there are only few of those during the algorithms.

Furthermore, let us assume that the communication

latency is α and the communication bandwidth is 1/β.

Thus, the communication time T taken to send a message

of size L is:

 T L . (10)

Now, let us consider the ScaLapack LU algorithm

first. For every column in the panel, a binary-exchange

of size 2 nb data items is performed [19], being nb the

number of columns in the panel. The communication

complexity of this binary-exchange is log2Pr given a

total communication time of:

 , 2

2

2 2

2 log

 log 2 log

b

b b r

b r

com s

r

mT n n P

n P n P
. (11)

In order to calculate the computation time taken by

ScaLapack, we can consider that the panel factorization

is a LU decomposition of a non-square matrix. Thus, the

computation time can be evaluated according to the

standard LU decomposition time that is:

2

, ()
3

b

fact s b

n
T m n , (12)

where γ is the time for each multiplication or addition

operation, m is the number of row in the column panel

and nb is the number of columns.

In the case of NLU, one can see from Fig. 3 that the

number of point-to-point communications performed by

the busiest MPI process (P0) is log2Pr. A final broadcast

operation is also necessary at the end of the preprocess

step, so the communication complexity of this broadcast

operation (also log2Pr) has to be added to the total

communication time. Assuming that the number of element

to be broadcasted is
2 / 2
b

n , the total communication time

is given by:

CHEN, LIN, GARCIA-DONORO, ZHAO, ZHANG: PERFORMANCE OF A MASSIVELY PARALLEL METHOD OF MOMENT SOLVER 876

2

2

, 2 2

2

2 2

(log () log

 2 log 1.5 log

)
2

b

comm c

b

b r r

r r

n
T P P

P n P

n

.(13)

Generally, m is much greater than nb, so it is clear

that the operations described by (6) and (9) contribute the

most amount of calculation in this case. Both operations

have almost the same times of multiplication and addition

as ScaLapack. So the computation time in NLU is about

2 times more than in ScaLapack:

 2

, 2()
3

b

fact c b

n
T m n . (14)

Comparing the communication time given by (11)

and (13), it can be concluded that NLU requires less

communication time than ScaLapack. In the other hand,

comparing the computation time given by (12) and (14)

one can see how NLU pays a double price during the

calculation. However, we have to take into account the

order of magnitude of the variables involved on the

calculation each time. The γ time employed by the

computer to perform a multiplication or addition is much

smaller than the latency time α and the inverse of the

communication bandwidth β. Furthermore, NLU can

utilize many excellent sequential factorization algorithms

directly in the local decomposition step, such as recursive

sequential LU, performing the floating point operation

at machine peak performance, which means that the

operation time γ in (14) is generally smaller than the

time employed in (12). Thus, even employing a larger

computational time, the NLU provides a shorter global

time for matrix factorization. In order to demonstrate

this affirmation, the next section presents the numerical

results where the computational time of different

benchmarks is compared.

IV. NUMERICAL RESULTS AND

DISCUSSION
This section shows the comparison of the

computational times for three different benchmarks

between NLU and two of the most important math

libraries used by direct dense solvers: the commercial

MKL and the open source ScaLapack. The benchmarks

considered here have consisted of the use of different

matrix sizes, the use of different number of CPU cores

and a comparison on the parallel efficiency of the

algorithms. These benchmarks have been run on three

different high performance computing (HPC) platforms

that are described next.

A. Description of the computational resources

The first platform is the HPC cluster of Xidian

University (XDHPC), which is equipped with 100

compute nodes connected by 56 Gbps InfiniBand

network. Each node has two twelve-core Intel Xeon

2690 V2 2.2 GHz CPUs. The second platform is the

MilkyWay-2 (Tianhe-2), which has 16,000 compute

nodes. Each compute node is equipped with two Intel

Xeon E5-2600 processors and three Intel Xeon Phi

accelerators. All compute nodes are connected by a

homemade 150 Gbps network. The third platform is the

Sunway BlueLight MPP, a Chinese petaflop homegrown

supercomputer. Sunway BlueLight uses ShenWei SW-3

1600, a 16-core 64-bit MIPS-compatible CPU. The total

number of compute nodes on the system is 8704

connected by InfiniBand QDR network.

