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Abstract – In this paper we extend our recently devel-
oped 2D adaptive factorization method for efficiently
solving 3D inverse acoustic and electromagnetic scatter-
ing problems. Different from the previously used Simp-
son rule, we propose to use Gaussian quadrature rule,
which provides improved reconstruction quality. Several
numerical examples are presented to illustrate the effec-
tiveness of our proposed adaptive method. To achieve
better efficiency and robustness, we have based our im-
plementation on the existing adaptive quadrature codes.

Index Terms – adaptive Gaussian quadrature, factoriza-
tion method, inverse scattering, linear sampling method.

I. INTRODUCTION
Inverse scattering problems [1] are of great impor-

tance in many fields of science and engineering, such as
radar and sonar, medical imaging, and non-destructive
testing. Efficient numerical algorithms for solving such
nonlinear inverse problems have gained lots of recent
attention, but the computational challenges remain for
large-scale 3D applications. This paper is concerned
with new efficient adaptive qualitative algorithms for
solving 3D inverse scattering problems.

Depending on the amount of a priori knowledge of
the physical properties of the underlying scatterer and the
requirement of reconstruction quality in terms of resolu-
tion, current algorithms for inverse scattering problems
can be roughly categorized into two groups: (i) nonlinear
optimization methods, and (ii) qualitative methods. The
nonlinear optimization methods [2–4] often involve an
expensive iterative procedure, where a direct scattering
problem needs to be (approximately) solved at each iter-
ation. Although such optimization approaches require
less number of incident fields, they do require a pri-
ori knowledge of the scatterer, such as boundary condi-
tions (e.g, sound-soft or not) and its number of connected
components, which may not be available in practice.

The established qualitative methods [5–7], includ-
ing the linear sampling method [8] and the factorization
method [9], have the key advantage of not requiring the
aforementioned a priori information about the unknown
scatterer. Moreover, qualitative methods were shown

to be computationally parallelizable and faster than the
nonlinear optimization methods. Nevertheless, the stan-
dard qualitative methods need to solve a large number
of linear far-field equations over all sampling points of
a possible very fine mesh over a large search domain,
which can still be quite expensive in 3D applications in-
volving large targets. Furthermore, qualitative methods
often require a large amount of far-field measurements,
although they can still deliver rough approximations with
limited aperture data.

Within the framework of qualitative methods, many
recent studies [10–12] have greatly improved the effi-
ciency and applicability of the original linear sampling
algorithm. In alignment with our proposed method, we
point out that another adaptive scheme was proposed
in [13], where only those coarse boundary cubes inter-
secting with a chosen cut-off plane is further subdivided
into eight (2 × 2 × 2) sub-cubes. The multilevel linear
sampling method (MLSM) [11] also demonstrates some
local adaptive behavior by recursively labeling and re-
moving non-boundary cells in different levels. However,
the MLSM requires very careful numerical treatment on
classifying all the square cells in order to avoid introduc-
ing breakage cells that should not be removed. We refer
to [14] for a comparison between our adaptive factoriza-
tion method and the MLSM in 2D cases. The more re-
cently developed direct sampling methods [15, 16] have
the benefit of using much less far-field data and avoid-
ing directly solving ill-posed integral equations, which
hence are more robust to data noise. Nevertheless, the
mathematical foundation of such direct sampling meth-
ods is far less established.

We organize our paper as follows. In Section II,
we briefly review the linear sampling and factorization
methods. In Section III, based on adaptive Gaussian
quadrature, we propose an adaptive factorization method
that can automatically distribute more sampling points
near the boundary of the scatterers. Section IV con-
tains several numerical examples, which demonstrate
the effectiveness of our proposed adaptive factorization
method in comparison with the standard factorization
method. Finally, some conclusions and remarks are
given in Section V.
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II. A REVIEW OF QUALITATIVE METHODS
In this section, following [1], we briefly describe the

linear sampling and factorization methods for solving in-
verse acoustic obstacle scattering problems. For the pur-
pose of exposition, we will only consider the scattering
of a time harmonic acoustic wave by a bounded impen-
etrable sound-soft obstacle D ⊂ R3 and a C2 boundary
∂D. Given an incident wave field ui, its propagation
against the obstacle D which is situated in a homoge-
neous medium will generate a scattered wave field us.
Consider a time-harmonic plane wave ui(x) = eikx·θ,
where θ is the incident direction with |θ| = 1 and k > 0
is the wave number. Let u = ui + us be the total field,
which satisfies the following exterior Helmholtz equa-
tion:

