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Abstract ─ A modified differential evolution (MDE) 

algorithm based on a novel mutation strategy and 

adaptive adjustment strategy of parameter crossover rate 

(CR) is proposed to improve the population diversity and 

to avoid frapping in local optima. Also the simplified 

quadratic interpolation is employed to accelerate the 

convergence rate. Benchmark functions have been 

provided to verify the MDE algorithm. Compared with 

other improved evolutionary algorithms, experiment 

results reveal that the MDE has a promising performance 

in the convergence rate and the exploration ability. 

Finally, the proposed algorithm is proved to realize 

accelerating the optimization of time-modulated arrays 

(TMA). 

Index Terms ─ Crossover rate, differential evolution 

(DE) algorithm, mutation strategy, time-modulated array 

(TMA). 

I. INTRODUCTION
The differential evolution algorithm (DE) is an 

evolution algorithm based on the theory of swarm 

intelligence. It intelligently directs and optimizes 

searching via cooperation and competition between 

individuals in the population [1-2]. Compared with 

other algorithms, it lowers the complexity of evolution 

operation by adopting differential-based simple mutation 

operation and one-to-one competitive survival strategy 

with real number encoding and fewer controlling 

parameters. However, DE algorithm also has significant 

drawbacks in practical situations, for example, in solving 

complicated optimization problems, it would meet the 

problems such as being trapped in local optima easily, 

slow convergence in later period, searching blindness 

and determining control parameter with difficulty. To 

deal with the aforementioned problem, many scholars 

have been delving into three control parameters 

(population size NP, crossover rate CR, differential scale 

factor F) and mutation strategy of DE algorithm [3-6], 

and propose some empirical methods of selecting control 

parameters and mutation strategy. The three control 

parameters and evolution strategy of early DE algorithm 

are fixed. However, fixed mode of parameter setting 

would degrade the algorithm to reach the optimal 

convergence performance, so the parameter adaptive and 

evolution strategy adaptive method of modulation are 

proposed successively. Liu and Lampinen propose a 

fuzzy logic adaptive differential evolution (FADE) 

algorithm, which uses fuzzy logic controller to modulate 

mutation and crossed factor by inputting individuals of 

consecutive generations of population and corresponding 

functional value [7]. Two new probability factors τ1 and 

τ2 are introduced by Brest et al. to control F and CR of 

each individual, which are automatically modulated and 

updated during evolution [8]. The evolution strategy of 

offspring individual and setting of corresponding control 

parameters of the self-adaptive differential evolution, 

which proposed by literature [9], are all produced 

adaptively by learning excellent individuals in all 

generations and their parameter value. 

The time-modulated array (TMA) was proposed 

firstly by Shanks in 1959 [10-20]. Each antenna element 

is connected to a RF switch in the TMA. The array 

introduces the new variable, time, by controlling the on 

off cycle of RF switch. The time modulation would make 

the dynamic range of antenna array feeds much smaller 

than that of common array and also make control more 

precise, convenient and rapid, hence low side-lobe array 

can be easily realized [10-11]. Yet due to the introduction 

of time variable, part energy of TMA would be radiated 

from sideband in the form of harmonic. Usually the 

sideband level (SBL) is regarded as useless and needing 

to be repressed to reduce energy loss. Therefore, the 

problem of designing time-modulated array itself is 
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a complicated problem of array optimization and 

integration. Presently, the optimization and integration 

of TMA can hardly obtain satisfactory solution if 

traditional evolution algorithm is used.  

Based on the above analysis, this paper proposes a 

modified differential evolution algorithm to rapidly and 

efficiently optimize TMA. According to the diversity  

of each generation of population, it adopts different 

adaptive strategies for CR and mutation strategy of 

individuals of the next generation, which improves the 

later population diversity of the algorithm and avoid the 

algorithm being trapped in local extremum. Besides, the 

simplified quadratic interpolation method is adopted to 

expedite the convergence of algorithm. This algorithm 

can perfectly suppress SBL of TMA by optimizing feed 

amplitude of array element and switching period of 

TMA. In comparison with optimization result of other 

algorithms, it proves that this algorithm can optimize and 

integrate the TMA more rapidly, stably and perfectly. 
 

