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Abstract – This paper presents a new fast power series
solution method to solve the Hierarchal Method of
Moment (MoM) matrix for a large complex, perfectly
electric conducting (PEC) 3D structures. The proposed
power series solution converges in just two (2) iterations
which is faster than the conventional fast solver–based
iterative solution. The method is purely algebraic in
nature and, as such applicable to existing conventional
methods. The method uses regular fast solver Hierarchal
Matrix (H-Matrix) and can also be applied to Multilevel
Fast Multipole Method Algorithm (MLFMA). In the
proposed method, we use the scaling of the symmetric
near-field matrix to develop a diagonally dominant
overall matrix to enable a power series solution. Left
and right block scaling coefficients are required for
scaling near-field blocks to diagonal blocks using
Schur’s complement method. However, only the right-
hand scaling coefficients are computed for symmetric
near-field matrix leading to saving of computation
time and memory. Due to symmetric property, the left
side-block scaling coefficients are just the transpose of
the right-scaling blocks. Next, the near-field blocks are
replaced by scaled near-field diagonal blocks. Now the
scaled near-field blocks in combination with far-field
and scaling coefficients are subjected to power series
solution terminating after only two terms. As all the
operations are performed on the near-field blocks, the
complexity of scaling coefficient computation is retained
as O(N). The power series solution only involves the
matrix-vector product of the far-field, scaling coeffi-
cients blocks, and inverse of scaled near-field blocks.
Hence, the solution cost remains O(NlogN). Several
numerical results are presented to validate the efficiency
and robustness of the proposed numerical method.

Index Terms – Integral Equations, Method of Moment
(MoM), H-Matrix, Adaptive Cross Approximation
(ACA), Power Series.

I. INTRODUCTION
The integral equation-based Method of Moments

(MoM) [1] is one of the popular methods for solv-
ing complex 3D electromagnetics problems. A few of
the problems include scattering, radiation, EMI-EMC,
etc. Compared to differential equation-based methods
like Finite Difference Time Domain (FDTD) [2] and
Finite Element Method (FEM) [3], the integral equation-
based method results in fewer unknowns and is more
stable and well-conditioned. With the recent advance-
ment of computer speed and memory, the need for
solving large size and complex problems in electromag-
netics has increased rapidly. Conventional MoM is lim-
ited by quadratic memory storage, quadratic matrix fill
time, and cubic solution time, which limits the appli-
cation of MoM to resonance-size problems. To miti-
gate this issue and exploit the robustness of MoM, in
the last few decades, more researchers have proposed
fast solvers with O(N logN) matrix fill time and solu-
tion time, where N represents the matrix size. A few of
the popular fast solver methods for solving complex elec-
trodynamic problems are Fast Fourier Transform (FFT),
Multilevel Fast Multipole Algorithm (MLFMA) [4], IE-
QR [5, 6], Adaptive Cross Approximation (ACA) [7],
etc. Most of these methods rely on the analytical or
numerical matrix compression and fast matrix-vector
product for solution leading to O(NlogN) matrix fill
and matrix-vector product cost. For multiple Right-Hand
Side (RHS) problems like Mono-static Radar Cross Sec-
tion (RCS) and Multi-port network with Nrhs ports, and
with Nitr iterations for each solution, the total cost of
the solution will be O(NrhsNitrNlogN). Each solu-
tion of RHS is iteration dependent, and the iterations
for desired tolerance depends on the condition number
of the matrix. It is well known that an ill-conditioned
matrix will lead to a high number of iterations, thus
increasing the overall solution time. To improve the
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condition number of the matrix, researchers have sug-
gested various types of matrix preconditioning methods
like incomplete LU factorized ILUT [8], diagonal block-
based Null-Field [9, 10] and Schur complement [11, 12].
But the effectiveness of these preconditioners is limited
by precondition computation time and condition number
improvement of the entire matrix. In contrast, the direct
solver has an edge over the iterative solver, giving a solu-
tion in fixed single forward and backward solution opera-
tion for each RHS. However, the high-cost factorization,
forward and back substitution limit the application of a
direct solver for a large-size matrix. Recently, there is
more inclination toward the development of fast direct
solvers and various methods based on H [13–16].

