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Abstract ─ A broad-band Augmented-Müller (A-

Müller) surface integral equation method for scattering 

from material objects is presented. The formulation 

incorporates surface electric and magnetic charges into 

the conventional Müller formulation with added 

constraints on the normal magnetic and electric fields. A 

new technique to extract the static fields is introduced 

which improves accuracy of computing scattered  

near fields at very low frequencies. The (A-Müller) 

formulation is discretized using the locally corrected 

Nyström (LCN) method. Numerical results show that the 

method is high-order accurate and stable over a broad 

frequency range from arbitrarily low to high frequencies 

for simply connected, multiply connected, highly lossy, 

high contrast and complex material geometries. The 

proposed formulation does not incorporate line charges, 

charge continuity constraints, or any frequency scaling 

of the degrees of freedom 

 

Index Terms ─ Locally corrected Nyström method, 

Müller formulation, surface integral equations. 
 

I. INTRODUCTION 
An obstacle to developing accurate and stable 

surface integral equation formulations for scattering  

by perfect conducting or penetrable objects is the low 

frequency breakdown of the electric field integral 

equation ℒ operator. Different strategies have been 

developed to address the instability including Helmholtz 

decomposition-based and Calderón-based stabilization 

methods [1, 2]. These methods have been mainly 

designed for use with only perfect electric conductors 

and may have drawbacks such as the use of global loops 

and increased complexity of implementation. Some 

methods such as the Müller formulation eliminate the 

low-frequency break down by transforming the hyper-

singular kernel to one with a lower singularity [3]. While  

the Müller formulation is well conditioned, it provides 

inaccurate solutions at low frequencies because of 

catastrophic cancellation in reconstructing the fields.  

Other techniques addressing the low frequency 

instability of the ℒ operator are called augmented 

formulations and include surface charges as additional 

unknowns [4-6]. In this paper, an augmented formulation 

based on the conventional Müller formulation for 

scattering by penetrable objects is presented, wherein 

constraints on tangential and normal components of the 

fields in both the background media and the scattering 

media are expressed in terms of surface currents and 

charges and are combined in Müller form. The resulting 

A-Müller formulation is accurate, well-conditioned, and 

stable and does not include line charges, charge continuity 

constraints, or any frequency-dependent scaling of the 

unknowns 

 

II. A-MÜLLER FORMULATION 
An electromagnetic field radiated by sources in an 

unbounded region 
1V  with material properties 1 1( , )   is 

incident on a material object with homogeneous material 

properties 
2 2( , )   occupying a finite volume 

2V  bound 

by the surface 
1,2S . Equivalent magnetic 1,2( )M  and 

electric 1,2( )J  currents are introduced on 1,2S  [7]: 

 
1,2 1,2

1,2 1 1,2 1
ˆ ˆ,

S S
M E n J n H    , (1) 

where 1E  and 1H  are the total electric and magnetic 

fields on 1,2S  just inside 1V , and n̂  is the unit normal 

directed into 1V . The magnetic current continuity equation 

states: 

  
1,21,2 mM r j   , (2) 

where 
1,2m  is the magnetic surface charge density on  
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1,2S  and which satisfies the boundary condition: 

 
1,2

1,2
1 1

ˆ
m

S
n H   . (3) 

The electric current continuity equation is defined by 

applying the duality theorem on (2) and (3) leading to the 

surface electric charge density 
1,2

.e  Applying surface 

electric and magnetic charge continuity constraints leads 

to the augmented Müller formulation [3, 6]:  

 

       

   

        

        

      

1 2

1 2

1 2

1,2

1 2

1,2

1,

0 1 0 2

1,2

1 2 1,2

0 1,2 1 1 2 2

0 1 2

ˆ
2

, ,

, ,

, ,

inc inc
r r

r r

r r

S

r r

S

m

T r H r T r H r

T r J r n

T r G r r G r r J r ds

j T r M r G r r G r r ds

T r G r r G r r

   

 

 

    

 

   


 

        

     

    





