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Abstract – The element-by-element finite element
method (EBE-FEM) parallel algorithm has been real-
ized on Compute Unified Device Architecture (CUDA)
platform in this paper. An improved fast color marking
method (FCM) combined with tabu search algorithm is
proposed to solve the problem that the elements shar-
ing a node wait for accessing the same memory space
in parallel computation. The elements in the same color
can be processed at the same time without waiting. This
method can get more even color grouping faster than the
classical coloring method (CCM). Combining it with the
EBE parallel algorithm can achieve faster element-level
operations. The validity and accuracy of the method has
been verified by comparing the computed results with the
analytical solution of the magnetic field produced by the
solenoid. The parallel program is applied to analyze the
main magnetic field of a single-phase transformer, which
shows higher speedup performance.

Index Terms – EBE-FEM, parallel computation, fast
color marking, element grouping.

I. INTRODUCTION
Large-scale numerical calculation is usually

involved in electromagnetic field analysis of large
power equipment. It is difficult to obtain accurate and
reasonable results by traditional serial finite element
method (FEM) [1]. In recent years, parallel finite
element methods and advanced computing platforms
are developed and applied to numerical computation
[2]. The traditional FEM realizes parallel computing by
using Internet resources and cloud computing, splitting
the program into multiple subprograms, which are
computed simultaneously by multiple processors and
returned to the terminal. In order to realize the complete
parallel calculation of FEM, it is necessary to change
the solution process of traditional FEM and add parallel
algorithm into it. The element-by-element finite element
method (EBE-FEM) is different from the traditional
FEM [3, 4]. It does not form the global system matrix,

solves the equation for each element, which can save
the memory storage space and perform the solving
process in parallel. The operations of each element
are independent of each other, so it is easy to achieve
parallelism between elements [5, 6]. The EBE-FEM is
a method which transforms a highly memory dependent
problem to a massively computational dependent one,
the latter can be parallelized efficiently.

Compute Unified Device Architecture (CUDA) is
a CPU + GPU heterogeneous computing platform, in
which GPU is one of the newest types of parallel pro-
cessors [7], its multi-core nature can fully exploit the
parallelism of EBE-FEM. When implementing parallel
computation of EBE-FEM on CUDA, to avoid race con-
ditions, different threads cannot access the same mem-
ory space simultaneously. Generally, two methods have
been used to solve this problem. One is “atomic oper-
ation,” on the early Nvidia GPU architectures such as
Fermi, the storage space is protected and only one thread
is allowed to access, which will affect the parallel effi-
ciency of the algorithm [8]. On new architectures such
as Kepler, these operating instructions have the “fire-
and-forget” semantics and can be returned immediately.
The conflict resolution is the responsibility of the cache
system [9]. Another method is coloring [10, 11]. The
elements with the common node have been given differ-
ent colors to achieve the purpose of grouping. Elements
in different colors are not calculated at the same time.
The coloring result is repeatable, because each run will
produce the same sequence of operations with the same
round-off error accumulation, which is impossible for
atomic addition. Different color grouping methods have
different processor resource utilization, and the grouping
results are also different [12].

In the classical coloring method (CCM), color A is
marked first by traversing all elements, then mark color
B [13, 14], only one color is marked in one traversal pro-
cess. It introduces a lot of nested loops, which makes
it run slowly and unevenly grouped. While the color-
ing efficiency and the grouping rationality will directly
affect the calculation efficiency of EBE-FEM parallel
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algorithm. The fast color marking method (FCM) col-
ors the elements sequentially, and all the elements need
to be traversed only once. The FCM can obtain even
grouping of elements quickly, and it has been used for
element coloring in traditional FEM. However, all nodes
still need to be traversed once when coloring an element,
which leads to insufficient efficiency, especially for deal-
ing with large-scale meshes.

In this paper, the parallel computation of EBE-FEM
for engineering electromagnetic field analysis is imple-
mented on CUDA platform. An optimized fast color
marking method (OFCM) which combines FCM with
tabu search algorithm is proposed to improve compu-
tational efficiency. The magnetic field produced by
solenoid and single-phase transformer have been ana-
lyzed by EBE-FEM combined with FCM and OFCM
respectively. The results have been compared and dis-
cussed. The corresponding FEM programs are devel-
oped in C++ language.