B. Numerical results for different matrix size

This benchmark has consisted of two tests using

different matrix size and checking the factorization time

of the algorithms. The first test employs a matrix size of

20,000~100,000 using 240 CPU cores in a process grid

of 15x16, while the second test makes use of a matrix

size of 80,000~180,000 in 720 CPU cores with a process

grid of 24x30. The computing time obtained using the

Intel MKL, ScaLapack and NLU are listed in Table 1.

The improvement in percentage regarding the computing

time using our solver versus MKL and ScaLapack is

listed in the last two columns of the table. For example,

the percentage corresponding with the improvement

against MKL was calculated by using the following

expression: (TMKL-TNLU) / TMKL × 100%. The percentage

corresponding to ScaLapack was calculated in a similar

way. According to Table 1, the performances of our

solver are clearly better than both MKL and ScaLapack

for all the cases.

C. Numerical results for different CPU cores

The second benchmark has consisted of the

simulation of two real world applications using different

number of CPU cores. The first simulation analyzes the

radar cross section (RCS) of an airplane. The second

test calculates the radiation pattern of an airborne wire

array antenna. XDHPC platform was used to run this

benchmark.

Testing-I: The RCS of the airplane shown in Fig. 4

is calculated in this test. The size of the airplane is 18.92 m

by 13.56 m by 5.05 m and the simulation frequency is

500 MHz, given a total number of unknowns of 203,436.

The computing time consumed by NLU and MKL using

240~2048 CPU cores is listed in Table 2. The last row

of data indicates the improvement in the computing

time with respect to MKL. According to this table, the

performance of our solver gets better when the number

of CPU cores increases (in consequence more

communication message are required) improving between

5.5%-8% the computational time given by MKL. The

comparison between the RCS values obtained using our

LU decomposition algorithm and the MKL library for

the azimuth cut are shown in Fig. 5 where a very good

agreement is appreciated. This behavior is expected as

both decomposition algorithms are solving the same

ACES JOURNAL, Vol. 32, No. 10, October 2017877

matrix although, as aforementioned, NLU improves the

computational time around 8% in the best case.

Table 1: Computing time for NLU, MKL and ScaLapack

CPU

Cores

Size of

Matrix

Time of LU

Decomposition (Unit: s)
NLU

VS

MKL

NLU

VS

ScaL NLU MKL ScaL

240

20,000 12.20 15.35 13.10 20.52% 6.83%

40,000 61.41 70.86 68.17 13.34% 9.91%

60,000 175.01 194.71 196.61 10.12% 10.99%

80,000 397.96 417.31 449.60 4.64% 11.48%

100,000 714.77 758.18 796.24 5.72% 10.23%

720

80,000 173.04 200.01 192.38 13.49% 11.18%

100,000 316.15 351.01 346.82 9.93% 9.70%

120,000 506.72 556.97 578.68 9.02% 14.20%

140,000 781.27 822.87 851.76 5.06% 9.02%

160,000 1093.43 1180.17 1264.40 7.35% 15.64%

180,000 1490.39 1607.81 1693.76 7.30% 13.65%

Table 2: Computing time for NLU and MKL

CPU Cores 240 720 960 1200 2048

NLU Time 20091.5 2127.08 1588.10 1274.39 858.88

MKL Time 19257.7 2131.75 1650.88 1386.33 909.58

Time Saved -4.33% 0.22% 3.80% 8.07% 5.57%

Fig. 4. Airplane model for RCS calculation using RWG.

0 30 60 90 120 150 180 210 240 270 300 330 360

0

10

20

30

40

50

R
C

S
(d

B
s
m

)

Phi(degree)

 NLU

 MKL

Fig. 5. RCS comparison using NLU and MKL.

Testing-II: The analysis of an airborne wire array

antenna with 72 × 14 elements is performed in this test.

The simulation model is shown in Fig. 6. The dimensions

of the full array are 10 m × 2.5 m × 0.018 m. Each element

of the array is fed by a short pin, and the amplitude at the

feed of the array is designed by a –35 dB Taylor

distribution both along length and width. The operation

frequency of the array is 1.0 GHz given a total number

of unknowns of 259,128.