 
2

!,2

,

S

r ds 

 (4) 

where 
inc

iH  is the incident magnetic field inside iV , and 

 T r  is a test vector tangential to 
1,2S .  ,iG r r  is the 

Green’s function in iV , and r  is an observation point  

on 
1,2S . Also,  

1,2 1,2
1m o m   ,  

1,2 1,2
1e o e   , and 

1,2 0 1,2J J  are the scaled charge and currents. ,o  ,o  

and o  are the free space permeability, permittivity, and 

characteristic impedance, respectively. Equation (4) is 

referred to here as the A-Müller Tangential Magnetic 

Field Integral Equation (TMFIE). Using (2) and (3), and 

combining the normal constraints on the fields in the two 

regions in a Müller form, the A-Müller Normal MFIE 

(NMFIE) can be formed: 

     

        

        

        

1 2 1,2

1 2

!,2

1 2

!,2

1,2

!,2

0 1 0 2 0

1 2 1,2

0 1,2 1 1 2 2

0 1 2

ˆ ˆ

ˆ , ,

ˆ , ,

ˆ , , .

inc inc
r r m

r r

S

r r

S

m

S

n H r n H r r

n r G r r G r r J r ds

j n r M r G r r G r r ds

n r G r r G r r r ds

     

 

    

 

   

        

     

      







 (5) 

Applying duality leads to the A-Müller TEFIE: 

     

        

        

        

1 2

1 2

1 2

1,2

1 2

1,2

1,2

!,2

1 2 1,2

1 2 1,2

0 1,2 1 1 2 2

1 2

ˆ
2

, ,

, ,

, ,

r rinc inc
r r

r r

S

r r

S

e

S

T r E T r E T r n M

T r G r r G r r M r ds

j T r J r G r r G r r ds

T r G r r G r r r ds

 
 

 

     




     

        

     

      





 ,

 (6) 

and the A-Müller NEFIE: 

     

        

        

        

1 2 1,2

1 2

!,2

1 2

!,2

1,2

!,2

1 2

1 2 1,2

0 1,2 1 1 2 2

1 2

ˆ ˆ

ˆ , ,

ˆ , ,

ˆ , , .

inc inc
r r e

r r

S

r r

S

e

S

n E r n E r r

n r G r r G r r M r ds

j n r J r G r r G r r ds

n r G r r G r r r ds

  

 

     



   

        

     

      







 (7) 

Equations (4)-(7) represent A-Müller formulation. 

The equations are discretized using the Locally Corrected 

Nyström (LCN) method [3, 8-12]. The TMFIE and 

TEFIE in (4) and (6) are discretized using a divergence–

conforming, mixed-order Nyström discretization [10, 

13]. The NMFIE and NEFIE in (5) and (7) are discretized 

using a scalar Nyström discretization. The tangential test 

vectors in (4) and (6) are unitary vectors sampled at  

the mixed-order quadrature points [10]. The normal test 

vectors in (5) and (7) are sampled at scalar quadrature 

points.   

Near interactions must be computed via local 

corrections [3,8-10,12]. A mixed-order Legendre poly-

nomial basis with order ( 1)p p   is used to represent 

the current densities [10,13], and p-th order polynomial 

complete Legendre bases are used to represent the 

equivalent charge densities [10]. For self-terms, the last 

integral on the right-hand-side of (4) and (6) and the first 

integral on the right-hand-side of (5) and (7) require  

a singularity extraction. This can be accomplished 

following the procedures outlined in [8-10] 

 

III. EXTRACTING THE STATIC FIELD 
As a post–processing step, it is often necessary to 

compute near or far scattered fields.  For example, the 

magnetic field is calculated as  

 

     

   

   

1,2

1,2

1,2

!,2

1 1 1,2

1 1,2 1

1
1

,

,

1
, .

scat

S

S

m

S

H r G r r J r ds

j M r G r r ds

G r r r ds






    

  

   







 (8) 

If the material object is non-magnetic, 1
scatH  will decay 

in amplitude linearly as ( )O  . It can be shown that the 

integrals involving 1,2J  and 
1,2m  are large valued, but 

their difference is very small with amplitude decaying as 

( )O  . This results in significant numerical errors due to 

finite precision. 