II. MODIFIED DIFFERENTIAL 

EVOLUTION ALGORITHM 
In DE algorithm, the crossover rate CR determines 

the proportion of the individuals produced by differential 

mutation and original individuals in test vector, which  

is key to algorithm convergence rate and diversity of 

population. The span of CR is generally [0,1]. The larger 

the CR value is, the larger the proportion of individuals 

produced by differential mutation in test vector is, and 

the wider the searching scope of individuals produced is. 

Contrarily, the smaller the CR value is, the larger the 

proportion of parent individuals in test vector is, and  

the quicker the velocity of local search is. In addition, 

assorted mutation strategies have been proposed since 

DE algorithm appeared. However, currently there is  

no mutation strategy that can obtain optimum solution  

in solving all optimization problems. The population 

diversity of some mutation strategies is well kept while 

rate of convergence is slow, such as DE/rand/1. Some 

mutation strategies have quick local convergence rate yet 

with limited search scope, such as DE/target-to-best/1.  

In the standard DE algorithm, the early populations 

of algorithm are generated randomly, and populations 

have high diversity. The mutation strategy with smaller 

CR value and wide search domain does not influence the 

diversity of populations and can expedite convergence of 

algorithm. In later period of algorithm, the individual 

differences become smaller and diversity of populations 

becomes lower, making the algorithm easily trapped in 

local extreme value. While adopting larger CR value  

can increase the proportion of mutated individuals, thus 

favorable for algorithm to escape from local extreme 

value. Besides, the mutation strategy with rapid rate of 

convergence can improve overall convergence rate of the 

algorithm.  

Based on the above analysis on CR and mutation  

strategy, this paper proposes a modified algorithm in 

which the CR and mutation strategy adjust adaptively  

on the basis of population diversity. Wherein, the 

population diversity is judged by calculating population 

variance v. After substantive calculation and experiments, 

the threshold for judgment of population diversity is set 

as: v0 = 1E-2. The CR in the algorithm is no longer a 

fixed value, and a CRi, G is set for each individual in  

the population, where G represents number of evolution 

generation, i represents individual number. The concrete 

adaptation steps are as follows: 

Firstly, the adaptation steps of CR are provided: 

when v>v0, calculate,  

 
, (1) 

and generate: 

 . (2) 

Where, CR1, CR2, …, CRs represent the crossover 

rates corresponding to s test vectors that successfully 

enter the next generation of population, μCR is the mean 

of these crossover rates, with its initial value being 

generally set as 0.5. The CR1,G, CR2,G,…, CRNP,G in  

each generation are all generated randomly via normal 

distribution function with expectation of μCR and variance 

of 0.1. Such modified algorithm can inherit the CR of 

excellent individuals and expedite the convergence of 

algorithm. 

When v<v0, which indicates the population diversity 

is low, then CRi,G values are all set as 0.9 to raise  

the proportion of mutated individuals in test vector to 

expand the search scope of algorithm, and avoid the 

algorithm being trapped in local solution. 

Secondly the adaptation steps of mutation strategy 

are provided: 

 
. (3) 

Where, m0∈ (0,1) is the judgment factor. The 

mutation strategy judges by generating a uniform 

average number in (0,1). If rand< m0, mutation strategy 

of DE/rand/1 is selected; contrarily, the mutation 

strategy of DE/target-to-best/1 is selected. In early 

period of algorithm, generally v>v0. Preceding analysis 

shows that DE/rand/1 strategy is a good choice, so 

m0∈ (0.5,1), with m0 recommended to be 0.8. Contrarily, 

when v<v0, the algorithm generally has entered the  

end stage, adopting strategy of E/target-to-best/1 can 

accelerate the local convergence of algorithm, so m0 is 

set as 1- m0. The adjustment of m0 can enable the DE 

algorithm to select more proper strategy in different 

periods to expedite convergence rate of algorithm and 

guarantee precision of the solution.  

