
GPU implementation of the Modified Equivalent Current
Approximation (MECA) method

Luis E. Tirado1, José Á. Martínez-Lorenzo1, Borja González-Valdés1, Carey Rappaport1,
Oscar Rubiños-López2, Hipólito Gómez-Sousa2

1 Department of Electrical Engineering
Northeastern University, Boston, MA 02115, USA

{ltirado, jmartine, bgonzale, rappapor}@ece.neu.edu

2 Department of Signal Theory and Communications
University of Vigo, ETSI de Telecomunicación, Campus Universitario, E-36310 Vigo, Spain

{oscar, hgomez}@com.uvigo.es

Abstract ─ This paper investigates two different
methods of implementing the Modified Equivalent
Current Approximation (MECA) method using
CUDA parallel programing and computing
platform [1]. The MECA method allows the
analysis of dielectric and lossy geometries and
reduces to the well-studied Physical Optics (PO)
formulation in case of PEC caterers [2]. We
discuss the implementation details and
performance of using both an add-on toolbox for
MATLAB™ to offload computations to the GPU,
as well as porting MECA code to CUDA directly.
We show through simulations that both methods
are effective at significantly reducing the MECA
algorithm computation time.

Index Terms ─ CUDA, GPGPU, MECA, parallel
programming, Physical Optics.

I. INTRODUCTION
There are various methods to compute the

effects of a wave scattered from arbitrary objects.
Full-wave methods, like the Method of Moments
(MoM) are very precise, but computationally
intensive. Physical Optics methods, which
approximate currents by a tangent plane method,
are less accurate but faster. MECA is a good
compromise, calculating equivalent currents based
on oblique incidence of a plane wave on the
interface together with a field decomposition into
transverse electric (TE) and transverse magnetic
(TM) components [3].

The current implementation of MECA using
CPUs carries a heavy computational load when
evaluated at multiple frequencies and observation
points in different aspect angles and incident
directions. However, with the recent rise in
availability of Graphics Processing Unit (GPU)
computing, the most processing intensive parts of
the MECA code can be evaluated exactly without
any approximations or interpolations at higher
speeds. Parallelization using GPUs is desired for
the MECA algorithm given that the algorithm is
being implemented as a forward model in a
personnel screening portal-based real-time whole
body imaging system [4]. The Department of
Homeland Security (DHS), through its mission of
preventing terrorism and enhancing security,
requires a high throughput, accurate, and quick
detection of person-borne threats in highly secure
areas. DHS calls for a security checkpoint
throughput of 200-250 persons/hour. For this
reason, it is essential to be able to model the
scattered electric and magnetic fields from the
person under test as fast as possible.

In order to reduce the total runtime of MECA,
two distinct approaches have been developed. Our
first approach consists of using AccelerEyes
Jacket [5] GPU engine for MATLAB™ to create a
vectorized version of the existing MECA code.
Jacket automatically wraps MATLAB™ code into
a GPU compatible form, allowing a programmer
to extend existing code to parallel processing with
minimal effort. The second approach is to port

726

1054-4887 © 2012 ACES

ACES JOURNAL, VOL. 27, NO. 9, SEPTEMBER 2012

Submitted On: Jan. 19, 2012
Accepted On: July 22, 2012

existing MECA code in C directly to CUDA. This
paper will detail the implementation details and
performance of both methods.

The paper is divided as follows. Section II
gives an overview of the MECA method and
briefly describes the platform used for
computation. In Section III, the GPU architecture
and two approaches to speed up the MECA code
are discussed, while Section IV details the
performance results obtained.

II. MECA OVERVIEW
The MECA method described in [2] and [3]

calculates the currents from scattering objects that
need not be perfect electric conductors (PEC). The
objects may be dielectrics or even lossy, and
MECA provides comparable results to full wave
methods such as Method of Moments (MoM),
except at grazing angles, where diffraction effects
become more pronounced. The part of most
concern in this paper is the calculation of the
electric and magnetic fields given the inputs of
magnetic and electric currents, observation
directions, and the faceted object geometry
representation, as this is the most time consuming
part of the algorithm.