II. METHOD DESCRIPTION
A. EBE-FEM parallel algorithm based on CUDA

Using FEM, the Maxwell electromagnetic field
equations can be discretized as linear equations

Ax = b, (1)

where A is the global coefficient matrix, x is the vector
of unknowns, b is the right-hand vector.

The EBE establishes the relationship between the
local quantity and the global quantity through the tran-
sition matrix

Q = (Q(1)T ,Q(2)T , · · · ,Q(e)T )T (e ∈ E), (2)

where Q(e) is the connection matrix between the
coefficient matrix of the element e and the global coeffi-
cient matrix, E is the set of elements. (1) can be trans-
formed as

Ax =
∑
e∈E

(Q(e))
T
A(e)Q(e)x

=
∑
e∈E

(Q(e))
T
A(e)x(e)

(3)

b =
∑
e∈E

(Q(e))T b(e), (4)

where A(e) is the matrix of element coefficients, which
is directly obtained by finite element analysis. b(e) is the
element right-hand.

The main operation of CG method is the inner prod-
uct of vectors, which are appropriate to realize parallel
computation. Therefore, CG method has been used to
solve the equations of EBE-FEM.

r = Ax− b, (5)

where r is global residual vector. In EBE-FEM, it can be
expressed by,

r =
∑
e∈E

(Q(e))Tr(e), (6)

where r(e) is the element residual.
In CG, (r, r) and (p, Ap) are the most important cal-

culations, occupying the most computer resources. In
EBE-FEM, the inner product can be calculated on each
element as

(r, r) = rTr = (QTRe)TQTRe = (Re)TQQTRe

= (Re)TR(e) =
∑
e∈E

(re)
T
r(e) ,

(7)
r(e) = re ⊕

∑
j∈adj(e)

rj , (8)

Re = (r1, r2, · · · , re)T , (9)

where adj(e) represents the adjacent element which share
the common node with element e.

(p,Ap) = pTAp = pTQTAeQp = (Qp)TAeQp

= (P (e))TAeP (e) =
∑
e∈E

(p(e))
T
Aep(e) ,

(10)
P (e) = (p(1),p(2), · · ·p(e))T , (11)

where p is global direction vector, p(e) is the local ele-
ment direction vector.

The equations obtained by discretization are ill-
conditioned, which causes the convergence speed of the
CG method to slow down or even not converge. In order
to improve the convergence, the Jacobi preconditioned
(JP) technology is applied to EBE-CG. The Jacobi pre-
conditioner is a simple preconditioned method with good
parallelism [15]. The Jacobi preconditioned factor con-
sists of the diagonal elements of the coefficient matrix
and does not increase memory and communication time.
The Jacobi preconditioned factor can be calculated on
each element as

m(e) =me ⊕
∑

j∈adj(e)

mj , (12)

where m is the Jacobi preconditioned factor.
The computation for all the elements will be exe-

cuted in parallel through thousands of threads on CUDA
platform.

B. Classical coloring method
Coloring problem is a branch of graph theory prob-

lems in mathematics. The coloring method needs to
group the elements as even as possible with as few colors
as possible [16]. The number of colors is not the smaller
the better, it should meet the needs of the current calcu-
lation. CCM is shown in Algorithm 1.
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Fig. 1. A 2D coloring group diagram.

Algorithm 1: Classical coloring method
1: Use a new color.
2: Get the nodes of the adjacent element.
3: Get all the element numbers associated with the nodes.
4: Get the color numbers of adjacent elements.
5: If the current color is not used for adjacent elements,
provide it for the current element. Otherwise, return to 2.
6: If all elements are colored, stop. Otherwise, return
to 1.

The CCM can obtain crude element grouping, but
the grouping is uneven; there are “rich” groups contain-
ing too many elements and “poor” groups with too few
elements. The grouping diagram is shown in Figure 1.

These groups require additional operation to make
them more even. In addition, the CCM has the problem
of excessive nesting of loops. These problems make the
coloring time long and efficiency low.

