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Abstract – Subgridding unconditionally-stable finite-
element time-domain method based on spatial modes fil-
tering (SSMF-FETD) is combined with the Floquet theo-
rem and used to analyze the transmission characteristics
of 2-D dielectric pillar-array electromagnetic bandgap
(EBG) structures with cross-section shapes of square
and H. The computational stress is effectively reduced
by exploiting the periodicity of the EBG structure and
subgridding technique. Through the spatial modes fil-
tering (SMF) method, the subgridding FETD (S-FETD)
method is developed into the SSMF-FETD with larger
time steps and higher computational efficiency. The ef-
fect of geometric and electromagnetic parameters on
transmission characteristics of EBG structures are ana-
lyzed and compared in detail, the conclusions are as fol-
lows: the optimal filling ratio of the dielectric square-
pillar EBG structure is 0.5, the composite H-pillar EBG
structure has multiple bandgaps and can effectively save
metal materials while satisfying the design requirements.
The effect of electromagnetic parameters can be uni-
formly analyzed from the perspective of the average rel-
ative permittivity; with its increase, the central frequency
of the bandgap becomes lower. It should be noted that the
bandgap distribution and variation of composite H-pillar
EBG structure are related to how its dielectric parameters
change and combine. The results can serve as a reference
for similar structures design.

Index Terms – electromagnetic bandgap (EBG), finite-
element time-domain (FETD), Floquet theorem, spatial
modes filtering (SMF), subgridding technique.

I. INTRODUCTION
Electromagnetic bandgap (EBG) is a type of elec-

tromagnetic structure that can prevent electromagnetic
wave propagation in specific frequency ranges [1]. Sim-
ilar to the photonic band gap (PBG) structures in the

optical band, EBG structures can be directly composed
of various dielectrics, metals, or other hybrid materi-
als which are arranged periodically in a vacuum, or
implanted into the base material. Due to the obvious
bandgap characteristic, EBG structures have been ap-
plied in many fields in recent years [2, 3]. It can be
used to design microwave devices such as broad band-
stop filters and high-Q resonators [4, 5], improve an-
tenna performance [6–8] or design multi-frequency an-
tennas [9, 10], increase the efficiency and output power
of power amplifiers and be used as frequency selection
surfaces[11, 12], etc. For the numerical simulation of
2-D EBG structures with regular geometric shapes, the
finite-difference time-domain (FDTD) method [13–15]
is used more frequently than the finite-element time-
domain (FETD) method [16, 17]. The principle of FDTD
is simple and it’s easy to implement by programming. At
the same time, FETD is suitable for dealing with com-
plex media [18] and its discretization schemes are more
flexible and convenient. However, if the EBG structure
contains complex and fine structures, the space step size
will be very small to capture them accurately when dis-
cretizing the computational domain, which will increase
the number of grids and memory demand by a consider-
able amount. At the same time, both FDTD and FETD
are limited by the stability condition [19]. The time step
is restricted by the minimum space step and has to be
very small, which leads to long calculation time and low
efficiency. These present a great challenge to the tradi-
tional FDTD and FETD method.

Recently, the spatial modes filtering (SMF) method
has been proposed and introduced to FDTD and FETD
[20–22] to break through the stability condition by fil-
tering out the spatial modes that are unstable under
the given larger time step from the numerical sys-
tem, which substantially improves the computation ef-
ficiency. Later, the SMF-FETD method based on sub-
gridding technique (SSMF-FETD) is proposed in [23].
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The use of subgridding technique can not only ensure the
discretization quality required by fine structures but also
avoid over-division in the region without fine structures.
At present, the researches on EBG structures mainly fo-
cus on the multifunctional design of metal patch EBG
structures and their applications in microstrip structures
[2–5, 14–16], etc. However, there are insufficient re-
search on the effect on electromagnetic characteristics
of EBG structures composed of multiple material pillars
caused by cross-section shapes, combination ways, and
electromagnetic parameters.

