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Abstract- Periodic structures have a variety of 
important applications in electromagnetic engineering 
and modern technologies. Commonly used, periodic 
structures include frequency selective surfaces, optical 
gratings, phased array antennas and various 
metamaterials. A three-dimensional finite element 
method (FEM) with efficient boundaries conditions is 
presented to simulate the electromagnetic properties of 
homogeneous periodic material. In our approach, we 
describe an accurate and efficient numerical analysis 
based on high-order multiscalets applied in vector 
edge FEM using new reduction meshing technique 
(MSRM-FEM) to characterize the electromagnetic 
properties of periodic structures. Here, we have 
achieved a factor of 4 in memory reduction and 711 
in CPU speedup over the typical meshing. The FEM is 
applied to solve Maxwell’s equation in the unit cell. 
The Floquet’s theorem is used to take into account the 
periodicity of the boundaries conditions radiation for 
the unit cell. The numerical results are compared to 
published data and other simulation results. Good 
agreement is important to establish the validity and 
usefulness of the (MSRM-FEM) method given in this 
paper. 
 
Index Terms- 3-D FEM, multiscalets functions, 
periodic structures, reduction meshing. 

 
I. INTRODUCTION 

Periodic structures are important in the analysis of 
electromagnetics scattering and radiation for various 
engineering applications. The periodicity in geometry 
is often exploited to achieve some desired 
electromagnetic proprieties. Many microwave and 
optical devices, such as frequency selective structures 
(FSS) [1] and phased array antennas [2], fall into this 
category. 

Analysis of periodic structures has been carried 
out using a variety of numerical methods, such as 
the finite difference time domain (FDTD), the 
moment method (MoM), the finite element method 
(FEM), the transmission line method (TLM), and 
iterative methods [3]. 

Among these methods, FEM excels the 
modelling of complex homogeneous and 
inhomogeneous structures geometries. The FEM is, 
also, able to incorporate different types of 
boundaries and different excitation modes without 
significantly affecting its formulation. The FEM 
modelling of periodic structures has been reported 
in literature for both scattering [4] and radiation 
analysis [5]. 

In our approach, we propose multiscalets as 
basis functions to replace the traditional linear or 
higher order Lagrange, Hierarchical [6] 
interpolation shape functions in the finite-element 
formulation. 

Since we employ multiscalets in our modelling, 
a brief review is given here. More detailed theory 
and background of multiscalets are presented in 
many references such as [7-8].      

In this paper, we present a robust, higher-order 
multiscalets combined with FEM method [9] to 
model infinitely periodic array-structures, by 
imposing appropriate radiation boundaries 
conditions and periodic boundaries conditions. The 
computational domain is confined to a single unit 
cell of the infinite array. The unit cell interior 
region is discretized with regular tetrahedral 
element to model its geometry. 

When the structures contain many unit cells, 
the structure extends to infinity in the periodic 
direction as illustrated in Fig. 1. 
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This purpose is to greatly simplify the 
electromagnetic analysis and minimize the CPU time 
of simulation by enabling the characterization of the 
electromagnetic interaction with the entire structure. 
Here, we will use a new strategy meshing for the 
regular design applied in microwave structures when 
we use the edge element formulation. 

A new mesh-truncated technique is introduced 
for the frequency domain solution of closed and 
open region scattering problems 
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Fig. 1. Graphical representation of a plan wave 
incident on a generic 3-D periodic structure. 
 

II. MULTISCALETS FUNCTIONS 
Basic theory of orthogonal multiwavelets, 

multi-resolutions, and multiscalets can be found in 
many mathematical papers, e.g.  [7] and [8]. 