Fig. 6. Simulation model of the wire antenna array.

0 30 60 90 120 150 180 210 240 270 300 330 360
-50

-40

-30

-20

-10

0

10

20

30

40

G
ai

n
(d

B
)

Phi (degree)

 NLU

 MKL

Fig. 7. Gain comparison in dB for NLU and MKL.

Table 3: Computing time for NLU and MKL

CPU Cores 240 720 960 1200 2048

NLU Time 11033.6 4407.73 3295.77 2743.26 1673.46

MKL Time 11174.0 4472.85 3501.06 2909.09 1788.27

Time Saved 1.26% 1.46% 5.86% 5.70% 6.42%

The computing time consumed by our LU

decomposition algorithm and MKL using 240~2048

CPU cores is shown in Table 3, where the improvements

in the time are listed in the last row as the previous test.

The comparison between the 2D gain patterns are given

in Fig. 7 where a very good agreement is appreciated.

It is worth mention that according to Table 3, as the

number of CPU cores increases the improvement in the

computing time given by our solver is greater.

D. Numerical results for parallel efficiency

The last benchmark has consisted of the simulation

of two massively parallel simulations used to measure

the parallel efficiency of the algorithms. The parallel

efficiency can be defined as:

 100%
p

T
pT

 , (15)

where T is the total time taken by a single process and 𝑇𝑝

is the total time taken by p processes. In practice, if the

problem cannot fit into a single computing node, the time

for the smallest number of processes is taken as reference.

 Antenna Array

CHEN, LIN, GARCIA-DONORO, ZHAO, ZHANG: PERFORMANCE OF A MASSIVELY PARALLEL METHOD OF MOMENT SOLVER 878

The calculation of the radiation pattern of a

rectangular microstrip patch antenna array formed by

37 × 9 elements mounted on an aircraft is considered

first. The simulation model of the array and the airplane

are shown in Figs. 8 and 9. The dimensions of each patch

element of the array are 205.6 mm × 154.8 mm providing

a total dimension for the full array of 10 m × 2.5 m ×

0.018 m. The material parameters of the substrate are

εr = 4.2 and μr = 1.0 and the operation frequency of the

array is 440 MHz. The dimensions of the airplane were

55 m long by 47.6 m wide and 15.8 m high obtaining a

total number of unknowns for the simulation of 308,371.

z
x

y
o

Fig. 8. Model of the microstrip patch array antenna.

z

x
y

o

Fig. 9. Computational model with the aircraft and array.

The solving time taken by NLU using 600~12000

CPU cores is shown in Table 4, where the last two

columns give the memory required in the form of value

and percentage. Milkyway-2 platform was used to run

this benchmark. Setting the solving time given by

the 600 CPU cores simulation as the reference, the

speed up listed in the fourth column is calculated by

SP = 7504.08/TP, and the parallel efficiency listed in

fifth column is calculated by SP/(P/600), where P is

the number of the CPU cores and TP and SP is the

corresponding solving time and speedup. Figure 10

shows the variation of speedup and parallel efficiency

on CPU cores. According to the figure, efficiency higher

than 65% can still be achieved when the parallel scale

extends by 20, from 600 to 12000 CPU cores. Although

more CPU cores usually mean shorter simulation time,

the efficiency may deteriorate rapidly when the memory

ratio is less than 2%. It should be pointed out that the

maximum memory ratio should better less than 80%

because of the operating system’s requirement. Therefore,

in order to avoid an extreme degradation on the parallel

performance, the number of CPU cores should be choose

carefully. Figure 11 shows the simulation results for

this benchmark, where a -25 dB side lobe level in both

yoz and xoy planes is appreciated fitting in the design

specifications.