In this paper, the SSMF-FETD method [23], which
has natural advantages in simulating EBG structures,
is used to conduct a numerical analysis on a dielectric
square-pillar EBG structure and a composite H- pillar
EBG structure. In the spatial domain, due to the regular
geometric shape of EBG structures, discretizing the com-
putational domain with rectangular grids is enough to en-
sure modeling accuracy. Using refined rectangular grids
to capture the fine structures in EBG structure not only
increases the discrete flexibility but also avoids creat-
ing excessively unnecessary unknowns in other regions.
Besides, the computational domain is reduced by intro-
ducing the Floquet periodic boundary condition. In the
time domain, the time step of FETD is effectively ex-
panded through the SMF method, thus the time domain
iteration pressure is reduced, and the calculation time is
shortened.

Through analyzing the influence of geometric and
electromagnetic parameters on the transmission charac-
teristics of EBG structures, it can be seen that the optimal
filling ratio of the dielectric square-pillar EBG structure
is 0.5, the composite H-pillar EBG structure has multi-
ple bandgaps and can effectively save metal materials on
the basis of satisfying design requirement. The influence
of electromagnetic parameters on EBG structures can be
uniformly analyzed from the perspective of the average
relative permittivity as: with its increase, the central fre-
quency of bandgap becomes lower. It should be noted
that the bandgap distribution and variation of the com-
posite H-pillar EBG structure are related to how its di-
electric parameters at the grooves on both sides change
and combine.

II. CALCULATION MODEL AND
NUMERICAL METHOD

A. Calculation model of EBG Structure
A 2-D EBG structure composed of dielectric square

pillars periodically arranged in a vacuum is shown in
Fig. 1 (a). There are N layers of pillars in the x-direction
and infinite layers in the y-direction. The cross-section
side length of the pillar is a, the relative permittivity is
εr, and the periodic length of EBG unit is r.

The relevant boundary condition settings of a
calculation periodic unit T when N=6 are shown in
Fig. 1 (b). The absorbing boundary condition (ABC) is
set in the x-direction, and the Floquet theorem f (x,y+
T, t) = f (x,y, t)) can be used to introduce the periodic
boundary condition (PBC) and simplify the calculation
because there are infinite layers in the y-direction. The
planar differential Gaussian pulse is set at the position of
the excitation source. The line integral of the transmit-
ted fields is obtained at the observing position, as Et1 for
the presence of dielectric pillars and Et0 for the absence.
The transmission coefficient of the EBG structure is cal-
culated by the ratio of Et1 and Et0 after Fourier transform
as:

Transmissioncoefficient =
FFT(Et1)

FFT(Et0)
.

Fig. 1. (a) The 2-D dielectric square-pillar EBG struc-
ture. (b) Boundary condition settings of a calculation pe-
riodic unit T.

B. Numerical method
The traditional FETD discretization scheme gener-

ally requires conforming grids to divide the whole do-
main [24], and the scale is ∆ usually determined by the
incident wave as:

∆ ≤ λ

10
=

λ0

10
√

εrµr
,

where εr and µr are the electromagnetic parameters of
the target domain, λ and λ0 are the wavelength of the
incident wave in the target domain and in a vacuum re-
spectively. For the 2-D EBG structure model shown in
Fig. 1, the space step required by dielectric pillars is ob-
viously smaller than that required by the vacuum back-
ground, which would lead to an unnecessarily over-fine
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discretization of the vacuum domain. In this scenario,
the introduction of the subgridding technique can create
a more rational discretization scheme with fewer spatial
elements in the computational domain.

As shown in Fig. 2, suppose the dielectric pillar is
uniformly divided by fine grids of scale l f and the re-
maining vacuum domain is divided by coarse grids of
scale lc. The coarse-to-fine ratio is defined as Ratio = lc

l f
.

Dealing with the discontinuous field values caused by
the different number of edges at the coarse-fine bound-
ary is the core of the subgridding FETD (S-FETD). Tak-
ing the edges at the upper coarse-fine boundary as an ex-
ample, the electric fields are denoted as E5 −E9 at the
fine boundary, as E1 at the coarse boundary in Fig. 2.
The electric fields at the coarse-fine boundary have to be
interpolated [23], the E5 −E9 are respectively equal to

1
Ratio of E1, so the continuity of the fields is ensured and
repeated calculation is avoided.

Fig. 2. Electric fields at the upper coarse-fine boundary
of subgridding element.