In this work, we propose a method on par with a
fast direct solver using the power series method, which
converges in fixed 2 iterations. Recently, S. M. Rao and
Michael S. Kluskens in [17] has proposed a method to
solve the electromagnetic MoM matrix for electrically
large conducting bodies by applying the power series
method. The procedure involves the computation of the
MoM matrix and dividing the matrix into relatively large
subsections. The mutual coupling between a given sub-
section and related nearby subsections is transformed
into self-coupling. The resulting current distribution is
obtained by developing a power series solution. The
power series method is suitable for solving bi-static and
mono-static problems. The present work adopts the cen-
tral idea of [17] and improves upon it to obtain a much
faster solution.

In the present work, the procedure presented in [17]
is modified using several essential steps. These steps
include scaling near-field block matrices to diagonal
block matrix and converting the scaled near-field in con-
junction with far-field blocks to a power series format.
Further, the diagonalization cost of computation and
storage is reduced by using symmetric near-field blocks
and adopting Adaptive Cross Approximation (ACA) for
the far-field blocks [7]. As the diagonalization operation
includes only near-field, the power series computation
cost remains O(N). The overall solution includes the
matrix-vector product of the compressed far-field blocks
and near-field blocks, retaining the overall solution cost
as O(NlogN). Further, extensive numerical experimen-
tation shows that the proposed power series method con-
verges in just two iterations. The present procedure is
faster and efficiently applicable to large complex practi-
cal problems.

The paper is organized as follows: in section II, a
brief description of multi-level CFIE H-Matrix 3D full-
wave MoM is presented. Improved re-compressed ACA
is used for matrix compression of the far-field blocks. In
section III, the proposed power series format conversion
from H-Matrix is presented along with the convergence

criteria for the series. In section IV, complexity analy-
sis of power series computation and memory cost is pre-
sented, and in section V, the efficiency and accuracy of
the proposed power series solution are presented. Sec-
tion VI concludes the paper.

II. FAST H-MATRIX METHOD OF MOMENT
The 3D-electrodynamic problem for a PEC body

can be solved using the Electric Field Integral Equation
(EFIE), Magnetic Field Integral Equation (MFIE), or a
Combined Field Integral equation (CFIE). The govern-
ing equation for EFIE states that the total electric field
Etotal for a conducting 3D object is a combination of
the incident field Einc and the scattered field, Escatt

Etotal = Einc +Escatt. (1)
Applying the boundary condition for PEC surfaces, we
have

Einc =jωµ

∫ ∫
J (r′) G(r, r′) ds′ds

+
j

ωε

∫ ∫
ρ(r′)G(r, r′) ds′ds, (2)

where J(r′) and ρ(r′) represent the current density and
charge density on the surface respectively, µ and ε repre-
sent the permeability and permittivity of the background
material, ω is the angular frequency. In equation (2) G is
free-space Green’s function and is given as

G(r, r′) =
ejkR

4πR
, (3)

where k is the wave-number, r and r′ represent observer
and source points and distance R = |r − r′| . Integra-
tion is performed over observation surface s′ and source
surface s.

Similarly, for MFIE [18], the boundary condition
states that tangential total magnetic field (n̂ ×Htotal)
over a surface is equivalent to the electric current (J(r))
over the surface, as

n̂×Htotal = J(r), (4)
where, n̂ is a unit outward normal to the closed scatter-
ing surface. Now, the total magnetic field is a sum of
incidence (Hi) and scattered magnetic field (Htotal)

n̂× (Hinc +Hscatt) = J(r). (5)
Equation (5) can be extended further as

n̂×Hinc =
J (r)

2
− n̂×

∫
s′
J (r′)×∇

′
G(r, r′) ds′.

(6)
In the above equation ∇′G can be further simplified as

∇′G(r, r′) =
(
jk +

1

R

)
G(r, r′)R̂. (7)

Note that the EFIE is applicable for both open and closed
surfaces, whereas MFIE is only applicable for a closed
surface geometry. Combining EFIE and MFIE gives
Combined Field Integral Equation (CFIE), given by

CFIE = αEFIE + Zo(1− α)MFIE, (8)
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where α is a control parameter to control the contribution
of EFIE and MFIE, ranging from 0 to 1 and Zo is the free
space impedance. The primary advantage of CFIE is that
it is robust and generates a stable solution at internal res-
onances of the closed body and a well-conditioned MoM
matrix. For an open surface, α is taken as 1, and for
closed surfaces, α is taken as 0.5.