∆u(x) + k2u(x) = 0, x ∈ R3\D, (1)
subject to the Dirichlet boundary condition (sound-soft)

u = 0, on ∂D, (2)
and the Sommerfeld radiation condition (with r = |x|)

limr→∞ r
(
∂us

∂r − ikus
)
= 0. (3)

The above direct obstacle scattering problem (1-3) has a
unique solution u ∈ C2(R3\D)

∩
C(R3\D). In addi-

tion, the scattered field us has an asymptotic behavior:

us(x) =
eikr

r
u∞(x̂, θ) +O(r−2),

as r = |x| → ∞ uniformly in all directions, where x̂ =
x/|x| is the observation direction and u∞ is called the
far-field pattern of us. In general, the far-field pattern u∞
also depends on the scatterer D and the wave number k.

The inverse obstacle scattering problem is then to
determine the shape of D from many noisy far-field mea-
surements u∞(x̂, θ) for all x̂, θ ∈ S and a fixed k > 0.
In other words, we need to invert the following abstract
operator equation:

G (∂D) = u∞(x̂, θ), x̂, θ ∈ S,
where the abstract operator G maps the boundary of the
obstacle D to the corresponding far-field pattern for all
pair of directions (x̂, θ). This operator equation turns
out to be highly nonlinear and severely ill-posed, which
has been solved by Newton’s method [2, 3], with the
Fréchet derivative of G being inverted using Tikhonov
regularization at each iteration. It is well-known that
such nonlinear iterative methods are costly in practical
computations and their effectiveness often depends on
the faithfulness of the initial guess (i.e., a priori infor-
mation) of the scatterer ∂D. In a typical setting, how-
ever, it is assumed that we know no or very limited infor-
mation about the physical properties (i.e., sound-soft or
penetrable) of the obstacle. Hence, the above mentioned
linear sampling method [17] and its variants are widely
used in practice, although they indeed have certain limi-
tations [18, 19].

A. The linear sampling method
The linear sampling method (LSM) suggests to

solve the following linear integral equation:

(Fg)(x̂) = Φ∞(x̂, z) :=
1

4π
e−ikx̂·z, z ∈ R3, (4)

where the far-field operator F : L2(S) → L2(S) is de-
fined by:

(Fg)(x̂) :=

∫
S
u∞(x̂, d)g(d)ds(d),

and Φ∞(x̂, z) is the far field pattern of the fundamental
solution Φ(·, z) of the Helmholtz equation. It was shown
[5] that for every ϵ > 0, there exists a function gz :=
g(·, z) ∈ L2(S) such that ∥Fg − Φ∞∥ < ϵ and ∥gz∥
becomes unbounded as z approaches the boundary ∂D.
Here ∥ · ∥ denotes the standard L2 norm.

Based on this fact, the basic idea of the linear sam-
pling method is to solve the above far-field equation (4)
for each sampling point z of a uniformly spaced mesh
grid in R3 containing D, and then plot a profile with the
computed values of the indicator function ∥gz∥. The ob-
stacle boundary ∂D can then be identified as the locus
of those points z where ∥gz∥ changes sharply. How-
ever, a mathematical justification of such a linear sam-
ple method turns out to be nontrivial, since we in general
do not have an explicit characterization of the range of
the far field operator F . Such a theoretical gap, however,
does not prevent its popularity and success in practice.

B. The factorization method
The factorization method (FM) [20], mainly as

a mathematical improvement of the linear sampling
method, provides an explicit and theoretically well-
justified characterization for the support of a scattering
object. It is based on the similar idea that a point z ∈ R3

belongs to the scatter D if and only if the test function
Φ∞(x̂, z) belongs to the range of a ’factorized’ far-field
operator. In particular, the FM approximately solves the
following ’factorized’ far-field equation:

((F ∗F )1/4gz)(x̂) = rz(x̂) := Φ∞(x̂, z),

by computing the norm of a possible solution gz using
Pickard’s criterion for all sampling points z. Plotting of
the values of these norms ∥gz∥ yields a profile of the
scattering object, which allows us to identify the obstacle
shape. For this purpose, we define the following contin-
uous indicator function:

Wc(z) =
1

∥gz∥
.