Table 4: Parallel efficiency and memory ratio for NLU

0
CPU

Cores

Solving

Time (s)

Speed-

up

Parallel

Efficiency

(%)

Memory

(GB)

Memory

Ratio (%)

308,371

600 7504.08 1 100

1417

70.90

1200 3799.00 1.97 98.76 35.45

2400 2112.25 3.55 88.81 17.73

3600 1471.84 5.09 84.97 11.82

4800 1158.78 6.47 80.94 8.86

7200 858.42 8.74 72.84 5.91

9600 650.32 11.53 72.11 4.43

12000 551.97 13.59 67.97 3.55

0 2000 4000 6000 8000 10000 12000

0

5

10

15

20

37.89%

72.11%

100%

88.81%

98.76%

84.97%

80.94%

67.97%

72.84%

72.11%

 Real Speed Up

 Ideal Speed Up

S
p

ee
d

 U
p

Number of CPU cores

Fig. 10. Parallel efficiency for microstrip.

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180
-50

-40

-30

-20

-10

0

10

20

30 airborne array

 array

G
ai

n
 (

d
B

)

Theta (deg)
 (a)

0 30 60 90 120 150 180 210 240 270 300 330 360

-40

-30

-20

-10

0

10

20

30
 airborne array

 array

G
ai

n
 (

d
B

)

Phi (deg)
 (b)

Fig. 11. 2D gain patterns for: (a) yoz plane and (b) xoy

plane.

The parallel efficiency of NLU is further tested

by the simulation of the bistatic RCS of the airplane

shown in Fig. 12 at frequencies of 1.5 GHz and 2.5 GHz.

Milkyway-2 platform was also used to run this simulation.

ACES JOURNAL, Vol. 32, No. 10, October 2017879

The dimensions of the airplane are 18.92 m × 14.56 m ×

5.05 m, given a number of unknowns of 273,808 for

the first frequency and 671,777 for the second one. The

excitation is a z-axis polarized plane wave propagating

along the negative x-axis direction.

Fig. 12. Airplane model for efficiency test II.

The computing time consumed by NLU in the

simulation is shown in Table 5. The number of processes

used at 1.5 GHz ranges between 1536 and 25920 CPU

cores while this number ranges from 25920~107520 CPU

cores at 2.5 GHz. According the table, it can be seen how

the efficiency is still higher than 50% even when using

more than 100,000 CPU cores, as long as the memory

ratio is larger than 2% approximately. The results of the

RCS are listed in Fig. 13.

E. Numerical results for practical engineering

The RCS of the airplane shown in Fig. 12 is now

calculated at a higher frequency to demonstrate the

ability of the solver to calculate electric super-lager

targets. The working frequency in this case is 3.2 GHz

given a total number of unknowns of 1,270,200, which

requires 23.4 TB of memory. A total number of 201,600

CPU cores are employed to solve the problem. The

computing time and simulation result are listed in Table

6 and Fig. 14, respectively.

Table 5: Parallel efficiency for test II

Unknowns
CPU

Cores

Solving

Time (s)

Parallel

Efficiency

Memory

(GB)

Memory

Ratio

273,808

1,536 2376.71 100%

1117.32

27.28%

12,960 437.88 80.41% 3.23%

25,920 246.81 45.51% 1.62%

671,777

25,920 2388.10 100%

6724.66

9.73%

76,800 1629.09 83.43% 3.28%

107,520 1264.98 57.06% 2.35%

 (a)

 (b)

0 30 60 90 120 150 180 210 240 270 300 330 360
0

10

20

30

40

50

60

70

Phi(degree)

σ
／
λ
2 (
dB
)

 1.5 GHZ

 2.5 GHZ

 (c)

Fig. 13. Bistatic RCS results for: (a) 3D-RCS at 1.5 GHz,

(b) 3D-RCS at 2.5 GHz, and (c) 2D-RCS on xoy at 1.5 GHz

and 2.5 GHz.

Table 6: Solving matrix equation using 200,000 CPU

cores
CPU

Cores
Unknowns

Process

Grid

Block

Size

Filling

Time (s)

Solving

Time (s)

201,600 1,270,200 400×504 128 23.10 3021.05

 (a)

0 30 60 90 120 150 180 210 240 270 300 330 360
30

40

50

60

70

80

Phi(degree)

σ
／

λ
2 (
dB
)

 3.2 GHz

 (b)

Fig. 14. Bistatic RCS results at 3.2 GHz for: (a) 3D-RCS

and (b) 2D-RCS for azimuth cut.