Current and charge density in surface integral equa-
tions EFIE and MFIE is modeled by RWG basis function
[19], and Galerkin testing strategy is employed for MoM
matrix computation. The final combined CFIE matrix is
given as:

[Z]x = b, (9)

where [Z] is a dense matrix of size N ×N and x and b
are unknown and known vectors of size N × 1.

The CFIE dense matrix in equation (9) presents
a time and memory bottleneck, with O(N2) memory,
O(N2) matrix fill time, O(N3) for a direct solution
and, O(N itrN

2) for iterative solver withNitr iterations.
The iterative solution of the MoM matrix can be accel-
erated by exploiting the compressibility of the far-field
sub-matrices. Compression also expedites the cost of
matrix fill time and matrix-vector multiplication time in
an iterative solver. Compression can be done analyti-
cally, like in the case of MLFMA or algebraically using
IE-QR or ACA. Due to the kernel-independent property
of the algebraic compression method, recently, ACA has
gained popularity among researchers for the develop-
ment of fast solvers. These compression methods can
be applied in conjunction with binary-tree–based multi-
level Hierarchal Matrix (H-Matrix). In the binary-tree
decomposed 3D geometry, the matrix compression is
applied for block interaction at each level, satisfying the
admissibility condition given below

η dis (Ωt,Ωs) ≥ min (dia(Ωt), dia(Ωs)) . (10)

The admissibility condition states that the minimum of
the block diameter of the test block (Ωt) and source
block (Ωs) should be less than or equal to the admis-
sibility constant (η) times the distance between the test
and source blocks. The binary-tree partition of the geom-
etry is carried out until the block size is greater than or
equal to 0.5λ. The criteria for binary-tree truncation are
discussed in section V. At the leaf level, the block inter-
action not satisfying the admissibility condition is con-
sidered as a near-field interaction.

In this work, the re-compressed ACA method [20,
21] is employed for the computation of multi-level H-
Matrix. For the m × n rectangular sub-matrix Zm×n

sub

representing the coupling between two well-separated
groups ofm observer bases and n source bases, the ACA
algorithm aims to approximate Zm×n

sub by Am×r and
Br×n such that:

Zm×n
sub ≈ A

m×r ×Br×n, (11)

where r is the effective rank of the matrix Zm×n
sub such

that r � min(m,n), Am×r and Br×n are two low
rank dense rectangular matrices, satisfying the accuracy
condition∥∥Zm×n

sub − Am×r ×Br×n∥∥ ≤ ε
∥∥Zm×n

sub

∥∥ . (12)
For a given tolerance ε ||.|| refers to the matrix Frobe-
nius norm. Traditional ACA-based methods suffer from
higher rank and error for the desired tolerance. To
mitigate this, a re-compression scheme is suggested in
[20, 21]. The compression cost for each sub-matrix
is given by r2(m + n) and the storage and matrix-
vector product cost by r(m + n). The multi-level
binary-tree matrix decomposed H-Matrix method leads
to O(NlogN) matrix fill and matrix-vector product time
for each iteration. However, the final solution cost is
highly iteration dependent as for Nitr iterations, the
solution cost scales to O(NitrNlogN). Further, for
the case of multiple RHS with Nrhs vectors, the solu-
tion cost scales to O (NrhsNitrNlogN). To mitigate
this iteration-dependent solution, we have proposed a
power series–based iterative solver which converges in
fixed 2 iterations maintaining the optimum cost of a fast
solver.

III. POWER SERIES SOLUTION
In this section, we present a new fast power series

solution method for solving large H-Matrix. The method
follows Schur’s complement procedure used for matrix
diagonalization and precondition computation [11, 12].
Power series is an infinite series and a well-known
method for solving an ordinary and partial differential
equation. The advantage of the power series is that it
converges in a very small region. Since a conventional
MoM matrix cannot be applied for the power series solu-
tion, we propose a method to convert to the H-matrix for-
mat. We note that the H-matrix is suitable for the power
series solution, as discussed further in the section. H-
Matrix is a combination of the far-field and near-field
matrices. In the following subsections, the details of the
conversion process are presented.

A. Preparing for power series computation
As a first step, the geometry is divided into blocks

based on the same binary tree as used in the compres-
sion algorithm. In a multi-level H-Matrix compression
scheme, as described in section II, the MoM matrix [Z]
in equation (9) can be represented as a combination of
the near-field [ZN ] matrix at the leaf level and the com-
pressed far-field [ZF ] matrix obtained at multiple levels
of far-interaction.