One way to mitigate this is to extract the static 

solution from the dynamic solution. To this end, the A-

Müller formulation in (4)-(7) can be reduced to the static 

solution setting 0  . For example, the static form of 

the TMFIE from (4) is expressed as:  
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   

   

        

        

1 0 2 0

1 2

0

1 0 2 0 0

1,2

0 0 1,20

!,2

0 1 0 2

1,2

1 2 1,2

0 1 2

ˆ
2

, ,

, , ,

inc inc
r r

r r

r r

S

m

S

T r H T r H

T r J r n

T r G r r G r r J r ds

T r G r r G r r r ds

   

 

 

 

   


 

        

      





 (9) 

where 
0

iG , 1,2i  , is the static Green function in the i-th 

medium: 

 
0 0

1 2 0

1

4
G G G

r r
  


, (10) 

0

inc
iH  is the static excitation magnetic field in the i-th 

medium, and 
0

1,2J  and 
1,20

m  are the static electric current 

and magnetic charge densities, respectively. The subscript 

0 indicates the static solution. Similarly, the static NMFIE 

from (5) is expressed as:  

 

        

        

1 0 2 0 1,20

1 0 2 0 0

!,2

0 0 1,20

!,2

0 1 0 2 0

1 2 1,2

0 1 2

ˆ ˆ

ˆ , ,

ˆ , , .

inc inc
r r m

r r

S

m

S

n H n H r

n r G r r G r r J r ds

n r G r r G r r r ds

     

 

 

   

        

      





 (11) 

For non-magnetic materials it is assumed that 

1 2 1,r r    and, (9) and (11) reduce to:   

        
0 0 0

0 1 0 2 1,2 ˆinc incT r H T r H T r J r n       , (12) 

and 

  
0 0 1,20

1 2ˆ ˆinc inc
mn H n H r    . (13) 

Thus, in the static limit, the tangential and normal 

magnetic fields are proportional to a superposition of the 

interior and exterior source fields on the boundary. 

A post-processing method is proposed to improve 

the computation of the scattered magnetic field using a 

static extraction to (8) to compute the scattered magnetic 

field: 

 

        

      

   

   

   

1,2

1,2

!,2

1,2

1,2

1,2

!,2

1 1 0 1,2

1 0
1

1 1,2 1

0 1,2

0
1

, ,

1
, ,

,

,

1
, .

scat

S

m

S

S

S

m

S

H r G r r G r r J r ds

G r r G r r r ds

j M r G r r ds

G r r J r ds

G r r r ds









      

     

  

    

   











 (14) 

It is also observed for non-magnetic materials that the 

static current and charge densities radiate zero fields. 

That is:  

 

   

   

0

1,2

1,20

!,2

0 1,2

0
1

,

1
, 0.

S

m

S

G r r J r ds

G r r r ds


   

    




 (15) 

Subtracting (15) from (14) leads to the expression: 

 

        

      

   

      

      

1,2

1,2

!,2

1,2

0

1,2

1,2 1,20

!,2

1 1 0 1,2

1 0
1

1 1,2 1

0 1,2 1,2

0
1

, ,

1
, ,

,

,

1
,

scat

S

m

S

S

S

m m

S

H r G r r G r r J r ds

G r r G r r r ds

j M r G r r ds

G r r J r J r ds

G r r r r ds






 


      

     

  

      

     









 .

 (16) 

This extracted formulation provides a stable 

numerical form for accurately computing the scattered 

magnetic field at low frequencies. Duality can be applied 

to derive a stable numerical method for computing low-

frequency electric fields scattered from a magnetic 

material. 

 

IV. NUMERICAL RESULTS 
The proposed A-Müller formulation is evaluated by 

simulating scattering from a number of objects having 

different geometries and material properties. In all cases, 

the incident field is a plane wave traveling in the –z 

direction with its electric field polarized along the x-

direction 
 

A. PEC sphere 

Initially, the electromagnetic plane-wave scattering 

from a one-meter radius dielectric sphere is studied. 