The MECA algorithm calculates the scattered
electric field ࢙࢑ࡱ at the observation point Pobs as the
sum of the contributions of all the facets i of a given
mesh geometry as [8]:
࢙࢑ࡱ ൌ ∑ࣅ૛࢐ ࢏࢑࢏࢘࢑࢏࢘૚࢑࢐షࢋ ሾࢇ࢑࢏ࡱ െ ࢇ࢑࢏ࡴ૚ࣁ ൈ ሿ, (1)	࢑࢏ො࢘

where ߣ is the wavelength used, ݆ is the imaginary
unit, ݇ଵ is the wavenumber of the first medium, ࢇ࢑࢏ࡱ and ࢇ࢑࢏ࡴ are the electric and magnetic
fields at the observation vector ࢑࢘ as defined in
 ૚ is the intrinsic impedance of the firstࣁ ,[3]
medium, and ࢑࢏࢘ ൌ is the position vector ࢑࢏ො࢘௜௞ݎ
from the i-th facet centroid ࢏࢘ to the observation
vector ࢑࢘. The magnetic field is calculated in a
similar manner. Figure 1 denotes the notation of
the position vectors used for an oblique wave
incidence in a faceted geometry.

Fig. 1. Position vectors, observation point Pobs,
propagation vector ࢖ෝ࢏, angle of incidence ߠ௜,
incident electric and magnetic fields, and facet Si.

III. GPU IMPLEMENTATION DETAILS

A. Fermi CUDA architecture
The Fermi parallel architecture in the Tesla

C2070 GPU consists of a Single Instruction
Multiple Data (SIMD) processor with 14
Streaming Multiprocessors (SM). Each SM design
contains 32 Streaming Processors (SPs), also
called CUDA cores, 32,768 registers and 64 KB of
RAM with a configurable partitioning of shared
memory and L1 cache [7]. Each SM can run a
variable number of threads, and the local resources
are divided among them [1]. A thread on the GPU
is a basic element of the data to be processed.
Threads are grouped into blocks which can contain
64 to 1024 threads. Blocks are grouped together
into a grid. A kernel is a code function that is
executed by the CUDA device using the number
of specified blocks and threads (see Fig. 2).

The CPU and GPU maintain their own DRAM
and address spaces, respectively called host and
device memory. Device memory can be of
different types: global, shared, and constant. Table
1 lists the differences between these memory
types.

Table 1: CUDA memory types

Memory Scope Lifetime Access
global grid application slow read/write
shared block kernel fast read/write

constant grid application cached read only

A challenge in developing MECA on NVIDIA
CUDA enabled GPUs is making the most effective
use of the platform’s memory system and

727TIRADO, ET. AL.: GPU IMPLEMENTATION OF THE MODIFIED EQUIVALENT CURRENT APPROXIMATION METHOD

resources. In addition, the productivity of GPUs
under different programming paradigms can be
significant depending on the application [8], which
brings forth the two subsequent approaches.

Fig. 2. CUDA Threading model.

B. JACKET GPU engine implementation

The first approach to parallelizing the existing
MATLAB code is to vectorize the arithmetic
operations. MATLAB and GPU computing both
tend to perform best on vectorized code. The same
is also true of Jacket, especially for element-wise
operations which are performed just-in-time, i.e.
they are batched together and performed in a single
kernel.

Once the code is vectorized, input data is cast to
Jacket’s GPU data structure, allowing real-time
compile-on-the-fly calculations and memory
management on the GPU behind-the-scenes.
Functions called on GPU data execute on the GPU
automatically without any extra programming.

As an example, assume that there are 80,000
facets (nT), and 181 observation points (nr) in
the polar angle ࣂ sweep for a single circumferential
angle ࣘ in our simulation. The single-threaded
MATLAB implementation relies on a loop that
iterates over the observation points, calculating the
electric and magnetic field x, y, and z components
for each point. The Jacket GPU implementation,
however, reshapes the intermediate data quantities
into single matrices of size (3, nT*nr), which
eliminates looping, and many GPU threads work at
the same time to compute the output fields in steps.
The end result is that the GPU multiprocessor
occupancy is increased up to 72% for the example

case, and thus, the vectorized code runtime is
reduced as compared to the single-threaded for-loop
version of the code.

One disadvantage of this type of vectorization
is that, for the example case, up to 2.5 GB of GPU
memory is allocated to perform the calculations. In
order to be able to process a larger data set, the
algorithm needs to be broken down into chunks,
and many intermediate calculations are repeated.
The data chunks then have to be arranged to match
the original output format. Thus, for each additional ࣘ cut in our example, the computational time is
doubled due to memory constraints. Even though
the MECA runtime is reduced with the Jacket code,
there is still room for improvement in reducing
memory usage and maximizing GPU resource
occupancy.

