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Abstract ─ A finite-difference technique to 
compute Eigenvalues and mode distribution of non 
standard waveguide (and aperture) is presented. It 
is based on a mixed mesh (Cartesian-polar) to 
avoid staircase discretization of curved edges, and 
is able to give accuracy comparable to FEM and 
FIT techniques with a reduced computational 
burden.  
  
Index Terms ─ Eigenvalue, finite-difference, 
Helmholtz equation, waveguide modes.  
 

I. INTRODUCTION 
In finite difference time domain (FDTD) 

analysis of waveguide components, the knowledge 
of the modal expansion can reduce significantly 
the computation time, since it is possible to model 
each homogeneous waveguide trunk as a (small) 
set of 1D-FDTD problems [1]. This approach, 
however, requires the waveguide mode functions 
be known, either analytically, or numerically but 
on a grid matched to the 3D FDTD grid used in 
the inhomogeneous regions. 

The same knowledge of mode function is 
useful in  the analysis of waveguide junction using 
mode matching [2-6], solution of waveguide 
problems with sources [7], and  the  method of 
moments (MOM) analysis of thick-walled 
waveguide slot for linear [8] and circular 
polarization [9] and for apertures [10].  

Apart from some simple geometries, mode 
computation cannot be done in closed forms, so 
that suitable numerical techniques must be used. 
Among them, finite difference (FD) techniques 
[11], despite of their long history, are still very 
popular both for their simplicity and 
computational effectiveness. 

The most popular FD approach is based on the 
use of a standard four-point FD approximation 
[12] of the Laplace operator. But it requires a 
rectangular discretization grid, and therefore a 
boundary with all sides parallel to the rectangular 
axes. As a consequence, many geometries cannot 
be dealt with exactly with this approach, requiring 
a staircase approximation of the boundaries.  

The aim of this paper is to present a FD 
technique for the computation of modes and 
eigenvalues of a waveguide whose boundary 
consists of segments and circular arcs, taking 
exactly into account the curved boundary of the 
waveguide and with no loss of accuracy. Among 
those waveguides, rounded-end rectangular 
waveguides (Fig. 1) are the most interesting, and 
will be detailed here for the technique assessment. 
Our approach, which uses a polar grid for the 
curved region and a rectangular grid for the 
straight ones, is not limited to rounded-end 
rectangular waveguides, but can be straight 
forwardly extended to many other geometries.  

 
Fig. 1. Rounded-end rectangular waveguide. 

 
This approach can be used for circular 

waveguides too, and the following case starts with 
a two-fold purpose: first, to describe the main part 
of our approach in a simpler way; second, to set up 
a test-bench to assess our approach. As a matter of 
fact, we will compare the results of our approach 
on non-standard waveguides with a commercial, 
general-purpose, software. The accuracy of this 
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software, compared to our approach, will be tested 
in the circular case, where the exact solution is 
known. 

The comparison presented shows that the 
technique proposed here gives results comparable 
to those obtained with the finite element method 
(FEM) and the finite integration technique (FIT) 
[13], but with a lower computational cost.  
 
II. DESCRIPTION OF THE TECHNIQUE 

  
A. Technique framework 

Let us consider a generic waveguide. TE modes 
can be found [7] from a suitable scalar 
eigenfunction ϕ , solution of the Helmholtz 
equation:  

 2 2 0t tkϕ ϕ∇ + = , (1) 
with the boundary condition  (BC)        

 0
n
ϕ∂
=

∂
,     (2) 

at the boundary of the waveguide. In the FD 
approach both the equation (1) and the BC (2) are 
replaced by a discretised version, i.e., replacing 
derivatives with finite approximations. This 
transform (1) into a matrix eigenvalue problem, 
whose eigenvectors contain the samples of ϕ  at 
the discretization nodes. The matrix is sparse, so a 
very effective computation is possible. 

If the waveguide boundary consists of straight 
lines, parallel to the coordinate axes, the FD 
method can be applied on a Cartesian grid [12]. 
This grid defines also a partition of the waveguide 
surface into rectangular cells, which completely 
fill the waveguide section. For every other 
waveguide, the section cannot be exactly 
partitioned using rectangular cells and this leads to 
numerical errors (since the eigenvalue problem is 
quite ill – conditioned [14]). 

