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Abstract ─ In this work, sparse reconstruction is 

hybridized with method of moments (MoM) for diagnosis 

of wire antenna arrays. In the hybrid method, excitation 

voltages of array under diagnosis are related to near field 

observations through integral equations (IEs), and IEs 

are transformed into matrix equations by MoM. Sparse 

reconstruction is then used to solve excitation voltages 

of array under diagnosis. Finally, locations of failing 

elements are found by the solved excitation voltages. 

The hybrid method models mutual coupling effect  

by MoM, and it achieves higher diagnosis reliability  

than sparse reconstruction without mutual coupling 

consideration. Simulation results are presented to show 

the validity and advantages of the hybrid method. 

 

Index Terms ─ Array diagnosis, integral equation, 

method of moments, sparse reconstruction. 
 

I. INTRODUCTION 
Large scale antenna arrays are widely used in radar 

systems and radio telescopes. If some elements of an 

array are not working properly, the array radiation 

pattern can be significantly affected. In order to repair a 

failing array, it is essential to develop fast and reliable 

array diagnosis methods. Recently, array diagnosis based 

on sparse reconstruction attracted much interest. The key 

advantage of sparse reconstruction is the reduction of 

required observations. This was first demonstrated by 

numerical simulations using planar arrays [1]. Theoretical 

proof was later derived for uniform linear arrays [2]. 

Besides, estimation of diagnosis reliability was developed 

in [3]. 

In practice, diagnosis reliability is affected by 

various factors, including element positioning error, 

measurement noise, mutual coupling between array 

elements, etc. Effects of element positioning error and 

Gaussian noise were discussed in [1], and non-Gaussian 

noise was studied in [4]. Toeplitz property of the mutual 

coupling matrix was utilized to model the mutual 

coupling of uniform linear array [5]. However, mutual 

coupling of arbitrarily shaped arrays has not been 

considered in existing work. 

In order to model the effect of mutual coupling, this 

work combines sparse reconstruction with method of 

moments (MoM). Using MoM, a matrix equation linking 

excitation voltages and near field observations is first 

derived from integral equations. Excitation voltages are 

then solved by sparse reconstruction to locate failing 

elements. The main advantage of the proposed method is 

the inclusion of mutual coupling effect of arbitrarily 

shaped arrays, which is shown to significantly improve 

diagnosis reliability. 

It should be noted that there have been MoM-based 

source reconstruction methods for solving inverse 

problems [6, 7]. Unknowns in these methods are 

equivalent currents which are usually not sparse. On  

the other hand, unknowns in the proposed method are 

excitation voltages, which can be made sparse and solved 

by sparse reconstruction. Furthermore, the support vector 

machine (SVM) based-source identification method was 

proposed in [8]. The SVM based-source identification 

requires a training process. It is able to detect the 

radiation source efficiently once the training process is 

completed. For the large scale arrays considered in this 

work, the training process may be tedious.  

 

II. THE PROPOSED METHOD 
Consider the wire antenna array shown in Fig. 1. 

Fields are observed on an observation plane and they are 

used to reconstruct the excitation voltages.  
 

A. Relating excitation voltages and observed fields 

Assuming the wire antenna is thin (the radius of  

the wire is less than one hundredth of the wavelength), 

electromagnetic behavior of the array is described using 

the thin wire integral equation [9]. Using MoM, the thin 

wire integral equation is discretized and the following 

matrix equation is derived: 

 Zc=f, (1) 

where Z is the interaction matrix, c is an unknown vector 

constituted by current expansion coefficients, and f is the 

excitation vector arising from excitation voltages. The 

dimension of Z is BNJ × BNJ, and the dimension of c and 

f is BNJ × 1, where NJ is the number of basis functions 
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for one antenna element and B is the total number of 

antenna elements. Definitions of Z and f are given in 

Equations (4.68) and (4.69) of [9], and they are omitted 

here. It should be mentioned that the mutual coupling 

effect is automatically included in the interaction matrix 

Z. 

At the q-th observation point qr


 (q=1,2,...,Q, where 

Q is the total number of observations), electric field  

is calculated using the thin wire integral equation. 

Substituting current expansion into the thin wire integral 

equation, the following matrix equation is obtained: 

 E = Uc, (2) 

where E is a vector constituted by Eq and Eq is electric 

field at the q-th observation point. U is a complex-valued 

matrix arising from point matching of the thin wire 

integral equation, and its dimension is Q × BNJ. The 

excitation vector f is written as: 

 f = Tv, (3) 

where v is a column vector constituted by Vb (b = 1, 2, 

..., B) and Vb is the excitation voltage at the b-th feed port. 