The multiscalets 0(t), 1(t)… r-1(t), are 
polynomials of degree 2r-1 on [0, 1] and zero 
elsewhere, with r-1 continuous derivatives. In 
electromagnetics, the order is usually ≤ 4. They 
satisfy 
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where  ,m nd  is the Kronecker delta, I is the identity 
matrix of size r x r, r  is the multiplicity 
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For all r, satisfies that j (t) ≠ 0 only on two 

intervals [0, 1] and [1, 2]. The function values and 
its (r −1) derivatives are specified at each integer 
edge. If φj (t) is defined on [0, 2], then they are 
alternatively symmetric and anti-symmetric about 
t = 1.  
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Since the support is [0, 2], the only nonzero 
coefficients are C0, C1, and C2, there are r basis 
functions at each edge, and Ci are matrices of r × r   
(i = 0, 1, 2).  

The polynomials of degree 2r − 1 on [0, 1] and 
[1, 2] are determined by: 
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From (1), we define  
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Explicitly, it appears that 0(t) interpolates at the 
sampling point t=1, but assumes 0 at other 
sampling points t=0. The derivatives )()(

0 tk , 
k=1,2….,r-1 are zero at all integer sampling 
points. Similarly, interpolates at integer point, but 
assumes zero elsewhere for any derivatives other 
than 1.  

In general, 
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While spline interpolation fits a set of function 
values by solving a coupled linear system [8], the 
property (7) of the multiscalets provides 
interpolation that is completely uncoupled. Here, 
i(t), i=0,1….,r-1 will be employed in the finite 
element as the shape functions. 

The matrix coefficients in (4) can be derived by 
the following procedure: 
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Matrices C0 and C2 related by 
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with  

    11 1,,.........1,1   rdiagSS   .         (11) 

The Matrix C2 is given by 
UUC  1

2                 (12) 

  




































 121

2
1.....,,.........

2
1,

2
1 rrr

diag  ,      (13) 

and 

   
 !

!11
nmr

mrU nmr
mn 


  .           (14) 

The multiscalets 0(t) and 1(t) are polynomials 
of degree 2r-1 can be built by a simple iteration 
program or an eigenvalue algorithm called the 
cascade method from the dilatation matrices Ci [7]. 
In general multiscalets with arbitrary r have the form 
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where the coefficient ai,j are obtained by inverting 
the matrix whose entries are 
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In case r=3, the explicit polynomial of 0(t), 1(t) 
and 2(t) are 
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III. FEM FORMULATION 
 
A. Discretization  

The boundary value problem in the full-wave 
analysis of an inhomogeneous field waveguide is 
defined by the vector wave equation in the 3-D 
waveguide problem, [9, 10]. 

Maxwell's equations for the electromagnetic 
fields inside the computation domain are: 
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Here, we eliminate H in the two equations 
above results in the wave equation for E: 
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Assuming that E satisfies some boundaries 
conditions on the surface S enclosing the 
computation domain , it can be shown that the 
original problem is equivalent to the following 
variational problem   

                     (22) 
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(23)  

The surface integral terms are the results of 
corresponding boundaries conditions [11].  

To solve the variational problem (23), the 
entire computation domain  is divided into small 
elements. In the FEM discretization, commonly 
used elements are tetrahedral elements for 3-D 
problems. 

The next step involves expanding the 
electromagnetic fields in terms of basis functions 
in each element. In the context of 3-D problems, it 
is more convenient to use vector basis functions 
instead of scalar basis functions. 

For tetrahedral elements, the edge basis 
function associated with the ith edge is given by 

  0,EF
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Further, e
kL  (k = 1, 2, 3, 4) are the basis node of 

basis functions associated with the four vertices of 
the tetrahedral, where , , , ande e e e

i i i ia b c d  are defined 
as in [9], and i1 and i2 denote the two vertices 
associated with the ith edge and e

il is the length of 
the ith edge. 

In this paper, we will replace the traditional 
functions given in (24) by the multiscalets 
interpolation functions with multiplicity r=3 
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It can be demonstrated that e
tW satisfies 

automatically the convergence condition.  
Once the basis functions are determined, the 

electric (or magnetic) field within each element 
can be expanded as 

1
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where m is the number of interpolating points 
(depending on the order of basis functions) within 
each element (in this case m=6). Substituting (26) 
into (23) and applying Galerkin’s method, the 
following matrix equation for each tetrahedron is 
derived. 
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Corresponding to all tetrahedral, a global matrix 
equation of the following form can be derived: 
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and M is the total number of tetrahedral. The FEM 
mass matrix [A] is symmetric, positive with an 
order n, where n is the total number of edges in the 
whole domain  and (F) is an appropriate 
excitation vector which has non-zero elements 
only in the position of excitation edges. 