CHEN, LIN, GARCIA-DONORO, ZHAO, ZHANG: PERFORMANCE OF A MASSIVELY PARALLEL METHOD OF MOMENT SOLVER 880

V. CONCLUSION
A massively parallel MoM solver able to run on

200,000 CPU cores and solve matrices larger than 1.3

million unknowns has been presented. Details about a

novel LU decomposition algorithm have been given

demonstrating its improvements in the simulation time

in comparison with commercial Intel MKL and open

source ScaLapack Libraries. The new algorithm is about

10~20 percent faster than the open source ScaLapack

framework. Also, compared with the commercial Intel

MKL on InfiniBand interconnected platform when

thousands of CPU cores are used, it still has 5~10 percent

advantage in performance. Furthermore, one can see how

the algorithm can still achieve a high parallel efficiency

even when 200,000 CPU cores are used presenting a new

powerful tool for solving very challenging electromagnetic

problems in reasonable time.

ACKNOWLEDGMENT
This work was supported in part by the National Key

Research and Development Program of China under

Grant 2017YFB0202102, in part by the National High

Technology Research and Development Program of

China (863 Program) under Grant 2014AA01A302,

in part by the China Postdoctoral Science Foundation

funded project under Grant 2017M613068, in part by the

Key Research and Development Program of Shandong

Province under Grant 2015GGX101028, and in part by

the Special Program for Applied Research on Super

Computation of the NSFC-Guangdong Joint Fund (the

second phase) under Grant No. U1501501.

REFERENCES
[1] J. M. Jin, The Finite Element Method in Electro-

magnetics. John Wiley & Sons, Inc., 1993.

[2] A. Taflove, Computational Electrodynamics: The

Finite-Difference Time-Domain Method. Artech

House, Norwood, Mass, USA, 2000.

[3] R. F. Harrington, Field Computation by Moment

Methods in IEEE Series on Electromagnetic Waves.

IEEE, New York, NY, USA, 1993.

[4] Y. Zhang and T. K. Sarkar, Parallel Solution of

Integral Equation Based EM Problems in the

Frequency Domain. Hoboken, NJ: John Wiley,

2009.

[5] J. Chen, M. Zhu, M. Wang, S. Li, and X. Li, “A

hybrid MoM-PO method combining ACA technique

for electromagnetic scattering from target above a

rough surface,” ACES Journal, vol. 29, no. 4, pp.

301-306, 2014.

[6] Y. Kim, H. Kim, K. Bae, J. Park, and N. Myung,

“A hybrid UTD-ACGF technique for DOA finding

of receiving antenna array on complex environment,”

IEEE Trans. Antennas Propag., vol. 63, no. 11, pp.

5045-5055, 2015.

[7] J. M. Song, C. C. Lu, and W. C. Chew, “Multilevel

fast multipole algorithm for electromagnetic

scattering by large complex object,” IEEE Trans.

Antennas Propag., vol. 45, no. 10, pp. 1488-1493,

1997.

[8] H. Fangjing, N. Zaiping, and H. Jun, “An efficient

parallel multilevel fast multipole algorithm for

large-scale scattering problems,” ACES Journal,

vol. 25, no. 4, pp. 381-387, 2010.

[9] Y. Zhang, T. K. Sarkar, M. C. Taylor, and H.

Moon, “Solving MoM problems with million level

unknowns using a parallel out-of-core solver on a

high performance cluster,” in IEEE Antennas and

Propagation Soc. Int. Symp., Charleston, SC, USA,

pp. 1-4, 2009.

[10] Y. Zhang, R. A. van ce Geijn, M. C. Taylor, and T.

K. Sarkar, “Parallel MoM using higher-order basis

functions and PLAPACK in-core and out-of-core

solvers for challenging EM simulations,” IEEE

Trans. Antennas Propag., vol. 51, no. 5, pp. 42-60,

2009.