The actual computation starts with processing the
edge basis functions which are associated with edge
lengths. The fine-edge basis functions at the boundary
can be directly written as the 1/Ratio of the coarse-edge
basis function [23]. Subsequently, the coarse and fine re-
gions are respectively constructed into a system matrix,
where the coarse region is in the order of first the in-
side edges and then the boundary edges, and the fine
region is in the order of first the boundary edges and
then the inside edges. After completion, the two system
matrices are combined into a complete system matrix T
and S in the order of first coarse region and then fine
region. However, the T and S matrix both contain the

related items that represent the coupling relationship be-
tween the coarse boundary edges. For ensuring the conti-
nuity of the fields, it is necessary to delete them and only
retain their corresponding fine-edge-related items in the
calculation [23]. Then the S-FETD system equation can
be obtained as follows [23]:

Tnew
d2enew

dt2 +Snewenew = hnew,

where Tnew and Snew are the new system mass matrix and
stiffness matrix without the items that relate to the coarse
boundary edges, enew is the correlation coefficient vector
of the edge basis function, hnew is the excitation vector.

Although the S-FETD method can reduce the num-
ber of grids, its time step is still limited by the stabil-
ity condition. Since the system matrices established after
the introduction of subgridding technique in the finite-
element framework still maintain the characteristics of
symmetric positive definite or symmetric semi-positive
definite [23], the SMF method can be directly applied to
S-FETD to break through the limitation of the time step
∆t by the minimum spatial step. By solving the gener-
alized eigenvalue problem of the system, and then ex-
cluding the unstable eigenmodes from the basic numeri-
cal system, the simulation stability under the given large
time step can be guaranteed [22]. The unstable modes are
required to satisfy [22]:

λ
2
i ≥ 4

∆t2 ,

where λ 2
i is the ith eigenvalue of the system matrix, and

the column vectors of matrix Φh are the eigenvectors
of unstable modes. Then the S-FETD can be developed
into SSMF-FETD with a new system without unstable
modes through simple modification, and the system ma-
trix equation is changed into [23]:

Tnew
d2enew

dt2 +Snew
(
I−ΦhΦ

T
h Tnew

)
enew = hnew.

III. TRANSMISSION CHARACTERISTIC
ANALYSIS OF THE SQUARE-PILLAR EBG

STRUCTURE
In this section, the efficiency and accuracy of the

SSMF-FETD method are verified by calculating the
transmission coefficient of the square-pillar EBG struc-
ture. Meanwhile, the effect of geometric and electro-
magnetic parameters on its transmission characteristics
is analyzed.

A. Efficiency and accuracy verification of SSMF-
FETD

The parameters of the dielectric square-pillar are as
follows: cross-section side length is a=0.01 m, periodic
length of EBG unit is r=0.02 m, relative permittiv-
ity is εr = 14. The coarse and fine grids are of scale
l f = 0.0004 m and lc = 0.002 m. The pulse width is
τ = 2×10−10s and the pulse peak value is at t0 = τ .
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Figure 3 shows the transmission coefficient of the 2-
D dielectric square-pillar EBG structure obtained from
FETD, S-FETD, and SSMF-FETD respectively, and the
calculation results are in good agreement. It can be seen
from Table 1 that compared with the FETD which has
63175 unknowns, the S-FETD effectively reduces the
number of unknowns by nearly 84% through the subgrid-
ding technique. On this basis, the SSMF-FETD adopts
the SMF method to expand the time step and reduces
the time occupied by time marching. Although it takes
some time and memory to solve the generalized eigen-
value problem, SSMF-FETD still improves the calcula-
tion efficiency overall. The results show that the SSMF-
FETD method is efficient and accurate in EBG structure
simulation.

Fig. 3. Transmission coefficient of EBG structure ob-
tained from different methods.