The final matrix equation is of very large order 
but the corresponding square matrix is sparse. For 
that, we can use of appropriate iterative conjugate 
gradient (CG) techniques. 

B. Boundaries conditions  
Let us consider the unit cell in an infinite 

periodic structure, as shown in Figure 2; the 
interior volume, denoted here as V, is enclosed by 
four side surfaces: a top surface, and a bottom 
surface. It may contain arbitrary dielectric and 
conducting structures.  

The four side surfaces Sx1; Sx2; Sz1, and Sz2 are 
located at x = 0; x = Dx; z = 0, and z = Dz, 
respectively, where Dx and Dz are periodic lengths 
in the x and z directions. The top surface St is the 
interface between free-space and the unit cell 
region. The bottom surface Sb is usually a ground 
plane. It may also contain waveguide apertures Sw 
that provide excitation for the radiation case. In a 
general configuration, 4 kinds of boundaries 
conditions are involved. On the four side surfaces, 
periodic boundaries conditions are imposed, 
relating the fields on the opposite side surfaces. 
On the top surface, a periodic radiation boundary 
condition is imposed; it simulates the radiation 
towards the free space in the presence of an 
infinite array. If a waveguide is present in the 
structure, a waveguide port condition is imposed 
on Sw. Finally, on conducting surfaces, a perfectly 
electrically conducting (PEC) boundary condition 
is enforced explicitly as a homogeneous Dirichlet 
boundary condition. 
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Fig. 2. The unit cell used for FEM calculations of 
periodic structures along with the locations of the 
various truncation boundaries where either 
absorbing or periodic boundaries conditions are 
imposed. 
 

Periodic boundaries conditions can be derived 
directly from the Floquet theorem [13]. In 
accordance with the Floquet theorem, the 
electromagnetic fields inside and above the 
periodic media should satisfy 

     zzixxi DnkDmkj
zx ezx,EnDz,mDxE         (31) 
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where 
ii0xi cosφsinθkk                  (33) 

ii0zi sinφsinθkk   ,              (34) 
where (i , i) are the incident and scan angles. 
The periodicity forces the incident energy to 
propagate along certain directions. These 
propagation modes are defined analytically in the 
top surface St by the following equations: 

02  iyi EkE  with    2/1
hhyk   with h is the 

correspondent space area. 
To facilitate the implementation of periodic 

boundaries conditions, identical surface meshes 
are created on the opposite side surfaces. Then, for 
each unknown Ei on one side surface, a 
corresponding unknown Ej is identified on the 
opposite surface which has the same relative 
position as Ei.  

By applying the Floquet theorem (31), we 
obtain the following relationship between Ei and 
Ej: 
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where ij is a phase shift term given by 
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In the matrix context, (35) is enforced explicitly as 
an inhomogeneous Dirichlet boundary condition. 
That’s why, for each unknown pair (Ei;Ej ): Ej is 
eliminated; the matrix entries associated with Ei are 
modified as plane is placed on St. 
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For all 22 zxl SSE  which is related to Ek by phase 
shift kl; and finally, the right-hand-side (RHS) 
vector entry associated with Ei is modified as 
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The function (23) contains a surface integral term 
over the top surface St with a form given by 
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 e is known parameter given by 



 r
e

jk0 , with 

rr   . 

IV. REDUCTION MESHING 
Our refinement scheme described in Fig. 3 and 

the coarse grid tetrahedron is split into four 
tetrahedral which are similar to their parent and 
one different tetrahedral in the center. 

Hence, our refinement procedure results in only 
two classes of similar tetrahedral, assuming that 
mesh quality will never deteriorate. The idea is to 
eliminate four tetrahedral to surround with the 
cubic element and to leave only the central 
tetrahedral. 