In order to get a high accuracy, the waveguide 
surface must be discretized maintaining also the 
correct geometry of the boundary. So a different 
discretization scheme should be used, which 
matches exactly the waveguide boundary. 
Therefore, the discretization nodes must be at the 
intersections of a suitable framework, in which the 
waveguide boundary is a coordinate curve. In this 
way, the waveguide section is exactly partitioned 
into a discretization cell.  

The discretized equations can be obtained in 
two ways. The standard approach is to sum a 
Taylor expansion of the potentials [12]. 
Alternatively, we can integrate (1) over a 
discretization cell [11] 

 2 2
t tdS k dSϕ ϕ∇ = −∫ ∫ . (3) 

Use of the Gauss theorem then gives:  

 2 2

F F
t n t S

i dl k dSϕ ϕ
Γ
∇ ⋅ = −∫ ∫ , (4) 

i.e. 

 2

F
tdl k

n
ϕ ϕ

Γ

∂
⋅ = −

∂∫ , (5) 

where FΓ  is the cell boundary, FS  is the cell 
surface and ϕ  is evaluated at the discretization 
node in the right hand side. The left hand side of 
(5) is then divided into four (or more) sides, along 
the coordinate curves, and the normal derivative is 
evaluated in finite terms.  

The two approaches apply in non-overlapping 
sets of cases, but when both can be used, the 
results are the same, as we will show later. 

Since both discretizations (either the standard 
FD and that based on (5) ) can easily include the 
BC (2), the resulting FD formulation to equivalent 
to the complete eigenvalue problem (1,2). 

 
B. Circular waveguide 

In order to explain the difference with the 
standard FD, and to assess our approach, we start 
considering a circular waveguide (see Fig. 2), 
using as grid lines the coordinate lines of a polar 
framework. We assume a regular spacing on the 
coordinate lines, with step r∆ , ϑ∆ , and  let 

( ),nq n r qϕ ϕ ϑ= ∆ ∆ .  

 
Fig. 2. A section of circular waveguide. 
 
Let P the point of coordinates ( ),n r q ϑ∆ ∆ , and 
consider the four nearby points A, B, C, and D, as 
shown in Fig. 2. For the left hand side of (5), we 
get 
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( ) ( )

( ) ( )

1 2
1 D P B P

Sx Sx
F

A P C P

p p

L L
S r r

r r
r r

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ
ϑ ϑ

− −
⋅ ⋅ + ⋅ + ∆ ∆

− −
+ ⋅∆ + ⋅∆ 

∆ ⋅ ∆ ⋅ 

,     (6) 

where  1,
2F SX P
rS r r L rP ϑ ϑ∆ = ⋅∆ ⋅∆ = + ⋅∆ 

 
 and 

2 2SX P
rL r ϑ∆ = − ⋅∆ 

 
. 

Replacing and collecting the term, we get the 
discretized form of (1) as: 

 

( ) ( )

( ) ( )

( ) ( )

2 22

2 22

2 2
2 22

1 1 1
2

1 1 1
2

2 2
P

A D
pp

C B
pp

P t
p

r rr r

r rr r

k
r r

ϕ ϕ
ϑ

ϕ ϕ
ϑ

ϕ ϕ
ϑ

 
⋅ + + ⋅ + 

 ∆∆ ∆ 
 

+ ⋅ + − ⋅ + 
 ∆∆ ∆ 

 
 − + ⋅ ≅ −
 ∆ ∆ 

  (7) 

This expression can be used for all internal 
points, except the circle centre.  

It is worth noting that (8) can be obtained also 
starting from the Helmholtz equation in polar 
coordinates.  

 
2 2

2
2 2 2

1 1
t

p p

k
r r r r

ϕ ϕ ϕ ϕ
ϑ

 ∂ ∂ ∂
⋅ + ⋅ + = − 
∂ ∂ ∂  

,    (8) 

and using a Taylor approximation.  