Table 1: Simulation parameters of different methods
Methods Size of the

System
Matrix

Time Step (s) Time for
Eigenvalue
Analysis (s)

Time for
Time

Marching (s)

Memory
(MB)

FETD 63175 5×10−13 Null 1786.60 72.79
S-FETD 10075 5×10−13 Null 311.84 18.54
SSMF-
FETD

10075 3.25×10−12 33.18 161.03 4655.00

B. Effect of geometric parameters
Figures 4 and 5 respectively show the effect of

the side length a and periodic length r on transmission
coefficient when εr = 14. When r = 0.020 m, as a in-
creases, the central frequency of bandgap gradually be-
comes lower, the bandwidth increases at first and then
decreases, and reaches the maximum when a=0.010 m.
When a=0.010 m, as r increases, the central frequency
of bandgap becomes lower, the bandwidth increases
at first and then decreases, and reaches the maximum
when r=0.020m. As r increases continuously, the EBG

structure gradually exhibits dual-band characteristics.
Through Fig. 4 and Fig. 5, it can be verified that for such
a square-pillar EBG structure, the bandgap width is the
widest when the filling ratio ( a

r ) is 0.5.

C. Effect of electromagnetic parameters
The effect of the relative permittivity εr of the di-

electric pillar on the EBG structure is shown in Fig. 6,
where f1 and fh denote the lowest and highest frequency
of the bandgap satisfied S21 <−20dB; f0 and BW denote
the central frequency and bandwidth. It can be seen that
as εr increases, the central frequency of the bandgap be-
comes lower and the bandwidth becomes narrower.

Suppose there is a more complex and practical com-
posite dielectric square-pillar EBG structure that con-
tains two different dielectric materials on the basis of
the above structure. A dielectric square pillar with side
length b and dielectric constant εr2 is surrounded by a
layer of dielectric material with εr3 outside. The struc-
tural parameters of the composite dielectric square-pillar
EBG are still a=0.01 m and r=0.02 m. The coarse grids
shown in Fig. 7 (a) cannot accurately describe the pillar.
However, the subgridding discretization scheme shown
in Fig. 7 (b) can satisfy the requirements of geometric
and dielectric parameters on space step at the same time.

When a and r remain unchanged, the effect of
changing b, or the relative permittivity εr2, εr3 on trans-
mission characteristics of the EBG structure, can be at-
tributed to the change of the average relative permittivity
ε ′r of the composite dielectric pillar. It is clear that ε ′r is a
function of εr2, εr3 and dielectric-pillar area as follow:

ε
′
r =

Sb

Sa
(εr2 − εr3)+ εr3,

where Sb = b2 is the internal area, Sa = a2 is the overall
area of the composite pillar.

The change of average relative permittivity ε ′r
caused by the electromagnetic parameters (shown in
Fig. 8 (a) and Fig. 8 (b)) and geometric parameters
(shown in Fig. 8 (c) and Fig. 8 (d)) can affect the cen-
tral frequency and bandwidth of the composite square-
pillar EBG structure. It can be seen that ε ′r can be in-
creased by increasing εr2,εr3 or the filling area with the
larger relative permittivity. In the four different cases
shown in Fig. 8, as ε ′r increases, the central frequency of
the bandgap becomes lower and the bandwidth becomes
narrower. This rule is also applicable to the composite
square-pillar EBG structure has more layers of dielectric
materials.

In fact, εr of the single-dielectric square pillar shown
in Fig. 1 is equivalent to ε ′r. Then, whether it is a single-
dielectric or multi-dielectric square-pillar EBG structure,
by increasing or decreasing the ε ′r, the central frequency
of the bandgap can become lower or higher, also the
bandwidth can become wider or narrower.
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Fig. 4. Effect of a on transmission coefficient when r=0.020m.

Fig. 5. Effect of r on transmission coefficient when a=0.010 m.

The effects of the geometric and electromagnetic pa-
rameters on the transmission coefficient of the dielectric
square-pillar EBG structure are analyzed in this section.
It is verified that the optimal filling ratio of the square-
pillar EBG structure is 0.5. Also, as the average rela-
tive permittivity increases, the central frequency of the
bandgap becomes lower and the bandwidth becomes
narrower.

IV. TRANSMISSION CHARACTERISTIC
ANALYSIS OF THE COMPOSITE H-PILLAR

EBG STRUCTURE
In this section, a composite H-pillar EBG structure

that can satisfy the design requirements and save metal

materials is proposed. The effects of geometric and elec-
tromagnetic parameters on transmission characteristics
are analyzed respectively by adjusting the size and rel-
ative permittivity of the grooves on both sides of the H-
pillar.