Lastly, in an effort to further effectively utilize 

population information and improve operational 

performance of algorithm, the modified DE algorithm 

adds simplified 3-point quadratic interpolation (SQI) 

operator after the step of selection, with mathematical  
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expression as follows: 

  (4) 

The flowchart of the MDE is shown in Fig. 1. To 

verify the performance of the modified adaptive DE 

algorithm proposed in the last section, the paper adopts 

10 standard testing functions to test the standard DE 

algorithm, hybrid differential evolution algorithm 

(DESQI), jDE algorithm and modified algorithm. The 10 

testing functions are as shown in Table 1. 

It is observed from Table 2 that the modified 

adaptive DE algorithm mentioned in this chapter has 

superior performance. Except that it is slightly inferior to 

jDE algorithm in optimizing function F5 and function 

F8, the modified adaptive DE algorithm outperforms 

standard DE algorithm, DESQI algorithm and jDE 

algorithm in convergence rate and solving precision. 

Start

Initialization

Evaluate objective function values

i=1

Evaluate v

v<v0
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Fig. 1. The flowchart of the MDE. 
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Table 1: Standard testing functions 

SN Testing Function 
Dimension 

Di(D) 
Variable 

Minimum 

Value 

F1 𝑓1(𝑥) = ∑ 𝑥𝑖
2

𝐷

𝑖=1
 30 [−100,100]𝐷 0 

F2 𝑓2(𝑥) =∑ |𝑥𝑖| +∏ |𝑥𝑖|
𝐷

𝑖=1

𝐷

𝑖=1
 30 [−10,10]𝐷 0 

F3 𝑓3(𝑥) = ∑ (∑ 𝑥𝑗
𝑖

𝑗=1
)

2𝐷

𝑖=1
 30 [−100,100]𝐷 0 

F4 𝑓4(𝑥) = 𝑚𝑎𝑥𝑖{|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝐷} 30 [−100,100]𝐷 0 

F5 𝑓5(𝑥) = ∑ [100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)2]

𝐷−1

𝑖=1
 30 [−30,30]𝐷 0 

F6 𝑓6(𝑥) =∑ (⌊𝑥𝑖 + 0.5⌋)2
𝐷

𝑖=1
 30 [−100,100]𝐷 0 

F7 𝑓7(𝑥) = ∑ 𝑖𝑥𝑖
4 + 𝑟𝑎𝑛𝑑𝑜𝑚[0,1)

𝐷

𝑖=1
 30 [−1.28,1.28]𝐷 0 

F8 𝑓8(𝑥) =∑ [𝑥𝑖
2 − 10𝑐𝑜𝑠(2𝜋𝑥𝑖) + 10]

𝐷

𝑖=1
 30 [−5.12,5.12]𝐷 0 

F9 

𝑓9(𝑥) = −20𝑒𝑥𝑝 (−0.2√
1

𝐷
∑ 𝑥𝑖

2
𝐷

𝑖=1
)

− exp (
1

𝐷
∑ cos2𝜋𝑥𝑖

𝐷

𝑖=1
) + 20 + 𝑒 

30 [−32,32]𝐷 0 

F10 𝑓10(𝑥) =
1

4000
∑ 𝑥𝑖

2 −∏ cos (
𝑥𝑖

√𝑖
) + 1

𝐷

𝑖=1

𝐷

𝑖=1
 30 [−600,600]𝐷 0 

III. INTEGRATION AND OPTIMIZATION 

OF TIME-MODULATED LINEAR ARRAY 
This section adopts the modified DE algorithm 

proposed in previous section to quickly optimize and 

integrate time-modulated linear array. A time-modulated 

linear array is assumed, which contains N isotropic units 

with interval of half-wavelength. Each unit is connected 

to a high-speed RF switch to control operation cycle of 

unit. Define x=(τ1/Tp, τ2/Tp,…, τn/Tp, I1, I2,…, In), then 

the array factor of TMA can be expressed as: 