 ( ) ( )
2

2
2

1
2B P

P P

r r
r r
ϕ ϕϕ ϕ ∂ ∂

= + ⋅ −∆ + ⋅ −∆
∂ ∂

, (9) 

 ( ) ( )
2

2
2

1
2D P

P P

r r
r r
ϕ ϕϕ ϕ ∂ ∂

= + ⋅ +∆ + ⋅ +∆
∂ ∂

.(10) 

Adding and subtracting the last two equations we 
find:  

 
( )

( )
2

22

1 2B D P
Pr r

ϕ ϕ ϕ ϕ∂
= ⋅ + −

∂ ∆
, (11) 

and  

 
2
D B

Pr r
φ ϕϕ −∂

=
∂ ⋅∆

. (12) 

Likely in ϑ direction 

( )
( )

2

22

1 2A C P
P

ϕ ϕ ϕ ϕ
ϑ ϑ
∂

= ⋅ + −
∂ ∆

. (13)  

Collecting all those equation in (8) we get (7). It 
remains to consider the last point, i.e. the centre of 
the circle. In this point, it is not possible to use a 
Taylor expression since it is a point of singularity. 
So we are forced to use (5). 

The left hand side of (5) can be expanded as 
(see Fig. 2)  

 

 
( )

2
1

1
2

2

N
q P

q

r
rr

ϕ ϕ
ϑ

π =

 
  − ∆  ⋅ ⋅ ⋅∆
  ∆∆ ⋅  

  

∑ ,    (14) 

 

and therefore the discretized form of the equation 
(1) is: 
  

2
2

1

4
2 2

N

q P t P
q

N k
r

ϑ ϑϕ ϕ ϕ
π =

 ∆ ∆  ⋅ − ≅ −  ⋅∆   
∑ . (15) 

 
Fig. 3. Boundary point of circular waveguide. 
 

On the boundary points in Fig. 3, for TE modes 
we can replace (9) by a first-order approximation  

2P D
D

r
r
ϕϕ ϕ ∂ ∆ = + ⋅ ∂  

and since the BC is 

0
Dr

ϕ∂
=

∂
, we get P Dϕ ϕ= .        

As a consequence (11) becomes: 

 ( )
2

2 2

1|P B Pr r
ϕ ϕ ϕ∂

= ⋅ −
∂ ∆

, (16) 

and (7) is replaced by:  
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2 2 2 2

2

2
2 2 2

1 1

1 1
2

1 1 2
2 P

A C
p p

B
p

P t
p p

r r

r r r

k
r r r r

ϕ ϕ
ϑ ϑ

ϕ

ϕ ϕ
ϑ

⋅ + ⋅ +
∆ ∆

 
+ − ⋅ +  ∆ ∆ 
 

− − + ⋅ ≅ −  ∆ ∆ ∆ 

.          (17) 

 
C. Rounded-end waveguide  

Now consider the section of a rounded-end 
waveguide (see Fig. 4). The section can be 
divided into three regions. In the external 
ones, we use a polar framework; while in the 
central one, we can use the standard Cartesian 
framework, as in Fig. 4.  

 
Fig. 4. A mixed mesh (Cartesian-polar) of non-
standard waveguide and its dimensions. 
 

In the Cartesian framework, we assume a 
regular spacing on the coordinate lines, with step 

,x y∆ ∆  (see Fig. 4). 

 
Fig. 5. (a) Internal point , (b) boundary point . 

 
For each internal point, we can use the 

standard expression of the Laplacian obtained by 
the Taylor expansion [10]:  

 

2
2 2 2 2

2 2

2 2

CA B D
t p

P

x x y y

x y

ϕϕ ϕ ϕϕ

ϕ

∇ = + + + +
∆ ∆ ∆ ∆

 
+ + ∆ ∆ 

, (18) 

and replace (1) by the discretized form: 

 

, 1 , 1 1, 1,
2 2 2 2

2
, ,2 2

2 2

i j i j i j i j

i j t i j

x x y y

k
x y

ϕ ϕ ϕ ϕ

ϕ ϕ

− + − ++ + + +
∆ ∆ ∆ ∆

 
+ + = − ∆ ∆ 

. (19) 