Then the FM is based on the following equivalence:
z ∈ D ⇔ rz ∈ Range((F ∗F )1/4) ⇔ Wc(z)

−1 < ∞.

In practical computations, one has to work with a finite
dimensional approximation of the far-field operator F .
Let Fn be the discretized far-field operator of dimension
n that constructed by Nyström method [1], and its singu-
lar system is given by {σj , uj , vj}nj=1, where σj , uj , and
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vj is the j-th singular value, left and right singular vector
of Fn, respectively. In numerical implementations, we
compute the corresponding discrete indicator function:

Wc(z) ≈ W (z) :=

 n∑
j=1

|v⊺j rz|
σj

−1

.

The standard FM then determines the shape of the scat-
terer D as the location of those points z where W (z)
becomes significantly large, since the corresponding se-
ries defining ∥gz∥ fails to converge whenever z /∈ D. In
a standard implementation, one has to compute W (z)
over a possibly very fine uniformly spaced mesh that
adequately covers the search domain Ω. More specifi-
cally, the factorization method consists of four steps: (1)
Measure the far-field patterns u∞(x̂j , θi) for a sufficient
number of different directions x̂j and θi; (2) Select an
estimated large search domain Ω covering D and dis-
cretize it with a fine uniform mesh Th ; (3) Compute
the indicator functional W (z) for all sampling points
z ∈ Th; (4) Plot the profile of W (z) and determine D
with a heuristic cut-off value c > 0.

This straightforward sampling procedure, however,
can be computationally very expensive, especially for
those 3D applications involving large obstacles. For ex-
ample, given an N ×N ×N uniform mesh, the standard
implementation needs to compute W (z) at N3 differ-
ent sampling points, which hence has a time complex-
ity of O(N3) if we treat the computation of each ∥gz∥
as one operation. In fact, compute each ∥gz∥ requires a
matrix-vector product with O(n2) operations, if assum-
ing the singular-value decomposition (SVD) of Fn has
been computed (only once).

III. ADAPTIVE QUALITATIVE METHODS
In this section, we introduce an adaptive factoriza-

tion method based on adaptive quadrature methods. The
concept of adaptive discretization or adaptive mesh re-
finement has been well studied in scientific computing,
such as in numerical integration [21] and adaptive fi-
nite element methods [22]. Adaptive quadrature has a
long and very rich history with many slightly different
versions, where the commonly used error estimate tech-
niques are reviewed in [23].

The key idea behind an adaptive method is to adap-
tively allocate more grid (sampling) points to those re-
gions where it becomes necessarily. Compared with the
already established MLSM, our proposed adaptive fac-
torization method (AFM) [14], based on adaptive global
integration, has the advantage of better accuracy and ro-
bustness in the reconstruction of multiple obstacles and
easier generalization to 3D problems. Furthermore, our
AFM doesn’t require selection of any cut-off values as
in MLSM. The similar idea of adaptive allocation of
unknowns/grid points (e.g., multi-resolution inversion)

has also been widely discussed in microwave imaging
[24–26].

Inspired by the fact that the indicator function
Wc(z) shows very sharp changes across the boundary
of the obstacle domain, we propose to treat the indica-
tor function Wc : R3 → R+ as a function to be in-
tegrated over the global search domain Ω that contains
the obstacle(s). To adaptively concentrate more sampling
points near the unknown boundary ∂D of the obstacle D,
we propose to utilize the efficient 3D adaptive Gaussian
quadrature [27] to compute the 3D integration:

I(Wc) =

∫∫∫
Ω

Wc(z) dV,

where Ω ⊂ R3 is the estimated cube. The above in-
tegration is clearly well defined from the definition and
boundedness of Wc(z). It is important to mention here,
that in our AFM, we are only interested in obtaining the
adaptively generated quadrature points and use them as
effective sampling points towards the reconstruction of
the profile of the scatterer.