A. Design requirements
The periodic arrangement of metal materials or

hybrid materials in a vacuum can also produce EBG
structures. The excitation source parameters are τ =
8 × 10−10s and t0 = τ , under this situation, it is re-
quired to design an EBG structure whose frequency
range of bandgap satisfied S21 < −20dB is not less than
1.28∼1.50 GHz. If the square pillar shown in Fig. 1 is
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Fig. 6. Effect of relative permittivity εr (a) on transmis-
sion coefficient, (b) on central frequency and bandwidth.

Fig. 7. Mesh model of the composite dielectric square
pillar. (a) The coarse mesh scheme. (b) The subgridding
scheme.

made of metal, the bandgap of the metal square-pillar
EBG structure with a = 0.04 m and r = 0.10 m can sat-
isfy the design requirement.

However, it will be extremely expensive to design
with precious metal materials, which are scarce in the
Earth’s crust and difficult to explore, mine, and re-
fine. For the purpose of saving materials and reducing
costs, parts of the metal square pillar can be symmet-
rically hollowed out and filled with dielectric materi-

als to form a composite H-pillar, and then a compos-
ite H-pillar EBG structure. The length of the groove in
the H-pillar is p, the width is q, and the dielectric pa-
rameters at the grooves on both sides are εr1 and εr2
respectively. As shown in Fig. 9 (a), the spatial grids
with a scale of lc = 0.01 m determined by the inci-
dent wave cannot describe the structure accurately, but
it can be solved by using the fine grids l f = 0.002 m to
refine the 4 × 4 coarse grids occupied by the compos-
ite H-pillar as Fig. 9 (b). For simplifying the calcula-
tion, the metal material is regarded as the perfect electric
conductor (PEC).

Figure 10 shows the transmission characteristics
(S21 parameter) of the metal square-pillar EBG struc-
ture and composite H-pillar EBG structures without di-
electric material (εr1 = εr2 = 1). The geometric param-
eters of the ‘H-pillar 1’ case are p = 0.016 m and q =
0.008 m, and the ‘H-pillar 2’ case corresponds to p =
0.010 m and q = 0.036 m. Compared with the square-
pillar case, the bandwidth of the two H-pillar EBG struc-
tures are slightly increased, and the performance is im-
proved. Table 2 shows the detailed bandgap parameters
of these three EBG structures. It can be seen that the
design requirements are satisfied, indicating that the H-
pillar EBG structure can save materials effectively while
maintaining the performance of the metal square-pillar
EBG structure. The cross-sectional area filled with metal
materials has been reduced by 16% and 45% respec-
tively, which is of great significance for saving precious
metal materials and costs.

The composite H-pillars without dielectric material
in both grooves actually construct a pure metal EBG
structure. However, when grooves are filled with di-
electric materials, the H-pillar EBG structure becomes
a multi-band electromagnetic structure, which exhibits
the double-bandgap or triple-bandgap characteristic. The
first bandgap of them still satisfies the design require-
ment of 1.28∼1.50 GHz, but the propagation of elec-
tromagnetic waves in a certain high-frequency range is
also prevented because of the second or third bandgap.
It is significant for the design of multi-frequency and
frequency-selective working devices.

B. Effect of geometric parameters
Figure 11 (a) and Fig. 11 (b) respectively show

the effect of p and q on the transmission characteristics
(S21 parameter) when εr1 = εr2 = 4. The EBG structure
presents the dual-band characteristic at this time. When
q = 0.008 m, as p increases from 0.014 m to 0.018 m, the
performance of the first bandgap is slightly improved,
the central frequency of the second bandgap becomes
lower, and its bandwidth becomes narrower. When p =
0.016 m, as q increases from 0.004 m to 0.012 m, the
performance of the first bandgap is improved, the cen-
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Fig. 8. Effect of average relative permittivity on the central frequency and bandwidth of bandgap. (a) Caused by
εr3 (When b = 0.0072 m, εr2 = 14). (b) Caused by εr2 (When b = 0.0072 m, εr3 = 14). (c) Caused by b (When
εr2 = 18, εr3 = 14). (d) Caused by b (When εr2 = 14, εr3 = 18).