This technique of meshing used to adapt FEM 
method with other numerical method like the TLM 
method, iterative method etc. in case of a 
hybridization technique, where we convert the 
value of every edge elements to at point (Fig. 4. 
d). With this technique, we can superpose a 
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resulting matrix of these numerical methods with 
our of FEM matrix to obtain the value in inner 
waveguide. 

In the next figure, we present the different steps 
to get our appropriate and desired meshing based 
on the strategy given by Fig. 3. 
                                                 
 

 
Fig. 3.   Element Hexahedral subdivided into five 
tetrahedral with elimination of the secondary 
tetrahedral. 
 

 

 
  
 

       (a) 
 
 
       (b) 
 
 
       (c) 
 
 
       (d) 

 
Fig. 4. A waveguide devised in tetrahedral 
elements where only a center tetrahedral is needed. 

 
The next table presents the efficiency technique 

to reduce the size of a regular structure, and 
presents the reduction report between the typical 
meshing and reduction meshing and another table 
that presents gain obtained in time considering 
proper characteristics of the used machine. 
 

Table 1: Reduction report between typical 
meshing and reduction meshing 

Cells  
Number 

Typical  
Meshes 

Reduction  
Meshes 

Reduction 
 Report 

16×1×16 2433 edges 1056 edges 

32×1×32 9473 edges 4160 edges 

64×1×64 37377 edges 16512 edges 

128×1×128 148481 edges 65792 edges 

 
   44% 

 
 
 

 Table 2: Time report between typical and new 
reduction meshing for different size matrix with a 
CPU 3 GHz and 4 GB of memory 

 
CPU 

 
Memory Number of 

Cells 

Time (sec) for 10 iterations Time (sec) between 
typical and new 

meshingTypical  Meshing New Meshing 

 
3 GHz 

 
4Go 

16116 16 1,4 11,42 
32132 96 10,2 9,41 
64164 868 97 8,95 

1281128 9223 1321 6,98 
  

This purpose will greatly simplify the 
electromagnetic analysis of the CPU time of 
simulation by enabling the characterization of the 
electromagnetic interaction with the entire 
structure. 

V. NUMERICAL RESULTS 
This section contains a series of examples that 

validate the MSRM-FEM formulation compared 
with analytic and reference results. Our strategy is 
based on a unit cell divided on 32∆x×4∆y×32∆z 
elements. All given examples were studied and 
carried out with a gain of 4 in memory 
consumption. 

In this part, we consider the finite element 
analysis in the two-dimensional xz-plane. 
Although not a physically realistic configuration, 
the infinite array model provides a reasonably 
good approximation to the performance of the 
interior elements in a large finite array. Here, we 
suppose that this finite unit cell, the patch 
characterized by its infinite thin thickness is 
inserted between two dielectric layers that have 
the same dielectric permittivity. 

To show that the periodic boundaries 
conditions and periodic radiation boundaries 
conditions are correctly modeling the field 
behaviour, a simple example is tested. We use a 20 
cm thick uniform dielectric layer composed of 
dielectric with relative permittivity r=2.2-j and 
backed with a ground plane. The analysis takes 
into account different oblique incidences. It proves 
clearly that the reflection coefficient is 
independent of both angle and polarization of 
incidence.  
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Dy 

Dz 

Dx 

a 
b 

 
Fig. 5. Rectangular patch unit cell laid between two 
dielectric.  