[Z]x = [ZN +ZF ]x = b, (13)
where x represents the unknown coefficient vector, b
is the excitation vector. To maintain the optimum cost,
symmetric near-field matrix is used. To explain the
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Fig. 1. Representative leaf-level cubes for illustration of
Schur’s process.

Fig. 2. Sparsity pattern of the (a) near-field matrix, (b)
right-hand scaling coefficient.

procedure, a leaf-level cube structure comprised of four
cubes, as shown in Figure 2, is considered.

For Figure 1, block interaction between 1 and 4
forms the far-field interaction and rest form the near-field
interaction. So near-field block matrix [ZN ] in the case
of Figure 1 is given as:

[ZN ] =


Z11 Z12 Z13 0
Z21 Z22 Z23 Z24

Z31 Z32 Z33 Z34

0 Z42 Z43 Z44

 . (14)

Now, the near-field can be scaled completely to a
diagonal block by using the left- and right-hand scaling
coefficients. Right scaling coefficient [α1] for scaling the
first-row blocks Z11 and Z13can be represented as:

[α1] =


I 11 α12 α13 0
0 I22 0 0
0
0

0
0

I33
0

0
I44

 , (15)

where, I11, I22, I33, and I44 are the identity block

matrices. In the null-field method [9, 10], either left- or
right-hand scaling is performed for the near-field scal-
ing to diagonal blocks ignoring the fill-in blocks. In
contrast, in the proposed Schur’s complement method,
both left- and right-hand scaling are performed simul-
taneously, considering fill-in blocks for complete far-
field scaling to diagonal blocks. The fill-ins in the
scaling matrix are described in the following sub-
section for row scaling, the values in [α1] can be
given as:

[α1] =


I11
0
0
0

−Z−111 Z12

I22
0
0

−Z−111 Z13

0
I33
0

0
0
0
I44

 .
(16)

Similarly, for the complete scaling of column blocks Z21

andZ31 the left scaling coefficient [α′1] is used and [α
′
1]

can be given as:

[α
′
1] =


I 11 0 0 0
α′12 I22 0 0
α′13
0

0
0

I33
0

0
I44

 , (17)

[α
′
1] =


I11

−Z21Z
−1
11

−Z31Z
−1
11

0

0
I22
0
0

0
0
I33
0

0
0
0
I44

 . (18)

Now, equations (14), (16), and (18) can be combined to
scale the first row and column block of [ZN ] to diagonal
block and the system of the equation can be given as:

[
Z̃

1

N

]
=


I11 0 0 0
α′12 I22 0 0
α′13 0 I33 0
0 0 0 I44



Z11 Z12 Z13 0
Z21 Z22 Z23 Z24

Z31 Z32 Z33 Z34

0 Z42 Z43 Z44



×


I11 α12 α13 0
0 I22 0 0
0 0 I33 0
0 0 0 I44


.

(19)
Equation (19) can be represented as:

[Z̃
1

N ] = [α′1] [ZN ] [α1]. (20)
Performing the block multiplication in equation (19),
[Z̃

1

N ] can be represented as a block matrix form as:

[
Z̃

1
N

]
=


Z11 0 0 0

0 Z22 − Z21Z
−1
11 Z12 Z23 − Z21Z

−1
11 Z13 Z24

0 Z32 − Z31Z
−1
11 Z12 Z33 − Z31Z

−1
11 Z13 Z34

0 Z42 Z43 Z44

 .

(21)

Equation (21) gives Schur’s complement of the first
block near-field matrix. Likewise, each row and column
block can be scaled to form a diagonal block matrix and
is of the form:

[Z̃N ] = [ α′3 ][ α
′
2 ][ α

′
1][ZN ][α1][α2]][α3], (22)
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[Z̃N ] =


Z11

0
0
0

0

Z̃22

0
0

0
0

Z̃33

0

0
0
0

Z̃44

 . (23)

Equation (23) gives the complete diagonal form of the
near-field matrix. For solving the complete system of
equations with left- and right-hand scaling coefficients,
the final system of equation (9) can be represented as:

[ α′3 ][ α
′
2 ][ α

′
1 ] [Z][α1][α2]][α3] [x̃] =

[
b̃
]
. (24)

Now, [b] and [x] in equation (9) can be extracted by[
b̃
]
=[ αT

3 ][ αT
2 ][ αT

1 ][b], (25)