 
. (5) 

Where, αn,i is complex amplitude, 

 . (6) 

The array factors at center frequency f0 (n=0) and 

the first side-band f1 (n=1) are: 

 

, (7) 

 
. (8) 

Take x=(τ1/Tp, τ2/Tp,…, τn/Tp, I1, I2,…, In) as 

optimizing variable of the algorithm, then the peak side-

lobe level (PSLL) at center frequency and the peak level 

for the first side-band (PSBL) can be expressed as 

follows: 

 

, (9) 

 . (10) 

Where, θmax is the angle corresponding to the largest 

radiation direction for the array at center frequency f0. 

θ∈Y represents minor lobe zone of array corresponding 

to the position of center frequency x. Finally the 

optimization model of time-modulated linear array is: 

      
(11) 

Where, ω1 and ω2 are weight factors, which are all set as 

1. HPBW(x) represents half-power beamwidth of array 

pattern corresponding to the position of center frequency 

x. Setting the condition of HPBW≤6° is to guarantee 
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directivity factor of array does not largely reduce 

after optimizing PSLL and PSBL. The penalty function 

method is adopted to process array’s constraint condition 

when the algorithm is operating. When the HPBW(x) of 

individual is greater than 6°, the objective function value 

of this individual is set as a maximum value to make 

this individual unable to enter the next generation of 

population via the operation of selection. Following will 

adopt modified DE algorithm, standard DE algorithm and 

DESQI algorithm to optimize TMA, and compare the result. 

The control parameters of the algorithm are NP=100, 

Gmax=1000, CR=0.9, F=0.5. Each algorithm operates for 

ten times with result recorded. The comparison result 

after optimization is as shown in Table 3. 

Table 2: Performance comparison of algorithms 

Function 
Evolutional 

Generation 

Average Value of 

Modified DE 

(Standard Deviation) 

Average Value of 

DE/rand/1/bin 

(Standard Deviation) 

Average Value of 

DESQI 

(Standard Deviation) 

Average Value of 

jDE 

(Standard Deviation) 

F1 1500 
4.22E-41 

(9.44E-41) 

5.14E-14 

(4.39E-14) 

2.05E-23 

(2.02E-23) 

1.1E-28 

(1.0E-28) 

F2 2000 
3.77E-43 

(4.59E-43) 

3.78E-10 

(1.96E-10) 

7.02E-16 

(3.31E-16) 

1.0E-23 

(9.7E-24) 

F3 5000 
1.82E-44 

(4.07E-44) 

2.92E-11 

(2.45E-11) 

6.65E-18 

(1.58E-17) 

3.1E-14 

(5.9E-14) 

F4 5000 
00E+00 

(0E+00) 

1.62E-01 

(4.29E-01) 

2.17E-20 

(3.07E-20) 

00E+00 

(0E+00) 

F5 20000 
4.46E+01 

(3.18E+01) 

00E+00 

(0E+00) 

00E+00 

(00E+00) 

00E+00 

(0E+00) 

F6 1500 
00E+00 

0E+00) 

00E+00 

(0E+00) 

00E+00 

(0E+00) 

00E+00 

(0E+00) 

F7 3000 
1.1E-03 

(2.26E-04) 

4.80E-03 

(1.30E-03) 

1.50E-03 

(4.91E-04) 

3.15E-03 

(7.5E-04) 

F8 5000 
1.78E-15 

(1.78E-15) 

7.29E+01 

(3.08E+01) 

2.29E+01 

(1.97E+01) 

00E+00 

(0E+00) 

F9 1500 
6.41E-15 

(3.18E-15) 