T is a BNJ × B complex-valued matrix defined as: 

  



bP

m
b

bm rdrs
j

T



, , (4) 

where Pb is the line segment where the b-th feed port is 

located, δb is the length of Pb, and sm is the m-th triangular 

basis function. Substituting (3) into (1), we have: 

 Zc = Tv. (5) 

From (5) and (2), it is observed that matrix Z needs 

inverting in order to obtain an explicit linear relationship 

between excitation voltages v and observed fields E. 

When the size of Z is large, it is difficult to directly invert 

Z. In that case, fast integral equation methods should be 

used to accelerate the computation of Z and its inversion 

[10]. In this work, we assume that the inversion of Z can 

be computed directly. Equation (5) is then rewritten as: 

 c = Z−1Tv, (6) 

where Z−1 is the inversion of Z. Substituting (6) into (2), 

excitation voltages are related to observed fields as: 

 E = Yv, (7) 

with Y = UZ−1T. 

 

B. Finding excitation from observation 

In order to utilize advantages of sparse solution, this 

work adopts the differential formulation proposed in  

[1] for small failing rate. According to the differential 

formulation [1], the following equation is derived from 

(7): 

 Eδ= Yvδ, (8) 

where Eδ = E − Eref and vδ = v − vref. Eref and vref are 

observed fields and voltage sources of the normal array, 

and they are assumed known in advance. vδ is sparse 

when the failing rate is small. Therefore, vδ can be 

estimated using ℓ1-norm solver. Once vδ is obtained, v  

is recovered as vref + vδ. In practice, the failing rate  

is unknown. Hence, one may reconstruct the voltage 

excitation source using both (7) and (8) and choose the 

one whose radiating fields are closer to the observed 

fields. Taking Equation (7) as an example, v is obtained 

by solving the following optimization problem: 

 
p

p





 v

v
min , (9a) 

 subject to |Em − Ymv | ≤ ϵ, ∀m, (9b) 

where ||v||p is the ℓp-norm of v, Em is the m-th element of 

E, Ym is the m-th row of Y, and ϵ is the tolerance. When 

p = 2, ℓ2-norm solution is obtained, which results in the 

minimum root mean square error solution. If p = 1, a 

sparse solution will be derived. When the solution is 

sparse, ℓ1-norm solver renders better accuracy than ℓ2-

norm solver. The solution of (9) is detailed in [4], and it 

is omitted here. 

The computational complexity of solving the 

optimization problem in (9) is the same as the array 

diagnosis method presented in [4]. Because the mutual 

coupling effect is considered in the proposed method, the 

matrix filling requires longer CPU time. In order to save 

the CPU time, matrix Y in (8) can be pre-stored and 

reused.  

 

 
 

Fig. 1. Diagnosis of a dipole array. The excitation voltage 

at the mth feed port is denoted by Vm. 

 

III. SIMULATION RESULTS 

A. Accuracy study 

This section presents simulation results to study the 

accuracy of our proposed method and to demonstrate the 

accuracy improvement by considering mutual coupling. 

 

1) Simulation Setup 

The array under consideration is a 10 × 10 cylindrical 

array consisting of half-wavelength dipole antennas. The 

array elements are distributed on a z-directed cylinder of 

radius 5λ with z ∈ [0, 9.5λ] and ϕ ∈ [−0.45, 0.45], where 

λ denotes the wavelength. The elemental spacings in z- 

and ϕ-directions are 1.0λ and 0.1 radian, respectively. 
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Radiated fields are observed on a rectangular plane 

defined as x = 6λ, y ∈ [−2.25λ, 2.25λ], and z ∈ [0, 9.5λ]. 

For validation purpose, radiated near fields of the array 

are first calculated with uniform voltage excitation of  

1 V. Results from our code agree well with those from 

commercial software FEKO. This validates the calculation 

of matrices Z, T, and U. Our code is then used to generate 

observed fields with the voltage excitation following 

Gaussian distribution. z-component of the electric field 

is used for failure diagnosis. Furthermore, Gaussian 

noise is added to the synthetic data in order to simulate 

the measurement uncertainty in experiment. To enhance 

the robustness against Gaussian noise, the quadratic loss 

function is adopted in the unsupervised support vector 

regression [4]. The relative root mean square error (RMSE) 

is used to measure the accuracy of the reconstructed 

source. In order to consider the effect of location of 

failing elements, RMSE is obtained by 50 independent 

simulations, each with random locations of failing 

elements. 
 

2) Accuracy for Sparse Solution 

Figure 2 presents RMSE against the number of 

observations for sparsity of 92% and 96%. The signal to 

noise ratio (SNR) is fixed to 40 dB. It is seen that RMSE 

reduces as the number of observations increases, with the 

reduction rate becoming slow after certain number of 

observations. This indicates that there is a critical point 

Qc, after which adding extra observation data provides 

insignificant accuracy improvement. Figure 2 shows that 

the value of Qc is smaller for the case of 96% solution 

sparsity. Hence, sparser solution requires smaller Qc. 