Fig. 9. Mesh model of the composite H-pillar. (a) The
coarse mesh scheme. (b) The subgridding scheme.

tral frequency becomes lower, and the bandwidth is basi-
cally unchanged; the performance of the second bandgap
is improved, and its central frequency becomes lower
while its bandwidth is obviously increased, meanwhile
the pass-band between the two bandgaps becomes nar-
rower.

Table 3 further shows the effect of q on central
frequency and bandwidth when p = 0.016 m, where

Fig. 10. Transmission characteristics (S21 parameter)
of metal EBG structures with different cross-section
shapes.

the suffixes 1-3 indicate the serial number of bandgaps,
and the BW-total denotes the sum of all bandwidths. It
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Fig. 11. The effect of geometric parameters on transmis-
sion characteristics. (a) Caused by p. (b) Caused by q.

Table 2: Bandgap parameters of metal EBG structures
with different cross-section shapes

Requirements Square-pillar H-pillar 1 H-pillar 2
f1(GHz) ≤ 1.28 1.27451 1.23632 1.18103
fh(GHz) ≥ 1.50 1.53956 1.55438 1.54754

can be seen that the EBG structure has three bandgaps
when q ≥ 0.016 m. As q increases, the central fre-
quency of the first bandgap becomes lower and its band-
width becomes narrower, but the design requirements
are still satisfied; the central frequency and bandwidth
of the second bandgap become lower and wider respec-
tively; the central frequency and bandwidth of the third
bandgap become higher and wider respectively. Over-
all, as q increases, the total bandwidth of bandgaps
increases.

Table 3: The effect of q on central frequency and band-
width of bandgaps

q/m f 0-1
(GHz)

BW-1
(GHz)

f 0-2
(GHz)

BW-2
(GHz)

f 0-3
(GHz)

BW-3
(GHz)

BW-total
(GHz)

0.016 1.370 0.392 1.997 0.085 2.105 0.074 0.551
0.020 1.355 0.405 1.920 0.091 2.072 0.075 0.572
0.024 1.343 0.415 1.904 0.113 2.071 0.079 0.607
0.028 1.329 0.405 1.908 0.134 2.100 0.098 0.636
0.032 1.317 0.409 1.892 0.149 2.101 0.103 0.660
0.036 1.302 0.404 1.869 0.170 2.106 0.099 0.673

Fig. 12. Effect of ε ′r on transmission characteristics when
εr1 = εr2. (a) S21 parameter. (b) Central frequency and
bandwidth.

By analyzing the effect of geometric parameters on
transmission characteristics of the composite H-pillar
EBG structure, it can be known that adjusting the size
of the H-pillar grooves can control the generation of the
second, and third bandgap and the movement of their
central frequencies.

C. Effect of electromagnetic parameters
The average relative permittivity of the dielectric re-

gions in the composite H-pillar is ε ′r = (εr1 + εr2)/2 and
the geometric parameters of H-pillar are p = 0.016 m
and q = 0.008 m. Figure 12 shows the effect of ε ′r on
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Fig. 13. Effect of ε ′r on transmission characteristics when
εr1 ̸= εr2.

Fig. 14. Effect of ε ′r on transmission characteristics when
εr1 is constant. (a) S21 parameter. (b) Central frequency
and bandwidth.

transmission characteristics when εr1 = εr2. As ε ′r in-
creases from 3.5 to 6.0, the first bandgap remains prac-

Fig. 15. Effect of εr2 and εr2 on transmission characteris-
tics when ε ′r = 5. (a) S21 parameter. (b) Central frequency
and bandwidth.

tically unchanged, the central frequency of the second
bandgap becomes lower and its performance decreases,
and the widest bandwidth appears when ε ′r = 4.5.

The effect of ε ′r on the transmission characteristics
when εr1 ̸= εr2 is shown in Fig. 13. It can be seen that
the EBG structure exhibits the triple-band characteristic
when the dielectric parameters in grooves are different.
Moreover, the exchange of the left and right dielectric pa-
rameters does not affect the transmission characteristics.
As ε ′r increases, the central frequency of the first bandgap
remains unchanged while the second and third bandgaps
become lower.