C. CUDA C code implementation

It was advantageous to reuse the existing
structure of an already existing and validated
version of the MECA code ported to C [2]. In the
OpenMP C version of MECA, the sum in Eq. (1) is
calculated in series by use of an accumulating
variable. Figure 3(a) shows the implementation of
the scattered field computations for the OpenMP C
version of the code.

In the CUDA version of MECA, changes must
be made to account for the GPU architectural
differences to avoid having many threads writing to
the same memory address, resulting in a race
condition. Without modifying the C code, atomic
operations would be necessary to compute the sum
in Eq. (1). Atomic operations read, modify, and
write back a value to memory without interfering
with other threads. However, the GPU cannot
perform many atomic operations without
considerable delays. In our example with 80,000
facets, the computations using atomic operations
are one order of magnitude slower than the single
threaded MATLAB implementation of MECA.

The CUDA implementation strategy is shown
in Fig. 3(b). In order to avoid atomic operations, we
structure the code to use one GPU thread to do
intermediate calculations for each facet in the input
geometry. For our example from the previous
section, 256 threads per block are instantiated, so
we end up using ceil(nT/256) = 313 blocks.
Given that the current NVIDIA Fermi architecture
allows for up to 65,536 blocks of up to 1024 threads
each, it is clear that a large number of facets can be

728 ACES JOURNAL, VOL. 27, NO. 9, SEPTEMBER 2012

evaluated in parallel limited only by GPU memory
constraints.

a) Each thread computes for a set of observation points
(OpenMP C approach)

b) nT threads compute part of Eq. (1) in nr kernels,
parallel reduction, last kernel (nr threads) computes field

(CUDA C approach)

Fig. 3. OpenMP & CUDA MECA implementations

More explicitly, the CUDA code begins by
copying the variables used by the algorithm into the
GPU’s global memory. Next, nr kernels are
launched, in which each of the threads calculates
part of the i-th term inside the sum in Eq. (1)
independently and writes each result to a different
index of an array initialized in GPU memory.
Subsequently, a parallel reduction algorithm [9] is
used to sum all the facet contributions for the k-th
observation point. This algorithm takes advantage
of the most efficient implementation of a parallel
sum reduction automatically based on data input
size, relying on use of fast shared memory [10].
Lastly, a kernel with nr threads loads the
previously-saved reductions for each of the
coordinate axes. Next, it evaluates the cross-

products of Eq. (1) and the analogous magnetic
field equation to compute the real and imaginary
parts of the scattered electric and magnetic fields at
each observation point ࢑࢘.

Comparing to the Jacket version, in the
example case, only 25 MB of GPU memory is
required to perform the computations, and for each
additional observation point, only 24 extra bytes of
memory are required to be allocated on the GPU,
which greatly falls below the memory requirements
for the vectorized Jacket version of the code.

Based on the fact that the brute force
computation of the scattered far fields is an
O(nT*nr) operation, there is a massive amount of
parallelism that is exploited by porting the MECA
code to CUDA enabled GPUs.

IV. RESULTS
In addition to computing the total runtime

results for the Jacket and CUDA implementations,
we also compare these to MATLAB code (single
threaded) [3] and OpenMP multi-threaded C code
developed in [2]. The Jacket and CUDA
implementations are also validated against the
existing MATLAB and C codes for numerical
accuracy. The MECA code has been widely
validated with other electromagnetic codes in
previous works, [2,3] which compare MECA with
other electromagnetic methods. The discussion on
accuracy is out of the scope of this paper, which
focuses on the speed improvements.

The simulations conducted in this paper are
performed using a single workstation 2.8 GHz
Intel® Core™ i7 930 quad-core CPU with an
NVIDIA Tesla™ C2070 Computing Processor
with 6 GB of GDDR5 VRAM. The Tesla™ C2070
contains 448 stream processors running at 1.15
GHz, which has a double precision floating point
peak performance of 515 GFLOPs. MATLAB
version 7.11.0.584 (R2010b) is used along with
Jacket version 1.8.1. The compiled CUDA code
and Jacket 1.8.1 both are based on NVIDIA’s
CUDA version 4.0.