5.90E-08 

(2.16E-08) 

1.58E-12 

(7.28E-13) 

7.7E-15 

(1.4E-15) 

F10 3000 
00E+00 

(0E+00) 

2.46E-04 

(1.3E-03) 

00E+00 

(0E+00) 

00E+00 

(0E+00) 

Table 3: Comparison of result of design optimization by 

the three algorithms 

Modified DE DE/rand/1 DESQI 

PSLL (dB) -34.22 -36.18 -45.26

PSBL (dB) -63.42 -17.23 -14.63

Objective 

function 

value (dB) 

-97.64 -53.41 -59.89

The evolution curves of the three algorithms in Fig. 

2 show that compared with SDE algorithm and DESQI 

algorithm, the MDE algorithm has quick convergence 

rate and can avoid being trapped in local extremum. 

The optimization result by the modified DE algorithm 

far outperforms other two algorithms. The array pattern 

result after optimization by the three algorithms is as 

shown in Fig. 3 and Table 3. It is observed that despite 

that the modified algorithm has larger PSLL, yet PSBL 

optimized by it is equal to -63.42 dB, which is obviously 

superior to other two algorithms. By synthesizing the 

optimized PSLL and PSBL result, it is found that the 

modified algorithm generally delivers better optimization 

performance. From the numerical results it can be seen 

that the PSLL and PSBL are restricted. Ideal result can 

be get quickly by choosing appropriate weight factors ω1 

and ω2. 

Fig. 2. Evolution curve of time-modulated linear array 

using the three kinds of algorithm optimization. 
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(a) Center frequency f=f0 

 
 (b) The first side band f=f1 

 

Fig. 3. Comparison of array radiation patterns obtained 

by three kinds of algorithm optimization. (a) Center 

frequency f=f0, and (b) the first side band f=f1.   

 

Table 4: Evolution generation when the three algorithms 

meet end condition  

Times of 

Independent 

Operation 

Evolution Generation when the 

Algorithm Ends 

Modified 

DE 

Standard 

DE 
DESQI 

1 365 314 341 

2 345 433 416 

3 298 362 406 

4 281 399 467 

5 299 465 508 

6 379 414 421 

7 363 491 406 

8 323 494 387 

9 323 437 504 

10 314 469 456 

Average value 329 427.8 431.2 

Standard 

deviation  
32.77 57.01 52.48 

 
To further verify the performance of the algorithm, 

the population scale is set as NP=500, and the end 

condition of algorithm is set as PSLL<-30dB and 

PSBL<-30dB. The evolution generation when the 

algorithm meets terminal condition is recorded, with 

concrete result as shown in Table 4. The modified 

adaptive DE algorithm averagely needs 329 times, which 

is far fewer than the evolution generations needed by 

standard DE algorithm and DESQI algorithm to meet 

calculation conditions, and the standard deviation of its 

result is 32.77, the smallest among the three algorithms. 

The numerical result speaks volume for superiority  

of modified DE algorithm in convergence rate and 

robustness of calculation in optimization design of TMA 

antenna.  
 

VI. CONCLUSION 
The paper presents a modified differential evolution 

algorithm based on population diversity, which adopts 

the variance value of the last generation of population  

as judgment standard to adaptively evolve crossover  

rate CR and mutation strategy of each generation. This 

algorithm realizes perfect balance between search span 

and search depth by correcting CR value and mutation 

strategy. Besides, it expedites convergence rate of 

algorithm by adopting simplified quadratic interpolation 

strategy. Comparison with other evolutionary algorithms 

shows that this algorithm has higher convergence rate 

and better quality of solution. Then the time-modulated 

linear array is designed using modified DE algorithm. 

The numerical result shows that the modified DE 

algorithm is more rapid in solving the optimal solution 

in optimization design of TMA antenna with satisfactory 

stability, hence it can serve as an effective design method 

to optimize time-modulated array antenna. 
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