For simplicity, assume Ω = [−a, a]3 . The stan-
dard m-point Gaussian(-Legendre) quadrature rule for
approximating I(Wc) reads:

I(Wc) ≈ Gm(W ) :=

m∑
i=1

m∑
j=1

m∑
l=1

wiwjwlW (xi, yj , zl),

where {wi, wj , wl} are the Gaussian quadrature weights
and {xi, yj , zl} are the Gaussian quadrature nodes. The
above Gaussian quadrature rule is exact for multivariate
polynomials of degree 2m− 1 or less and is an accurate
approximation when Wc can be well-approximated by
multivariate polynomials.

Algorithm 1 AFM based on 3D Gaussian quadrature:
Initialization: Ω = [−a, a]3, tol
Output: A set of computed sampling points A

1: procedure Q=AFM(Ω)
2: I1 = G5(W ) over Ω
3: I2 = G8(W ) over Ω
4: Add new quadrature (sampling) points to A
5: if |I1 − I2| < tol then ▷ Exit Recursion
6: Q = I2
7: else ▷ Enter Recursion
8: Divide Ω into eight subcubes {Ωj}8j=1

9: For each Ωj , compute Qj =AFM(Ωj)
10: Add eight sub-integrals: Q =

∑8
j=1 Qj

11: end if
12: end procedure

The 3D adaptive Gaussian quadrature is based on
the principle of divide and conquer, where each cube is
recursively divided into eight (2× 2× 2) subcubes until
the difference between two different quadrature approxi-
mations (e.g., G5 and G8, other combinations can also
be used) for the integral over the same cube becomes
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less than a user-supplied tolerance tol. Following [28, p.
358], our AFM algorithm is summarized in Algorithm
1, where we usually choose tol to be between 10−3 and
10−5 based on the domain size and scatterer shape.

With the set A of sampling points and indicator val-
ues computed by Algorithm 1, we can obtain a full-
mesh profile via standard scattered data interpolation
(i.e., the scatteredInterpolant function in MAT-
LAB). The total computational cost (or maximum level
of recursion) of the algorithm depends on tol and the
shape of the indicator function W [14]. Due to the dra-
matic changes of W around the obstacle boundary ∂D,
one would expect that more quadrature points are auto-
matically clustered near the boundary, which therefore
achieves the purpose of qualitatively reconstructing the
obstacle boundary efficiently with less sampling points.
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Fig. 1. Top: the surface (left) and contour (right) of a
2D indicator function f(x, y) = (1/4 + (x2 + y2))/2 +√
(1/4− (x2 + y2))2/2. Bottom: sampling points used

by the adaptive Simpson quadrature (left) and the adap-
tive Gaussian quadrature (right), respectively.

For the sake of easier visualization, we first illus-
trate in Fig. 1 the distribution of the adaptively generated
quadrature (sampling) points with a bowl-shaped 2D test
indicator function, where both the 2D adaptive Simpson
quadrature and Gaussian quadrature are tested. As ex-
pected, the adaptive Gaussian quadrature is more accu-
rate (compare error) than adaptive Simpson quadrature.
It is clear that more quadrature points are clustered along
the inner circle that indicating sharp changes in func-
tion values. Similarly, we also plot in Fig. 2 the isosur-
face (with isovalue 0.5) and generated quadrature (sam-
pling) points with a 3D test indicator function, where the
generated Gaussian quadrature points closely track the
function shape. Our AFM implementation is based on
the well-tested adaptive Gaussian quadrature MATLAB
codes developed in [27], which was shown to be very
effective in treating functions with sharp gradients and

cusps. Our main efforts lie in embedding the sampling
procedure into this code to obtain an efficient implemen-
tation of AFM, without reinventing the wheels.

Fig. 2. The isosurface plot (left) of a 3D test indicator
function f(x, y, z) = (1/4 + (x2 + y2/4 + z2))/2 +√

(1/4− (x2 + y2/4 + z2))2/2. The generated sam-
pling points by the adaptive Gaussian quadrature (right).