Equation (19) cannot be used for boundary 
points, where BC (2) must be enforced.  For a 
boundary point, using 3 nearby points, A,B,C, in 
Fig. 5b, we get:  

 2 2 2 2 2

2

2 1CA B
P

t P

x x y x y

k

ϕϕ ϕ ϕ

ϕ

 
+ + + + = ∆ ∆ ∆ ∆ ∆ 

−

, (20) 

and analogously one can do the same to (17).  In the 
polar regions, we use the expression (7) and (17), so 
it remains to analyze the border between the polar 
and the Cartesian regions, Fig. 6. Since the grid 
geometry here is not a regular one, a new 
approximation of the Laplacian operator must be 
used, tailored to the geometry at hand. We propose 
here a general approach to derive such 
approximations in unusual geometries, which can 
be easily extended to discretize other differential 
operators.  

For each point (except the centre), let us number 
with 0 the sampling point, and with i (i = 1, . . . , 5) 
its neighbouring points as in Fig. 6a. The 
discretized form of 2

tϕ∇  can always be written as: 

 ( )
2 2

2
02 2t i i

i
A

x y
φ φφ ϕ ϕ∂ ∂

∇ = + ≅ −
∂ ∂ ∑ .    (21) 

Each difference in (21) can be expressed as a 
Taylor series: 

 

0
0 0

2 2
2 2

2 2
0 0

2

0

1 1
2 2

i i i

i i

i i

x y
x y

x y
x y

x y
x y

ϕ ϕϕ ϕ

ϕ ϕ

ϕ

∂ ∂
− = ⋅∆ + ⋅∆ +

∂ ∂

∂ ∂
+ ⋅∆ + ⋅∆ +

∂ ∂

∂
+ ⋅∆ ⋅∆
∂ ∂

, (22) 
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Fig. 6. (a) Point between polar and Cartesian 
framework.  (b) Boundary point between polar and 
Cartesian framework.  
 
where all derivatives of ϕ  are computed at the 
sampling point, and ( , )i ix y∆ ∆  is the position of the 
i–th point w.r.t point 0. 

Using (21), the right hand side of (22) 
becomes: 

2 2 2

1 2 3 4 52 2B B B B B
x y x y x y
ϕ ϕ ϕ ϕ ϕ∂ ∂ ∂ ∂ ∂
+ + + +

∂ ∂ ∂ ∂ ∂ ∂
,(23) 

where iB  in (23) are linear combination of the 
unknown coefficient iA . 

1 1 1 2 2 3 3 4 4 5 5

2 1 1 2 2 3 3 4 4 5 5
2 2 2 2 2

3 1 1 2 2 3 3 4 4 5 5
2 2 2 2 2

4 1 1 2 2 3 3 4 4 5 5

5 1 1 1 2 2 2 3 3 3

4 4 4 5 5 5

B A x A x A x A x A x
B A y A y A y A y A y
B A x A x A x A x A x
B A y A y A y A y A y
B A x y A x y A x y

A x y A x y

= ∆ + ∆ + ∆ + ∆ + ∆
= ∆ + ∆ + ∆ + ∆ + ∆

= ∆ + ∆ + ∆ + ∆ + ∆

= ∆ + ∆ + ∆ + ∆ + ∆
= ∆ ∆ + ∆ ∆ + ∆ ∆ +

+ ∆ ∆ + ∆ ∆

.(24) 

Equation (23) is a second order approximation 
of the Laplace operator if 

 1 2 5 3 40 1B B B B B= = = = = , (24) 
which is a linear system in the iA . Its solution gives 
the required coefficient of (2).  

For a boundary point see Fig. 6b, boundary 
condition (2) can be expressed as: 

   1 2
1 1

0
x y
ϕ ϕα α∂ ∂

+ =
∂ ∂

, (25) 

where 1 2,α α  are the components of a unit vector 
normal to the boundary, (25) can be used to replace 
equations 1 2 0B B= =  with a single one, to 
compensate for the absence of one unknown (see 
Fig. 6b).  