A square plate geometry is used for the
performance tests, by varying the number of facets
and keeping the number of observations fixed to
722 to compare the performance to the results
presented in [2]. The number of facets is kept
fixed at 80,000 while the number of observations
is varied. The maximum number of facets used in
the tests is 8 ൈ 106, and the maximum number of

729TIRADO, ET. AL.: GPU IMPLEMENTATION OF THE MODIFIED EQUIVALENT CURRENT APPROXIMATION METHOD

observations points is 360 ߠ cuts ൈ 360 ߶ cuts.
The plane incident wave frequency is 60 GHz.

Figures 4 and 5 show the runtime for
computing Eq. (3) as a function of the number of
facets for the CUDA version of the code versus
the MATLAB and OpenMP C versions for near
and far-fields, respectively. Jacket M code timing
results are not included in these figures due to a
product limitation in the implementation of the
Kronecker tensor product in the Jacket version
used to construct vectorized data matrices with
more than 1.67 ൈ 107 elements in one dimension.

Fig. 4. Runtime vs. number of facets for near-field
calculations (722 observations).

Fig. 5. Runtime vs. number of facets for far-field
calculations (722 observations).

The CUDA C implementation is 1.5 to 9.3
times faster than the OpenMP C implementation

with GPU multiprocessor occupancy varying from
70 to 100% as a function of the number of facets
used in the computations. The algorithm reaches
100% GPU occupancy at 2.9	ൈ 106 facets and 4.5 ൈ 106 facets for the near and far-field versions,
respectively.

Figures 6 and 7 show the runtime for
computing Eq. (1) for 80,000 facets and a varying
number of observations for the MATLAB (single-
threaded), OpenMP (multi-threaded), Jacket M,
and CUDA C codes for near and far-fields,
respectively. From the timing results obtained, we
can ascertain that CUDA C code scales linearly
with the number of observations in the same way
as the MATLAB and OpenMP C versions do.

Fig. 6. Runtime vs. number of observations for
near-field calculations (80,000 facets).

Fig. 7. Runtime vs. number of observations for
far-field calculations (80,000 facets).

730 ACES JOURNAL, VOL. 27, NO. 9, SEPTEMBER 2012

The Jacket M implementation for 80,000 facets
is only 7% to 18% faster than the OpenMP C
implementation. This is because the input data
needs to be processed in chunks due to the high
memory usage required by the vectorization. In
addition, the Jacket code GPU multiprocessor
occupancy is 72% or 68% for the near and far-
field implementations, respectively. The CUDA
version for the same number of facets, however, is
80% or 84% efficient for the near and far-fields. It
computes all of the data in a single run, which
makes it 3.8 to 5.3 times faster than the OpenMP
code, a marked performance improvement.

To validate the numerical accuracy of the
CUDA implementation, the maximum error
between the OpenMP C and CUDA C results is
computed for both the near and far-field cases with
varying facet numbers from the earlier simulation.
The results are shown in Table 2 and Table 3 for
near and far-field observations, respectively.

Table 2: CUDA and OpenMP near-field maximum
error

Number
of facets

Total electric
field maximum

error (V/m)

Total magnetic
field maximum

error (A/m)
20000 8.39E-14 2.35E-16
80000 1.07E-13 2.80E-16

320000 1.94E-13 4.85E-16
2000000 6.30E-12 1.68E-14
8000000 8.85E-12 2.37E-14

Table 3: CUDA and OpenMP far-field maximum
error

Number
of facets

Total electric
field maximum

error (V/m)

Total magnetic
field maximum

error (A/m)
20000 2.61E-11 6.92E-14
80000 6.13E-11 1.63E-13

320000 1.23E-10 3.27E-13
2000000 8.43E-10 2.24E-12
8000000 3.82E-09 1.01E-11

The variation of the maximum error difference

is due to the parallel sum reduction algorithm used
to sum all the facet contributions for each
observation point, whereas the OpenMP code adds
up the contributions serially. Given that floating
point operations are non-commutative, small

differences between the CPU and GPU results are
expected.

V. CONCLUSION
This paper presents a CUDA version of a

modified PO method known as the modified
equivalent current approximation (MECA), which
is valid for both PEC and dielectric objects. Our
results show that the computational performance
of the CUDA version is increased up to 9.3 times
with respect to the OpenMP C algorithm timings.
This shows promise to implement an inverse
reconstruction algorithm, taking advantage of the
speedup and the excellent numerical accuracy that
the CUDA platform provides.