C. Fast color marking method
To solve the problems of the CCM, the FCM is pro-

posed to get more even groups faster. The FCM is as
follows:

Algorithm 2: Fast color marking method
1: Get the nodes of the current element.
2: Get all the element numbers associated with the nodes.
3: Get the color numbers of adjacent elements.
4: Provide the current element with the smallest number
among the unused color numbers of adjacent elements.
5: If all elements are colored, stop. Otherwise, return
to 1.

The FCM colored the elements sequentially, it
reduces the loop nesting existed in CCM and makes the
grouping more uniform.

D. Optimized fast color marking method
When using FCM, all nodes need to be traversed

once and the color numbers of adjacent elements also
need to be retrieved once, which greatly increases the
number of instructions to be executed.

In this paper, tabu search algorithm is introduced
into FCM to improve grouping efficiency. A new array
is set as a tabu table, in which the information of the
elements that share the same nodes have been recorded
as tabu object, and then marks the color of the current
element, which can avoid repeated searches for nodes
and the color serial. After optimization, the number of
instructions has been reduced greatly, while the memory
occupied by the new array is very small, therefore, the
execution speed of the program can be improved obvi-
ously.

OFCM simplifies the looping process and logic
judgment in FCM by introducing new arrays to record
key information, the coloring process has been speeded
up significantly. The optimized coloring algorithm can
also be applied to face shading, edge shading, or vertex
shading. Algorithm 3 shows the OFCM. The mathemat-
ical model of OFCM can be expressed as,

minf(x) =
∑
k∈C

(
∑
i∈E

xik)

s.t.


∑
k∈C

xik = 1,for each element i∑
i∈adj(j)

xik · xjk = 0

, (13)

xij =

{
1,
0,
for element i with color j

otherwise
, (14)

where C is the set of colors.

Algorithm 3: Optimized fast color marking method
1: Get the nodes of the current element.
2: Get all the element numbers associated with the nodes.
3: Create an array A to record the color of the current
element, and retrieve the color numbers of adjacent ele-
ments from array A.
4: Provide the current element with the smallest number
among the unused color numbers of adjacent elements.
5: Record the color of the current element in array A.
6: If all elements are colored, stop. Otherwise, return
to 1.

Three coloring methods have been researched and
programmed in this paper, a set of meshes has been
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Table 1: Comparison of three coloring methods
Method Elements Nodes Coloring Colors

times (ms) used
OFCM 24106 12260 7634 7
FCM 24106 12260 19028 7
CCM 24106 12260 41358 8

colored by them respectively. The results are shown in
Table 1.

From Table 1, it can be seen that the OFCM saves
the execution time greatly, OFCM and FCM use less
colors than CCM. Moreover, the grouping uniformity
of OFCM and FCM is much higher than that of CCM.
The number of elements in each group is about 3500
for FCM and OFCM, while the number of elements in
each group varies greatly for CCM, ranging from 100 to
12,000. Based on the above results, in the following cal-
culation examples, only FCM and OFCM are compared
and discussed, and CCM is no longer used.

E. Parallel EBE-FEM combined with OFCM
For EBE-FEM algorithm, the iterative solving pro-

cess is performed for each element, and all elements
can be solved at the same time by GPU. The local vec-
tor is pre-calculated and stored in memory. However,
when the local element residual vector r(e) and the vec-
tor m(e) are accumulated in Jacobi preconditioner, if
there are common nodes between adjacent elements, the
access conflict will occur. Access conflict will reduce the
calculation efficiency and even make calculation errors.
After the coloring method divides the elements with
common nodes into different groups, the element vectors
of all elements in a group can be calculated simultane-
ously by EBE-FEM. In this way, access conflicts and cal-
culation errors can be avoided, and complete parallelism
within the group can be achieved. The loops between
groups are still serial. The coloring process is executed
by the CPU, and the EBE-FEM computing process is
executed by the GPU, in which one element is processed
by one thread.

The combination part of EBE and OFCM is shown
in Algorithm 4.