[x] =[α1] [α2]][α3][ x̃]. (26)
Equation (24) can be defined as the sum of the near and
far-field as in equation (13) and is given as:

[ α′3 ][ α
′
2 ][ α

′
1 ] [ZN +ZF ][α1][α2][α3] [x̃] =

[
b̃
]
,

(27)
where, [ZF ] is the far-field compressed ACA matrix
blocks and [ZN ] is the dense near-field block matrices.
Equation (27) can be further simplified by as:

[α′3][ α
′
2 ][α

′
1][ZN ][α1][α2][α3] [x̃]

+ [α′3][α
′
2][α

′
1][ZF ][α1][α2][α3] [x̃] =

[
b̃
]
.

(28)
The first part of the above equation represents the block
diagonal near-field as in equation (28), and then the
equation can be further simplified as:

[Z̃N ] [x̃] + [α′3][α
′
2][α

′
1][ZF ][α1][α2][α3] [x̃] =

[
b̃
]
,

(29)

where,
[
Z̃N

]
is a scaled near-field block diagonal

matrix. Due to the symmetric property of the near-
field matrix, we only need to compute and store right-
hand scaling coefficients [α1], [α2], and [α3] since left-
hand scaling coefficients [α′1], [α′2], and [α′3] are mere
transpose of right-hand coefficients. Figure 2 below
shows the sparsity pattern of the near-field and right-
hand scaling coefficient matrix for 5λ×5λ plate. Sloan’s
graph ordering is used to reduce the fill-in and computa-
tion cost for the scaling coefficient, as suggested in [11].

Now equation (29) can be converted to power series
solution format by moving the scaled diagonal near-field
to the right-hand side of the equation leads to[

[I] +
[
Z̃N

]−1
[α′3][α

′
2][α

′
1][ZF ][α1][α2][α3]

]
[x̃]

=
[
Z̃N

]−1 [
b̃
] .

(30)
Each term in equation (30) can be represented as

[U ] =
[
Z̃N

]−1
[α′3][α

′
2][α

′
1][ZF ][α1][α2][α3], (31)

[bo] =
[
Z̃N

]−1 [
b̃
]
. (32)

Substituting equation (31) and (32) in equation (30)
leads to

[[I] + [U ]] [x̃] = [bo] , (33)
[x̃] = [[I] + [U ]]

−1
[bo] . (34)

Equation (34) can be solved using power series solution

[x̃] =
[
[I]− [U ] + [U ]

2 − [U ]
3
+ . . . . . .

]
[bo] ,

(35)
[x̃] = [bo]− [Ubo]+[U [Ubo]]−[U [U [Ubo]]]+ . . . .

(36)
Equation (36) shows that solving equation (34) is an iter-
ative matrix-vector product of the inverse of the scaled
diagonal block near-field, scaling coefficients and far-
field blocks.

B. Convergence
Power series always converges in the radius of con-

vergence. The necessary and sufficient condition for the
power series equation (35) to converge in the radius of
convergence is the Frobenius norm, ‖U‖ ≤ 1 in equa-
tion (31). Defining

[Z̃F ] = [ α′3 ][ α
′
2 ][ α

′
1][ZF ][α1][α2]][α3]. (37)

Equation (30) can be re-written as[
[I] +

[
Z̃N

]−1 [
Z̃F

]]
[x̃] =

[
Z̃N

]−1 [
b̃
]
. (38)

To achieve the convergence, we can enforce the condi-
tion

∥∥[Z̃N

]−1∥∥ · ∥∥[Z̃F

]∥∥ ≤ 1 for the final solution of
the power series. Since the process of norm computation
for a large matrix is compute-intensive, alternatively, one
can adopt the following procedure.

We note that∥∥∥∥ [Z̃N

]−1 ∥∥∥∥ =

∥∥∥∥ [Z̃N

]−1 ∥∥∥∥ .∥∥∥[Z̃N

]
[bo]

∥∥∥∥∥∥ [Z̃N

]
[bo]

∥∥∥
≤

∥∥∥∥ [Z̃N

]−1 ∥∥∥∥ .∥∥∥[Z̃N

]∥∥∥ . ‖[bo]‖∥∥∥ [b̃] ∥∥∥
= knf

‖[bo]‖∥∥∥ [b̃] ∥∥∥ , (39)

where, knf =

∥∥∥∥ [Z̃N

]−1 ∥∥∥∥ .∥∥∥[Z̃N

]∥∥∥ represents the

condition number of
[
Z̃N

]
.