For practical application, Qc may be determined by 

gradually adding observation data until the convergence 

of the solution vector [11]. Figure 2 also compares 

RMSE with and without mutual coupling consideration. 

It is seen that the accuracy is improved by one order  

of magnitude when mutual coupling is considered. 

Meanwhile, the accuracy improvement is higher for the 

case of 96% solution sparsity. This is because higher 

solution sparsity results in a larger number of passive 

radiating elements, which makes the role of mutual 

coupling more important. 

Figure 3 shows RMSE versus SNR, where the number 

of observations is fixed to 100. It is seen that RMSE with 

and without mutual coupling consideration is large when 

SNR is below 20 dB. However, RMSE is lower when 

mutual coupling is considered. Meanwhile, RMSE is 

reduced by one order of magnitude via considering mutual 

coupling when SNR is larger than 20 dB. Furthermore, 

RMSE reduction is larger when solution sparsity is 96%. 

This agrees with the observation from Fig. 2. 
 

3) Accuracy Against Sparsity of the Solution 

In the case of Figs. 2 and 3, the solution sparsity is 

high. It is interesting to see how the accuracy is affected 

by the solution sparsity. Figure 4 presents RMSE with 

solution sparsity dropping from 95% to 50%. As the 

solution sparsity drops, RMSE gradually rises. In the 

case of SNR=40 dB, the accuracy improvement by 

considering mutual coupling is one order of magnitude 

for all solution sparsity. When SNR is 20 dB, RMSE  

is high for both with and without mutual coupling 

consideration. Figure 5 shows the rate of correct detection 

using the detection criterion presented in [4]. For both 

values of SNR, considering mutual coupling increases 

the rate of correct detection. When SNR is 40 dB, the 

proposed method provides 100% rate of correct detection 

for all solution sparsity. When SNR is 20 dB, the rate of 

correct detection is 98% for sparsity of 95%. However, 

as the sparsity decreases, the rate of correct detection 

drops. For low sparsity, the rate of correct detection may 

be improved by increasing the number of observations 

[4]. 

 

 
 

Fig. 2. RMSE versus the number of observations. 

 

 
 

Fig. 3. RMSE versus SNR. 

ZHAO, ZHANG, HU, CHEN: HYBRID SPARSE RECONSTRUCTION-METHOD OF MOMENTS 884



 
 

Fig. 4. RMSE versus solution sparsity. 
 

 
 

Fig. 5. Rate of correct detection versus solution sparsity. 
 

B. Application to a 40 × 30 cylindrical dipole array 

The proposed method is applied to diagnose a 40 × 30 

cylindrical array constituted by half-wavelength dipole 

antennas. The array is located on a z-directed cylinder 

with radius of 5λ, ϕ ∈ [−0.975, 0.975] and z ∈ [0, 21.75λ]. 

The elemental spacings in ϕ- and z-directions are 0.05 

radian and 0.75λ, respectively. The voltage excitation of 

the array is shown in Fig. 6 (a), with failing elements 

forming an ‘E’-shape. The z-component of radiated 

electric field is observed on a plane defined as x = 6λ,  

y ∈ [−5λ, 5λ] and z ∈ [−0.25λ, 22λ], with 41 and 31 field 

points in y- and z-directions, respectively. SNR is set to 

20 dB. It is assumed that the failing rate is unknown, and 

the voltage excitation source is reconstructed using both 

(7) and (8). The reconstructed voltage source with smaller 

approximation error is chosen. Figure 6 (b) presents the 

reconstructed voltage excitation with mutual coupling 

consideration. It is seen that the failing elements are 

correctly detected when mutual coupling is considered. 

Figure 6 (c) shows the reconstructed voltage source 

without mutual coupling consideration, where locations 

of failing elements are obscure. 
 

 
 (a) 

 
 (b) 

 
 (c) 

 

Fig. 6. Excitation source of the large cylindrical dipole 

array: (a) original, (b) reconstructed by the proposed 

method, and (c) reconstructed by the method in [4]. 
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IV. CONCLUSION 
This paper presented diagnosis of wire antenna 

arrays by hybrid sparse reconstruction-MoM. Mutual 

coupling between array elements has been taken into 

account by MoM. Simulations have been conducted  

to study the accuracy of the proposed method. It has  

been observed that the accuracy can be improved by one 

order of magnitude when taking mutual coupling into 

consideration. Furthermore, application to a large array 

has been demonstrated. It has been found that failing 

elements are correctly located when mutual coupling is 

considered. On the other hand, ignoring mutual coupling 

results in obscure locations of failing elements. Although 

the array elements considered here are half-wavelength 

dipole antennas, the proposed method can deal with 

other type of elements because of the flexibility of MoM. 
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