Algorithm 4: The combination part of EBE and OFCM
1: for all colors c do // compute m(e)

2: for e ∈ ε(c)do
3: M(e) ←diag(e)
4: α← e
5: end for
6: end for
7: for e ∈ αdo
8: m(e)←m(e)+M(e)

9: end for

10: solve m(e)z(e)←r(e)
11: for all colors c do // compute r(e)
12: for e ∈ ε(c) do
13: Z(e) ←r(e)
14: β ← e
15: end for
16: end for
17: for e ∈ β do
18: z(e) ← z(e)+Z(e)

19: end for

III. APPLICATION AND ANALYSIS
The proposed method has been applied to analyze

the magnetic field produced by a solenoid and a single-
phase power transformer. All the programs have been
developed in C++. The computations have been carried
out on a heterogeneous CUDA platform with a quad-core
Intel i7-6700 CPU and an NVIDIA GTX 965m GPU.

A. Calculation and comparison of solenoid magnetic
field

In order to verify the validity and accuracy of the
algorithm and program, the magnetic field of a solenoid
has been analyzed by the parallel EBE-FEM combin-
ing the OFCM and the FCM respectively. According to
Biot–Savart Law, the analytical solution of the magnetic
field at the points on the central axis can be calculated by

dB =
µ0nIR

2

2(R2 + x2)3/2
dx, (15)

where µ0 is the permeability in vacuum, n is the num-
ber of turns, I is the current, R is the radius of the
solenoid.

A rectangle region is set as the solution domain,
and the magnetic field distribution is shown in Figure 2.

Fig. 2. The magnetic field distribution of the solenoid.
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Table 2: Calculated results of EBE method with different
coloring method

Method Elements Nodes Coloring Execution Max relative
times (ms) time (ms) error (%)

OFCM+EBE 4260 2224 227 2562 4.51
FCM+EBE 4260 2224 534 3008 4.43
Serial EBE 4260 2224 0 6441 4.50

Fig. 3. The model of the single-phase transformer.

Comparing the calculation results on the central axis
of the solenoid with the analytical solution, the relative
errors can be determined. The maximum relative errors
are showed in Table 2.

It can be seen from Table 2 that the proposed method
is valid and accurate, the OFCM is more efficient than
FCM. The serial EBE-FEM only runs on the CPU with-
out parallel computing and element coloring. The results
show that the algorithm proposed in this paper has
more advantages in calculation efficiency. The color-
ing algorithm does not change the calculation process
and input variables of the EBE-FEM, the difference of
relative errors is produced by the round-off error of the
computer.

B. Magnetic field in single-phase transformers
EBE-FEM parallel algorithm combined with differ-

ent coloring methods have been investigated and applied
to calculate the magnetic field produced by single-phase
DSP-241000kVA/500kV transformer. The secondary
side of the transformer is opened and the primary side
is excited by rated current. The model of the transformer
is shown in Figure 3. The model is subdivided into a
triangular mesh, as shown in Figure 4.

The distribution of the magnetic flux density and the
magnetic lines are shown in Figures 5 and 6.

Fig. 4. The mesh of the single-phase transformer.

Fig. 5. The magnetic field distribution of the transformer.

Fig. 6. The magnetic lines of transformer.



REN, YAN, LAN, REN, ZHANG: RESEARCH ON EBE-FEM PARALLEL ALGORITHM COMBINED WITH FAST COLOR MARKING METHOD 1286

Table 3: Calculated results of EBE method with different
coloring method
Test Elements Nodes Coloring Computation time
case time (ms) of EBE-FEM

OFCM FCM OFCM FCM
1 11,443 5860 1862 4269 5704 5755
2 19,328 9848 5971 12,267 11,776 11,670
3 40,816 20,685 24,642 55,691 27,173 28,015
4 61,390 31,028 56,019 122,850 45,783 45,616
5 171,338 86,223 275,698 702,756 82,900 83,387

The calculation results of EBE-FEM combined with
different coloring methods are shown and compared in
Table 3. From Table 3, it can be seen that the color-
ing time of OFCM is twice faster than that of FCM.
The larger scale mesh is involved, the higher efficiency
can be obtained. The number and uniformity of the
groups obtained by two coloring methods are similar,
which can be seen from the similar calculation time of
EBE-FEM.

IV. CONCLUSION
In this paper, the EBE-J-PCG method has been

implemented in parallel on CUDA platform, an opti-
mized fast color marking method is proposed to solve the
access conflict in parallel computation. The OFCM can
use less colors to get even grouping in the least coloring
time, and even and reasonable color grouping is impor-
tant for large-scale EBE parallel computing. The OFCM
can be applied to face shading or vertex shading.
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