Next, we define [be] =
[
Z̃F

]
[bo] and we have

∥∥∥ [Z̃F

] ∥∥∥ =

∥∥∥ [Z̃F

] ∥∥∥ .∥∥∥∥[ [Z̃F

]−1]
[be]

∥∥∥∥∥∥∥∥ [
Z̃F

]−1
[be]

∥∥∥∥
≤

∥∥∥ [Z̃F

] ∥∥∥ .∥∥∥∥[ [Z̃F

]−1]∥∥∥∥ . ‖[be]‖
‖ [bo] ‖
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= kff
‖[be]‖
‖ [bo] ‖

, (40)

where, kff =

∥∥∥∥ [Z̃F

]−1 ∥∥∥∥ .∥∥∥[Z̃F

]∥∥∥ represents the

condition number of
[
Z̃F

]
.

Combining equations (39) and (40), we have∥∥∥∥[Z̃N

]−1 ∥∥∥∥ .∥∥∥ [Z̃F

] ∥∥∥ ≤ knf kff ‖[be]‖∥∥∥ [b̃] ∥∥∥ . (41)

To satisfy the condition ‖U‖ ≤ 1 we must ensure that
‖[be]‖∥∥∥ [b̃] ∥∥∥ ≤ 1

knfkff
, (42)

∥∥∥∥[Z̃N

]−1 [
Z̃F

]∥∥∥∥ ≤ 1

knfkff
. (43)

Now, let us consider each right-hand side term in equa-
tion (36) is represented as the sum of iteration terms
ito, it1, it2 . . . itn leading to

[x̃] = ito − it1 + it2 . . . .(−1)n itn. (44)
For the convergence test, we can check the iteration norm
ratio as:
‖itn‖
‖ itn−1 ‖

= ‖U‖ =
∥∥∥∥[Z̃N

]−1 [
Z̃F

]∥∥∥∥ ≤ 1

knfkff
.

(45)
Note that it is not really necessary to compute the con-
dition numbers knf and kff but ensure that the frac-
tion ‖itn‖

‖ itn−1 ‖ is a small number. Our various numeri-

cal experiments suggested that this number must be less
than 1e−1 . It is because the described numerical imple-
mentation ensures that matrices

[
Z̃N

]
and

[
Z̃F

]
are

well-conditioned matrices. Obviously, if the ‖itn‖
‖ itn−1 ‖ is

not less than the empirical value, then the solution may
diverge.

IV. COMPLEXITY ANALYSIS
In this section, the linear order complexity for power

series set-up time is presented. For the complexity anal-
ysis, a uniform distribution of N RWG bases in 3D
grouped in a cube, and following a multi-level binary-
tree decomposition, each cube is recursively subdivided
into two cubes starting from level 0 to level L. Therefore,
at the lowest level, there are 2L leaf-level cubes. Assum-
ing a uniform distribution, the number of basis functions
in each leaf-level cube is N

2L
. Also, following the theory

of most fast solver algorithms, it can be shown that for
optimal efficiency of matrix storage and matrix-vector
product cost L = log2N .

A. Computation cost
The power series set-up cost includes scaling the

near-field matrix to diagonal format and arranged scaled
near-field, far-field, and near-field scaling coefficients to

a power series format. Near-field scaling cost is the high
cost of power series set-up. The near-field scaling con-
sists of a computation right scaling coefficients [α] as
in equation (16). Due to the symmetric property, left
scaling coefficients are just the transpose of right-hand
scaling coefficients. Right-hand scaling coefficient com-
putation cost can be represented as C1. The second
cost includes the scaling of the near-field to the diagonal
block form by [α′] [ZN ] [α] operation. For each row
and column block in equations (18) and (20), this cost
can be represented as C2. Therefore, the total cost can
be summed up as:

CTOTAL = C1 + C2. (46)

1. Scaling coefficient computation cost
For the scaling coefficient computation, the high

cost includes the inversion (CMI) cost for diagonal
block and the solving the inverse (CSOL) for the row
and column block near-fields as in equations (16) and
(18). Therefore CSCC can be further be divided as the
summation of inversion and solution cost as:

C1 = CMI + CSOL. (47)
Inversion cost includes the single matrix inversion of
a diagonal block for scaling near-field of each row
and column block. Therefore, the matrix inversion
cost of one matrix of a diagonal block at leaf level is
given as:

C1
MI = k1 ×

[
N

2L

]3
, (48)

where, k1 is a constant, the total cost for matrix inversion
for the leaf level blocks is given by

CMI =

2L∑
i=1

Ci
MI = k1 ×

[
N

2L

]3
× 2L, (49)

CMI = k1 ×N = O(N). (50)
For the computation of the scaling coefficient, the
inverted matrix has to be solved for all row and column
near-field blocks. Cost of matrix solution for one block
at leaf level can be given as:

C1
SOL = k2 ×

[
N

2L

]2
×
[
N

2L

]
, (51)

where, k2 is a constant. For a 3D structure, each block
is surrounded by 26 near-field blocks. Therefore, the
matrix solution cost for each row is given by:

C1R
SOL = k2 ×

[
N

2L

]2
× 26×

[
N

2L

]
. (52)

The total cost of the matrix solution at the leaf level
blocks is the summation of the cost of each row and is
given as:

CSOL =

2L∑
i=1

CiR
SOL = k2 ×

[
N

2L

]2
× 26×

[
N

2L

]
× 2L,

(53)
CSOL = k2 × 26×N = O(N). (54)
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2. Near-field scaling cost
For converting near-field to a diagonal block matrix

format, the near-field block matrix has to be multiplied
by the left and right scaling coefficients as given in equa-
tions (19) and (20). From equation (21), the multiplica-
tion involves block near-field matrix and column block
matrix

c1S = k3 ×
[
26
N

2L
× 26

N

2L

]
×
[
N

2L
× 26

N

2L

]
, (55)

where k3 is a constant. Therefore, the total cost of scal-
ing the near-field blocks with the right-hand scaling coef-
ficients blocks is

CS =
∑2L

i=1
Ci

S ≈ O(N). (56)

Equations (50), (54), and (56) show that the cost of the
power series computation, for a uniform 3D distributed
basis function, is O(N). As the storage of scaling
coefficient and scaled near-field block is half the near-
field matrix size, the memory cost scales to O(N).
The O(N) complexity of power series computation and
memory is experimentally shown in Figure 3 for the
increasing number of unknowns and the size of a sphere.

V. NUMERICAL RESULTS
In this section, we show the binary-tree truncation

criteria and solution complexity for the power series
solution. The accuracy and efficiency are shown by RCS
comparison for different geometries. All the computa-
tions were carried out for double-precision data type on
the system with 128 GB memory and Intel Xeon E5-
2670 processor. The comparisons are made for an open
and closed structure.

A. Binary-tree truncation
For binary-tree truncation, we tested the accuracy

of the power series solution vector from 2λ sphere of
20,802 unknowns for varying binary-tree leaf-level sizes.
For accuracy check, Frobenius norm error was calcu-
lated between solution vectors from direct LU factorized
solution SOLdir and power series solution SOLps by

Fig. 3. (a) Power series set-up time, (b) Memory in GB
for scaling coefficient and scaled near-field with increas-
ing unknowns.

computing ‖SOLdir − SOLps‖/ ‖SOLdir‖. The
error plot is shown in Figure 4 below

Fig. 4. Power Series Solution error with increasing leaf
level node size.

It can be observed from Figure 4 above that for the
leaf level truncation size greater than 0.5 λ we get the
desired accuracy. Hence, for all simulations shown in
this work, the binary-tree leaf node is truncated for a size
greater than 0.5.

B. Solution complexity
In Figure 5, we demonstrate that the proposed power

series method retains the O (NlogN) solution complex-
ity of H-Matrix. The experiment is carried out for sphere
meshed with increasing sphere size and unknowns.

C. Accuracy and efficiency
In this subsection, to validate the accuracy of the

proposed method, we have compared the RCS results of
different geometries with the analytical results. Also, to
demonstrate the efficiency of the proposed method, solu-
tion time is compared with regular iterative and precon-
ditioned [11] iterative solutions. For all comparative case

Fig. 5. Power Series solution time with increasing
unknown.
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Fig. 6. Bi-static RCS of 5λ sphere for observation angles
θ = 0o to 180o, φ = 0o and VV polarized plane wave
incident at θ = 0o, φ = 0o.

studies, iterative solver GMRES with an error tolerance
of 1e-6 is considered.