[11] Y. Zhang, T. K. Sarkar, X. Zhao, D. Garcia-

Donoro, W. Zhao, M. Salazar, and S. Ting, Higher

Order Basis Based Integral Equation Solver

(HOBBIES). Hoboken, NJ: John Wiley, 2012.

[12] Intel Copyright (2015) Intel Math Kernel Library

for Linux OS User’s Guide, Intel Corporation.

available: https://software.intel.com/sites/default/

files/managed/df/1e/mkl_11.3_lnx_userguide.pdf.

[13] W. Gropp, T. Hoefler, and R. Thakur, Using

Advanced MPI: Modern Features of the Message-

Passing Interface. Cambridge, MA: The MIT Press,

2014.

[14] B. Chapman, G. Jost, R. van der Pas, and D. J.

Kuck, (foreword), Using OpenMP: Portable Shared

Memory Parallel Programming. The MIT Press,

Cambridge, MA, 2007.

[15] L. S. Blackford, J. Choi, A. Cleary, et al.,

“ScaLAPACK: A portable linear algebra library

for distributed memory computers - Design issues

and performance,” Proceedings of the 1996 ACM/

IEEE Conference on Supercomputing, IEEE, pp. 1-

20, 1996.

[16] Y. Zhang, Z. Lin, X. Zhao, et al., “Performance

of a massively parallel higher-order method of

moments code using thousands of CPUs and its

applications,” IEEE Trans. Antennas Propag., vol.

62, no. 12, pp. 6317-6324, 2014.

[17] L. Grigori, J. W. Demmel, and H. Xiang, “CALU:

A communication optimal LU factorization

algorithm,” SIAM Journal on Matrix Analysis and

Applications, vol. 32, no. 4, pp. 1317-1350, 2008.

[18] A. Khabou, J. W. Demmel, L. Grigori, and M.

Gu, “LU factorization with panel rank revealing

pivoting and its communication avoiding version,”

eprint arXiv:1208.2451, 2012.

[19] http://www.netlib.org/benchmark/hpl/scalability.html

ACES JOURNAL, Vol. 32, No. 10, October 2017881

	58498 CSM ACES OCT 2017 INSIDE PROOF
	JOURNAL
	ISSN 1054-4887

	page 2 of frontal always insert.pdf
	FRONTAL_MAY 2017
	JOURNAL
	ISSN 1054-4887

	Always replace second page with addition of Abouzahra.pdf
	02_ACES_Journal_20160117_SL_AZE headers.pdf
	I. INTRODUCTION
	II. FORMULATION
	III. STABALITY ANALYSIS OF FOURTH ORDER HIE-FDTD METHOD
	IV. NUMERICAL DISPERSION ANALYSIS
	V. NUMERICAL RESULTS
	CPU Time (s)
	Second-order
	14.40
	FDTD
	Fourth-order
	FDTD
	Second-order
	HIE-FDTD
	One-step-leapfrog
	Fourth-order HIE-FDTD
	VI. CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

	03_ACES_Journal_20160903_SL_AZE header.pdf
	I. INTRODUCTION
	II. LOSSY-ANI ALGORITHM
	III. NUMERICAL RESULT
	IV. CONCLUSION
	REFERENCES

	new page going forward to insert.pdf
	ALL OF THEM WITH HEADERS & NUMBERS and front.pdf
	06_ACES_Journal_20150819_SL_AZE header.pdf
	I. INTRODUCTION
	II. TRIANGULAR CLOAKS DESIGNING PROCEDURE
	III. HOMOGENEOUS CLOCK OF ARBITRARY SHAPE
	IV. CONCLUSION
	REFERENCES

	fix list and insert.pdf
	JOURNAL
	ISSN 1054-4887

	FRONTAL_MAY 2017 page on only special.pdf
	JOURNAL
	ISSN 1054-4887

	FRONTAL_MAY 2017new first page.pdf
	JOURNAL
	ISSN 1054-4887

	FRONTAL_OCT 2017_blank page after page 3 FIRM FIX.pdf
	JOURNAL
	ISSN 1054-4887

	FRONTAL_OCT 2017_blank page after page 3 FIRM FIX.pdf
	JOURNAL
	ISSN 1054-4887