Figure 14 shows the effect of ε ′r by adjusting εr2 on
the transmission characteristics when εr1 = 3.5. As εr2
increases from 4.0 to 6.5, ε ′r increases, the central fre-
quency, and bandwidth of the first and third bandgaps
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remain practically unchanged, the central frequency of
the second bandgap gradually becomes lower and ap-
proaches the first bandgap, and its bandwidth remains
unchanged. Combining the results shown in Fig. 13 and
Fig. 14, it can be seen that the increase of dielectric
parameters in both grooves may cause the central fre-
quency of the second and third bandgap both become
lower, and the increase of one-side dielectric param-
eter only affects the central frequency of the second
bandgap.

The influence of simultaneous change in εr1 and εr2
on transmission characteristics when ε ′r = 5 is shown in
Fig. 15. We defined the bandgap with lower central fre-
quency as reference bandgap 1 and the higher central
frequency as reference bandgap 2 when εr1 = εr2 = 5
(the black dash line in Fig. 15). It can be seen that the
EBG structure exhibits a triple-band characteristic when
ε ′r = 5 but εr1 ̸= εr2, the second and third bandgaps
are distributed on both sides of the reference band 2.
Meanwhile, the closer the values of εr1 and εr2 are, the
closer the second and third bandgaps are to the reference
bandgap 2, and the narrower the bandwidth of the third
bandgap is.

The influence of electromagnetic parameters on
transmission characteristics of the composite H-pillar
EBG structure is analyzed by changing the average rel-
ative permittivity ε ′r. First of all, for the dual-band sit-
uation with εr1 = εr2, the increase of ε ′r has little ef-
fect on the first bandgap but causes the central frequency
of the second bandgap obviously becomes lower. Sec-
ondly, for the triple-band situation when εr1 ̸= εr2, the
increase of ε ′r caused by the simultaneous increase of
εr1 and εr2 causes the central frequency of the sec-
ond and third bandgaps to decrease, the increase of
the dielectric parameter on one side (εr1orεr2) only
causes the central frequency of the second band be-
comes lower. Finally, when the second bandgap of
the EBG structure with ε ′r = εr1 = εr2 = 5 is de-
fined as the reference band, as the value of εr1 and
εr2 change simultaneously and get closer but ε ′r re-
mains unchanged, the second and third bandgaps are dis-
tributed on both sides of the reference band but become
closer to it.

In conclusion, the composite H-pillar EBG struc-
ture can effectively save metal materials on the basis
of satisfying the design requirements. By adjusting the
geometric and electromagnetic parameters, the EBG
structure can exhibit dual- or triple-band characteris-
tics while maintaining the characteristics of the first
bandgap constant. The central frequency of the second
and third bandgaps are adjustable, which increases the
total bandgap width of the EBG structure and can pre-
vent the propagation of electromagnetic waves in multi-
ple frequency ranges.

V. CONCLUSION
In this paper, the transmission characteristics of a di-

electric square-pillar EBG structure and a composite H-
pillar EBG structure are analyzed. The Floquet theorem
is combined with the SSMF-FETD method to simulate
the periodically arranged 2-D pillar-array EBG struc-
tures while the subgridding technique and the periodicity
of the EBG structure are used to reduce the calculation.
The influence of geometric and electromagnetic param-
eters on EBG structures with different cross-section
shapes and materials are compared in detail through the
transmission coefficient and S21 parameters. From the
analysis of geometric parameters, it is verified that the
optimal filling ratio of the dielectric square-pillar EBG
structure is 0.5, and the composite H-pillar EBG struc-
ture is effective in saving metal materials while satisfying
the design requirements and exhibits dual- or triple-
bandgap characteristic. The analysis of the electromag-
netic parameters leads to the conclusion that the central
frequency of the bandgap decreases as the average rela-
tive permittivity increases, the changes are more obvious
in the high-frequency bandgaps of the composite H-pillar
EBG structure. The electromagnetic parameters are also
the factors that affect the number of bandgaps. The EBG
structure exhibits triple-bandgap characteristics when the
dielectric parameters on both grooves are different. The
change of one-side dielectric parameter only affects the
central frequency of the second bandgap, but for both
sides, the central frequency and bandwidth of the sec-
ond and third bandgaps are affected simultaneously. The
work of this paper can provide references for the design
and development of EBG structures.
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