IV. NUMERICAL RESULTS
In this section, we provide some numerical ex-

amples to demonstrate the effectiveness of our pro-
posed AFM. All simulations are performed using MAT-
LAB R2017b on a Dell Desktop PC with i7-7700K
CPU@4.2GHz and 32GB RAM. The CPU time (in sec-
onds) is estimated by timing functions tic/toc. The used
far-field data are provided by the authors of the cited ref-
erences, where they take n equidistantly distributed in-
cident and observation directions on the unit sphere. To
simulate noisy data, the discrete far-field matrix Fn ∈
Cn×n is perturbed into F δ

n = Fn + ϵ(E1 + iE2). ∗ Fn,
where E1 and E2 are two random matrices with entries
uniformly distributed in [−1, 1]. We choose ϵ = 10%
and denote δ := ∥Fn − F δ

n∥2. For the standard FM, the
Tikhonov regularization parameter is computed point-
wisely using the fzero function at each sampling point
via Morozonv’s discrepancy principle [17], which costs
about half of the total computation time. Inspired by the
idea of one-shot regularization [29], in our AFM, we use
a global regularization parameter that is estimated from
the average of the 125 regularization parameters com-
puted over a 5 × 5 × 5 coarse mesh. The used isovalue
γ for plotting isosurfaces is determined by the following
global mean and standard deviation heuristic [30]:

γ = meanz∈Th
(W (z)) + 2 stdz∈Th

(W (z)).

A. Inverse acoustic scattering examples [31]
In Fig. 3, we plotted the reconstructed isosurfaces

of four different shapes (acorn, cushion, and ellipsoid).
Here we used a 258×258 far-field data with a 60×60×60
sampling mesh points within a cube of size [−1.5, 1.5]3,
where our AFM (with tol = 10−3) is about 50–100 times
faster than the standard FM (this can also be inferred
by comparing the number of total sampling points). As
we can observe, the reconstructed iso-surfaces by our
AFM are hardly distinguishable from the standard FM,
although they do have slightly rougher surfaces due to
the used scattered interpolation (not counted into CPU
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time) based on much less number of adaptively generated
quadrature points. Notice the disconnected peanut shape
is due to the over-estimated isovalue from large varia-
tion in the indicator function. The reconstruction quality
of our AFM can be further improved if more sampling
points are used by choosing a smaller tol.

Fig. 3. Isosurfaces by the FM (left) and our AFM (right).
From top to bottom: acorn, cushion, and ellipsoid shape.

B. Inverse electromagnetic scattering examples [5]
Due to limited space, we refer readers to [8] for the

formulation of inverse electromagnetic scattering model
and the corresponding linear sampling method. The ap-
plication of our AFM to such problems is straightfor-
ward, but its overall computational cost becomes signif-
icantly higher due to expensive vector cross product op-
erations. In Fig. 4 and Fig. 5, we plot the reconstructed
isosurfaces of a teapot (with k = 28, n = 252 and a
50×50×50 mesh within a cube of size [−0.5, 0.5]3) and
an aircraft (with k = 4π, n = 252 and a 80× 120× 160
mesh within a box of size [−1, 1] × [−2, 2] × [0, 4]) by
the standard FM and our AFM (with tol = 10−4), re-
spectively. Both scatterers have some very small detail
feature that take more quadrature points to achieve a sat-
isfactory resolution. In spite of some noticeable differ-
ence in detail feature, our AFM captures the major char-
acteristics qualitatively and is significantly faster than the
standard FM. The difference in size is due to slightly
different regularization parameters and isovalues. The
huge saving in computation time , or reduction in the
total number of sampling points, makes our AFM very
attractive to practical 3D applications.

Fig. 4. Teapot by the FM (left) and our AFM (right).

Fig. 5. Aircraft by the FM (left) and our AFM (right).

V. CONCLUSION
This paper presents an adaptive Gaussian quadrature

based factorization method for solving 3D inverse obsta-
cle scattering problems. It extends our previously de-
veloped 2D adaptive factorization method that was built
upon 2D adaptive Simpson quadrature rule. With several
benchmark inverse acoustic and electromagnetic scatter-
ing examples, the reported numerical results suggest our
AFM achieves a dramatic improvement in the computa-
tional efficiency over the standard FM, while keeping a
very satisfactory reconstruction quality.

One possible future work is to improve the compu-
tational efficiency of our AFM by using non-rectangular
Gaussian quadrature rules to produce more irregular
sampling points along a scatter of arbitrary shape.
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