ACKNOWLEDGMENT
This material is based upon work supported by

the U.S. Department of Homeland Security under
Award Number 2008-ST-061-ED0001. The views
and conclusions contained in this document are
those of the authors and should not be interpreted
as necessarily representing the official policies,
either expressed or implied of the U.S. Department
of Homeland Security.

REFERENCES
[1] M. Ujaldon, “Using GPUs for Accelerating

Electromagnetic Simulations,” ACES Journal, vol.
25, no. 4, pp. 294-302, 2010.

[2] H. Gómez-Sousa, J. A. Martínez-Lorenzo, O.
Rubiños-López, J. G. Meana, M. Graña-Varela, N.
Gonzalez-Valdes, M. Arias-Acuña, “Strategies for
Improving the Use of the Memory Hierarchy in an
Implementation of the Modified Equivalent
Current Approximation (MECA) Method,” ACES
Journal, vol. 25, no. 10, pp. 841-852, 2010.

[3] J. G. Meana, J. A. Martinez-Lorenzo, F. Las-Heras,
and C. Rappaport, “Wave Scattering by Dielectric
and Lossy Materials using the Modified Equivalent
Current Approximation,” IEEE Transactions on
Antennas and Propagation, vol. 58, no. 11, pp.
3757-3761, 2010.

[4] J. L. Fernandes, C. Rappaport and D. M. Sheen,
“Improved Reconstruction and Sensing Techniques
for Personnel Screening in Three-Dimensional
Cylindrical Millimeter-Wave Portal Scanning,”
Proc. SPIE 8022, 802205, 2011.

[5] AccelerEyes, Jacket, Version 1.8.1,
http://www.accelereyes.com, Sep. 2011.

[6] C. A. Balanis, Advanced Engineering
Electromagnetics, 1st ed. New York, USA: John
Wiley and Sons, 1989.

731TIRADO, ET. AL.: GPU IMPLEMENTATION OF THE MODIFIED EQUIVALENT CURRENT APPROXIMATION METHOD

[7] NVIDIA, “NVIDIA’s Next Generation CUDA™
Compute Architecture: Fermi™,” Version 1.1,
http://www.nvidia.com/content/PDF/fermi_white_
papers/NVIDIA_Fermi_Compute_Architecture_W
hitepaper.pdf, 2009.

[8] M. Malik, T. Li, U. Sharif, R. Shahid, T. El-
Ghazawi, G. Newby, “Productivity of GPUs under
Different Programming Paradigms,” Concurrency
and Computation: Practice and Experience, vol. 24,
no. 2, pp. 179-191, 2012.

[9] J. Hoberock, N. Bell, “Thrust: A Parallel Template
Library,” V1.3.0, http://www.meganewtons.com,
2010.

[10] NVIDIA, “Thrust Quick Start Guide,” Version 01,
http://developer.download.nvidia.com/compute/De
vZone/docs/html/CUDALibraries/doc/Thrust_Quic
k_Start_Guide.pdf, Jan. 2011.

Luis Eladio Tirado was born in
Mayagüez, Puerto Rico in 1983. He
received the B.S. and M.S. degrees
in Electrical Engineering from
Northeastern University in 2006
and 2008, respectively. He is
currently on leave of absence from
Raytheon Integrated Defense

Systems (IDS) to complete the Ph.D. in Electrical
Engineering at Northeastern University, Boston, MA,
where he is part of the Awareness and Localization of
Explosives-Related Threats (ALERT) Department. His
research interests include GPU implementations of
forward and inverse millimeter wave models.

José Ángel Martínez-Lorenzo
(S’03–M’05) was born in Madrid,
Spain, in 1979. He received the
M.S. and Ph.D. degrees in
telecommunications engineering
from the University of Vigo, Vigo,
Spain, in 2002 and 2005,
respectively.