Figures 1 (a) and (b) demonstrate the root mean square 

(RMS) error in the scattered electric and magnetic fields 

calculated by the LCN discretized A-Müller formulation 

at 1 Hz and 50 MHz, respectively, for a surface mesh  

of the sphere consisting of 96 sixth-order quadrilateral 

cells. The errors are plotted versus LCN basis order, p, 

for different values of the relative permittivity r  of the 

dielectric material. The RMS errors are computed as: 

 

   

 

2
AMuller Mie

1

2
Mie

1

RMS Error( ) ,

N

i i

i
N

i

i

x x

x

x

 















 (17) 
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where  AMuller
ix   and  Mie

ix   refer to the scattered 

vector electric or magnetic fields computed by A-Müller 

and the analytical Mie series solution at angles 

0 ,1 , ,180i   on a semi-circle with radius 1.5 m in 

the 0   plane. The figures demonstrate high-order 

convergence of the electric and magnetic fields at 1 Hz 

and 50 MHz for low to high contrast dielectric spheres. 

It is noted that the static extraction procedure has been 

applied to accurately calculate magnetic fields at 1 Hz.    

Next, we investigate the performance of the A-

Müller in comparison to the conventional Müller for 

scattering from a one-meter radius dielectric sphere over 

a wide frequency range from 1.0e-8 Hz to 1 GHz. The 

relative permittivity of the dielectric sphere is 2.0r  . 

The surface of the sphere is discretized with 2904 fourth-

order quadrilateral cells.  

 

 

 
 

Fig. 1. RMS error in the near magnetic (H) and electric 

(E) fields computed via the A-Müller method, (a) at 1 Hz 

and (b) at 50 MHz on a semicircle with radius 1.5 m 

located at 0  . 

 

Figures 2 (a) and (b) show the RMS error in the 

electric and magnetic fields scattered by the dielectric 

sphere. The fields area computed on a semicircle with 

radius 1.5 m located at 0   using both the A-Müller 

formulation with and without the static extraction and the 

Müller formulation for LCN basis orders 0 and p=1p  . 

The data exhibits high errors in the Müller formulation 

at low frequencies due to catastrophic cancellation in 

reconstructing the electric and magnetic fields. The A-

Müller with static extraction has excellent accuracy over 

a wide frequency range starting from arbitrarily low 

frequencies. The errors from Müller and A-Müller start 

to grow at a threshold frequency around 200 MHz where 

the number of samples per wavelength is 10. 
 

 

 
 

Fig. 2. The RMS error in vector, (a) electric field and  

(b) magnetic field scattered from a dielectric sphere 

computed by A-Müller without and with the static 

extraction (St Extract) and Müller formulations on a 

semicircle with radius 1.5 m located at 0  . 
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Figure 3 plots the condition number of A-Müller and 

Müller system matrices versus frequency for scattering 

from the dielectric sphere. The system matrices were 

pre-conditioned with a left/right iterative diagonal matrix 

scaling algorithm [14] to eliminate row magnitude 

disparity. The A-Müller condition number starts 

oscillating after 400 MHz.  

Unlike the Müller and PMCHWT, the VIE provides 

accurate solutions for exterior scattered electric and 

magnetic fields at low frequencies. However, one 

limitation of the VIE is that the condition number of  

the system matrix at low frequencies grows linearly  

with increasing material contrast. Figure 4 displays the 

condition number of the A-Müller and VIE system 

matrices versus relative permittivity, r , for scattering 

from a one-meter radius sphere at 1 Hz. The surface of 

the sphere is meshed with 96 sixth order quadrilateral 

cells. The LCN basis order is 0.p   The figure shows 

that the condition number of the VIE is increasing 

linearly with material contrast; however, the condition 

number of the A-Müller formulation is nearly constant 

as the relative permittivity increases. 

 

 
 

Fig. 3. Condition number of the iteratively scaled A-

Müller and Müller system matrices for scattering from 

the dielectric sphere versus frequency. 

 

B. Dielectric tori  

To evaluate the performance of the A-Müller 

formulation for multiply connected geometries, a nested 

torus structure consisting of two dielectric tori was 

simulated. The two torus structure has a z-axis of 

revolution. The larger torus has a major radius of 1 m 

and a minor radius of 0.5 m, respectively. The smaller 

torus has a major radius of 1 mm and a minor radius of 

0.5 mm, respectively. The larger and smaller tori 

surfaces are meshed with quadrilateral cells having 

average edge lengths, respectively, of 0.2 m and of 0.2 

mm for a total of 384 quadratic quadrilateral cells. The 

dielectric tori both have a relative permittivity 8.0r  .  