 
Here, for an incident plane wave with an 

incident angle  = 60°, the TE and the TM 
refection coefficients, shown in Fig. 5, are 
calculated over the frequency band 0.1 to 0.5 GHz. 
In the FEM, the unit cell is modeled as a 
20×20×20cm homogeneous dielectric box with a 
ground plane placed on its bottom surface. Good 
agreement between our MSRM-FEM results and 
the analytical solutions has to validate considered 
in the periodic boundary conditions and the 
periodic radiation boundary conditions. 
The dielectric slab is backed by a ground plane. 
The reflection coefficient should always have 
magnitude of 1 because all the energy shall be 
reflected. In our example, it has a few differences 
with the analytic results. This is due to the intrinsic 
properties of the used dielectric characterized by its 
proper properties. In another way, this is not a 
perfect dielectric characterized by a complex 
permittivity (r=2.2-j). 
The next example is the reflection due to an 
incident upon a plane wave onto a frequency 
selective surface structure. The unit cell presented 
in Fig. 5 is a rectangular patch laid between two 
dielectric with 2-mm-thick with a complex 
permittivity r=2.2-j, and following geometric 
dimensions Dx=Dz=10.0 mm, Dy=2.0 mm, 
a=2.5mm and b=5mm. 

 
 

 
(a) 

 
(b) 

Fig. 6. Reflection coefficient for the 20-cm-thik 
uniform layer (r=2.2) backed with ground plane 
plate at =60° and  =0 for (a) TE, (b) TM. 

 
The normalised power reflection coefficient for 

an oblique incidence is shown in Fig. 7. It is 
compared with the analytic results given by the 
advanced design system (ADS 2004) simulator. 

The second example (Fig. 8) presents the 
normalised transmitted power coefficient for a real 
permittivity (r=4) and following geometric 
dimensions Dx=50.0 mm, Dz=4.0 mm, a= Dx/2 and 
b= Dz. The unite cell is presented in Figure 5. This 
3-D structure is simulated using MSRM-FEM 
FORTRAN code, and compared with FDTD 
reference solution [13]. 
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Fig. 7. The normalised power reflection coefficient 
with side view unit cell, for an oblique incidence. 

 
Fig. 8. The normalised power transmission 
coefficient with side view unit cell, for an oblique 
incidence (I,,)=(90°,0°). 
The incident angle (theta = 90 degrees) shows a 
grazing incidence. Here, very high absorption of 
energy was shown at the resonant frequency 6 
GHz. 

Figure 9 shows the normalised transmission 
power as a function of the frequency, for several 
values of a. The computed values are indicated 
with symbols, and intermediate values have been 
obtained using multiscalets interpolation.  

In all cases, a significant absorption band is 
observed. In addition, the critical frequency 
(frequency in which value attains its minimum) 
decreases as the ratio a/D increases.  

For a real permittivity (r=10.2) and following 
geometric dimensions Dx= Dz=10mm, Dy=2.0 mm, 
a=b=1.0, 4.0 and 8.0 mm. 

 
Figure 10 presents the normalised transmission 

power as a function of the frequency, for several 

values of incident angle . These results show that 
the critical frequency value depends very weakly 
on the incidence angle. 

 

 
 
Fig. 9. The normalised power transmission 
coefficient for various values of the plat’s size: for 
an oblique incidence (I,,)=(90°,0°). 

 
Fig. 10. The normalised transmission coefficient 
as a function of the incident frequency, for various 
values of incident angle: θ =10°, 20°, 45° and 70°. 
The period Dx=Dz =10.0 mm, Dy=2.0 mm and the 
plate’s size a are kept fixed a = 8.0 mm and 
r=10.2.  

VI. CONCLUSION 
In our paper, a new FEM analysis of infinite 

periodic structures described by MSRM-FEM is 
presented. The theoretical basis of FEM theory, 
combined with the Floquet theorem and the 
integral equation formulation analysed with new 
technical meshing strategy is presented. Higher-
order multiscalets vector basis functions are used 
to expand electromagnetic fields. Numerical 
results have demonstrated the efficiency and 
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accuracy of using higher order multiscalets vector 
basis functions.  

The reduction meshing (RM) based technique 
is combined with FEM to reduce the size of 
resulting matrix, consequently, minimization of 
memory and time consumption, 711 in time 
speed compared with typical meshing. 

The FEM feed modeling is, also, discussed in 
detail in radiation problem cases. The validity and 
versatility of the FEM formulation have been 
demonstrated through numerical results compared 
with analytic and published simulations. 
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