1. Bi-static RCS of a sphere
As a first example, we consider bi-static RCS of a

5λ−radius sphere discretized with a λ/10 mesh result-
ing in 130,293 unknowns. The solution from the method
described in this work is compared with the Mie series
analytical solution. Figure 6 shows the agreement of bi-
static RCS from the present method with the Mie series.
RCS is computed for observation angle θ = 0o to 180o

for φ = 0o with VV polarized plane wave incident at
θ = 0o and φ = 0o. We note excellent agreement
between the two results.

2. Mono-static RCS of a square plate
To show the accuracy and efficiency of the proposed

power series method, an open structure, a square plate of
20λ size, is considered. The solution is obtained using
EFIE only with α = 1 in equation (8). Figure 7 shows

Fig. 7. Mono-static RCS of 20λ square plate with VV
polarized incident plane wave and observation angles at
θ = 0o to 180o, φ = 0o.

Table 1: Solution time of square plate
Method Setup Solution

Time (H) Time (H)
Power Series Solver 1.61 0.57
Preconditioned Iterative 1.61 3.760
Solver
Iterative Solver ——– 89.97

mono-static RCS of the plate using the present method
and compared with a conventional iterative method. The
plate is discretized with λ/10 element size for 119,600
unknowns. The square plate is located in the XY plane
and illuminated by a plane wave incident with θ varying
from 0 to 180o and φ = 0o. It can be observed from the
figure that there is a very favorable agreement of RCS
between the two methods.

In Table 1, we present the comparison of solution
time for the results presented in Figure 7. We show solu-
tion times for iterative solvers with and without precon-
ditioning. It is evident that the present work is much
more efficient than the other two cases.

3. Mono-static RCS of a cube
Next, we consider a conducting cube of 1 m meshed

with λ/10 element size giving 45,975 unknowns. Since
the scattering body is a closed structure, we use CFIE
with α = 0.5. The operating frequency is 1.3 GHz and
compared with the iterative solution [20], as shown in
Figure 8. Further, in Table 2, we present a comparison of
solution time for this example.

It can be observed that the RCS result from the
power series completely matches with the regular H-
matrix iterative solver [22].

Fig. 8. Mono-static RCS of 1m cube at 1.3 GHz for HH
polarized plane wave incident and observation angles at
θ = 0o to 360o, φ = 0o.
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Table 2: Solution time of a cube
Method Setup Solution

Time (H) Time (H)
Power Series Solver 1.32 0.551
Preconditioned Iterative solver 1.32 1.377
Iterative solver ——– 7.640

Table 3: Solution time of a model fighter aircraft
Method Setup Solution

Time (H) Time (H)
Power Series Solver 1.66 0.46
Preconditioned Iterative solver 1.66 1.95
Iterative solver ——– 191.73

Fig. 9. Mono-static RCS of model fighter aircraft at 300
MHz for VV polarized plane wave incident and observa-
tion angles at θ = 90o, φ = 0o to 180o.

4. Mono-static RCS of a model fighter aircraft
As the last example, we consider the geometry of

model fighter aircraft with length 14 m and wingspan 8
m. With λ/10 discretization of the geometry, the meshing
scheme generates 93,819 unknowns. Figure 9 shows the
computed mono-static RCS with α = 0.5 in CFIE equa-
tion (8) at 300 MHz in the X-Y plane with VV polarized
plane wave incident and observation angle at the nose to
tail φ = 0o to 180o and θ = 90o.

Mono-static RCS (180 RHS) solution time compar-
isons of power series and iterative solver with and with-
out preconditioned are shown in Table 3.

It can be observed from Figure 9 that for this com-
plex geometry, RCS from the power series solution
entirely agrees with the H-Matrix iterative solution and
results in a much higher efficient solution.

VI. CONCLUSION
In this work, we propose a new power series solution

method for solving 3D MoM-based integral equations. It
can be observed from the numerical experimentation that

the proposed method is as accurate as of the conventional
iterative H-Matrix solution. Also, the proposed power
series method results in significantly lower solution time
compared to regular iterative and preconditioned itera-
tive solutions. The method is based on the near-field
matrix operation, thus maintainingO(N) complexity for
computation andO(NlogN) solution time. The solution
converges in fixed 2 iterations. The proposed method is a
kernel-independent algebraic method and can be applied
to other acceleration algorithms like MLFMA.
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