The LCN basis order is 1p  . 

Figure 5 demonstrates the radar cross section (RCS) 

of the two torus structure at 300 MHz computed using 

A-Müller, Müller, and PMCHWT formulations. The 

three solutions show excellent agreement. Figures 6 (a) 

and (b) display the magnitude of the scattered electric 

and magnetic fields at 1 Hz calculated using A-Müller, 

Müller, and PMCHWT formulations and using a volume 

integral equations (VIE) for scattering from the two torus 

structure. The volume mesh used for the VIE consists of 

576 hexahedral cells with an average edge length the 

same as the applied surface mesh. Very good agreement 

is observed between the A-Müller and the VIE results. 

Moreover, the data confirm the low frequency break-

down of the PMCHWT and Müller formulations in 

reconstructing of the fields at low frequencies. 
 

 
 

Fig. 4. Condition number of the iteratively scaled A-

Müller and VIE system matrices versus relative 

permittivity, for scattering from a one-meter radius 

dielectric sphere at 1Hz.  
 

 
 

Fig. 5. RCS at 300 MHz for plane wave scattering from 

the two torus structure. 

HENDIJANI, GEDNEY, YOUNG, ADAMS: NYSTRÖM DISCRETIZATION OF AUGMENTED-MÜLLER SIE 1064



 

 
 

Fig. 6. Scattered (a) electric field and (b) magnetic field 

at 1 Hz for the two torus structure on a semi-circle with 

radius 1.5 m at 0  . 
 

Figures 7 (a) and (b) illustrate the singular values  

of the A-Müller, Müller, PMCHWT, and VIE system 

matrices for the two torus configuration at 300 MHz  

and 1 Hz, respectively. The system matrices are 

preconditioned using an iterative scaling algorithm [14]. 

The figures indicate that A-Müller provides a well-

conditioned system matrix for multiply connected 

geometries at both low and high frequencies. 

 

C. Spherical shell of steel 

The A-Müller formulation is also compared to a 

quasi-magnetostatic volume integral equation (VIE) [15] 

method by simulating the scattering from conducting 

materials at low frequencies. A spherical shell of steel 

characterized by electric conductivity 1.37 6e    S/m 

and relative permeability 68.0r  . The shell has an inner  

radius of 1 cm and outer radius of 3 cm. The mesh cells 

have an average edge length of 0.35 cm leading to 1160 

quadrilateral cells for the A-Müller formulation and 716 

hexahedral cells for the VIE.  

 

 

 
 

Fig. 7. Singular values of the A-Müller, Müller, 

PMCHWT, and VIE system matrices for the two torus 

case at: (a) 300 MHz and at (b) 1Hz. 

 

Figure 8 displays the magnitude of real and imaginary 

parts of the azimuthal component of the magnetic field  

( H
) scattered from the steel shell computed using the 

A-Müller formulation and a quasi-magnetostatic VIE at 

10 Hz on a semicircle with radius 3.5 cm at 0   plane.  

The radial and polar (r and  ) components of the 

magnetic field are not shown since their magnitudes  

are negligible. Good agreement is observed between the 

results from the A-Müller formulation and from the 

quasi-magnetostatic VIE. 
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Fig. 8. Magnitude of real and imaginary parts of the 

azimuthal component of magnetic field scattered from 

the steel shell computed on a semicircle with radius 3.5 

cm at 0  plane. 

 

VI. CONCLUSION 
In this paper, the LCN discretization of an 

Augmented-Müller surface integral equation for 

scattering from material objects was presented. The 

formulation incorporated surface electric and magnetic 

charges into the conventional Müller formulation with 

constraints on the normal magnetic and electric fields  

on material boundaries. To improve the accuracy of the 

computation of low-frequency magnetic fields scattered 

by lossy dielectric structures, a novel static extraction 

method was introduced. The extraction is applied strictly 

as a post-processing operation and does not alter the 

system matrix in any way. Numerical results provided 

validate that the method is high-order accurate and stable 

over a broad frequency range from arbitrarily low to high 

frequencies for simply and multiply connected, lossy, 

high contrast materials.   
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