 
Fig. 7. Centre point between polar and Cartesian 
framework  
 

For the centre of the circle, see Fig. 7, we still 
use (5) to get: 

( )

( )

2
1

1 2
2

8
2

2 2
2 P

N
q P

q

N
B P t

r
r r

k
r

ϕ ϕ
ϑ

π

ϕ ϕ
ϕ ϕ ϕ

=

− ∆  ⋅ ⋅ ⋅∆ + ∆ ∆ 

+  + ⋅ + − = −  ∆   

∑
.(26) 

Putting together all equations, we get a matrix 
eigenvalue problem [14] whose solution gives the 
required waveguide modes.  

 
III. NUMERICAL EXPERIMENTS 

The discretized eigenvalues problem obtained 
in the last section must be solved by a numerical 
routine. As a matter of fact, a highly sparse matrix 
is obtained, so that the sparse matrix routines of 
Matlab have been used. We have first compared 
the first few TE eigenvalues for a circular 
waveguide with analytical results and with a FIT 
simulation performed with CST.  

Fig. 8. Comparison between our FD code and 
analytic results and FIT(CST) results for TE 
modes in circular wave guide with r=4 mm r∆
=0.0792 mm and ϑ =1°. 
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Fig. 9. Comparison between our FD code and 
analytic results and FIT(CST) results for TE 
modes in circular wave guide with r=4 mm r∆
=0.0792 mm and ϑ∆ =0,5°. 

 
We have made several tests by varying the 

steps ( r∆ , ϑ∆ ). The results of Figs. 8 and 9 show 
that our technique has a very low error, as long as 
the steps are small.  

 
Fig. 10. Comparison between our FD code and 
FIT (CST) results for TE modes in rounded-end 
wave guide with x y r∆ = ∆ = ∆ = 0,1569 mm 
D=B=8 mm and ϑ =1°. 

 
Fig. 11. Comparison between our FD code and  
FIT (CST) results for TE modes in rounded-end 
wave guide with x y r∆ = ∆ = ∆ = 0,0792 mm 
D=B=8 mm and ϑ∆ =1°. 

 
When compared to CST, our results are better, 

and can be obtained in a fraction of the 
computational time required by the former. 
However, the comparison of FIT and analytical 
results show that the CST is quite accurate, too, 
and can be used to test our approach for the 
rounded-end waveguide.  

To assess our FD code in this case, we have 
evaluated a few TE modes, for different structures 
(see Figs. 10 - 15). Figures 10 – 15 show the 
comparison between our results and CST ones.  

 
Fig. 12. Comparison between our FD code and 
FIT (CST) results for TE modes in rounded-end 
wave guide with x y r∆ = ∆ = ∆ = 0,03980 mm 
D=B=8 mm and ϑ =1°. 
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Fig. 13. Comparison between our FD code and 
FIT (CST) results for TE modes in rounded-end 
wave guide with x y r∆ = ∆ = ∆ = 0,01995 mm 
D=B=8 mm and ϑ =1°. 

 
Fig. 14. Comparison between our FD code and 
FIT (CST) results for TE modes in rounded-end 
wave guide with x y r∆ = ∆ = ∆ =  0,0792 mm 
D=8 mm B=16 mm and ϑ =1°. 
 

The results show that our FD approach allows a 
high accuracy, when the discretization step is 
suitably chosen. But even a quite large area, such 
as in Table 3, allows a quite accurate mode 
evaluation. 
 

VI. CONCLUSION 
A FD approach to the computation of the TE 

modes of the waveguide using a mixed polar-
Cartesian grid has been described. The typical 
sparse matrix obtained by the FD allows an 

effective computation of the eigenvalues, with a 
good accuracy, as shown by our tests. The 
described approach can be extended to waveguides 
with more general geometries, as long as the guide 
boundary is a coordinate curve of a suitable 
framework.  

 
Fig. 15. Comparison between our FD code and 
FIT (CST) results for TE modes in rounded-end 
wave guide with x y r∆ = ∆ = ∆ =  0,03980 mm 
D=8 mm B=16 mm and ϑ =1°. 
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