He was a Teaching and Research Assistant with the
University of Vigo from 2002 to 2004. He joined the
faculty at the University of Oviedo, Gijón, Spain, in
2004, where he was an Assistant Professor in the area
of signal theory and communications until 2006. During
spring and summer 2006, he was a Visiting Researcher
with the Bernard Gordon Center for Subsurface Sensing
and Imaging Systems (Gordon-CenSSIS), Northeastern
University, Boston, MA. He was appointed as a
Research Assistant Professor with the Department of
Electrical and Computer Engineering, Northeastern
University. He is currently an active member of the
Awareness and Localization of Explosives-Related
Threats (ALERT), a Department of Homeland Security
Center of Excellence, Northeastern University. He has

authored over 80 technical journal and conference
papers. His research is geared toward the
understanding, modeling, and quantitative prediction of
complex electromagnetic problems with special
application to security sensing systems, communication
systems, and biomedical systems.

Borja González-Valdés was born
in Gijon, Spain. He received the
Electrical Engineering degree and
Ph.D. from the University of
Vigo, Spain, in 2006 and 2010
respectively. From 2006 to 2010,
he was a research grant holder and
then postdoctoral researcher with

the Antenna and Optical Communications group at the
University of Vigo. During 2008 and 2009, he was a
visiting researcher at the Gordon CenSSIS Center,
Northeastern University, Boston, USA. In 2011, he
joined the ALERT Center of Excellence, Northeastern
University, Boston, USA as a Postdoctoral Research
Associate. His research interests include antenna
design, inverse scattering, advanced imaging
techniques, and THz technology.

Carey M. Rappaport (S’80–
M’87–SM’96–F’06) received the
B.S. degree in mathematics, the
B.S., M.S., and E.E. degrees in
electrical engineering in 1982, and
the Ph.D. degree in electrical
engineering in June 1987 from the
Massachusetts Institute of
Technology (MIT), Cambridge.

He was a Teaching and Research Assistant with
MIT from 1981 to 1987 and also with COMSAT Labs,
Clarksburg, MD, and The Aerospace Corporation, El
Segundo, CA, during summers. In 1987, he joined the
faculty at Northeastern University, Boston, MA, where
he has been a Professor of electrical and computer
engineering since July 2000. During fall 1995, he was a
Visiting Professor of electrical engineering with the
Electromagnetics Institute, Technical University of
Denmark, Lyngby, Denmark, as part of the W.
Fulbright International Scholar Program. During the
second half of 2005, he was a Visiting Research
Scientist with the Commonwealth Scientific Industrial
and Research Organization, Marsfield Australia. He has
consulted for Geo-Centers, Inc., PPG, Inc., Alion
Science and Technology, Inc., and several
municipalities on wave propagation and modeling and
also on microwave heating and safety. He was a
Principal Investigator of an ARO-sponsored
Multidisciplinary University Research Initiative on
Humanitarian Demining and a Co-Principal
Investigator of the NSF-sponsored Bernard Gordon

732 ACES JOURNAL, VOL. 27, NO. 9, SEPTEMBER 2012

Center for Subsurface Sensing and Imaging Systems
(Gordon-CenSSIS), Northeastern University, Boston,
MA. He has authored over 300 technical journal and
conference papers in the areas of microwave antenna
design, electromagnetic wave propagation and
scattering computation, and bioelectromagnetics. He is
the holder of two reflector antenna patents, two
biomedical device patents, and three subsurface sensing
device patents.

Dr. Rappaport is a member of Sigma Xi and Eta
Kappa Nu professional honorary societies. He received
the IEEE Antenna and Propagation Society’s H. A.
Wheeler Award for best applications paper, as a
student, in 1986.

Oscar Rubiños-López received
the M.S. and Ph.D. degrees in
telecommunication engineering
from the Universidad de Vigo,
Vigo, Spain, in 1991 and 1997,
respectively. He joined the
Universidad de Vigo in 1991 and is
currently an associate professor

with the Dept. of Signal Theory and Communications at
the Universidad de Vigo. During different periods of
2004, 2005 and 2007, he was a Visiting Researcher at
Chalmers University of Technology in Goteborg
(Sweden). His research interests include: the analysis
and design of broadband antennas, numerical
simulation of applied electromagnetic problems,
terahertz technology for electromagnetic sensing
applications, satellite systems and wireless
communications. He has coauthored over 80 technical
journal and conference papers. From 2001 to 2006,
he held the position of Vice-President of University
Extension (2001-2002) and for University Extension
and Students at the University of Vigo.

Hipólito Gómez-Sousa received the
M.S. degree in telecommunications
engineering from the University of
Vigo, Vigo, Spain, in 2009. Since
2009, he has been with the
Department of Signal Theory and
Communications, University of
Vigo. His current research interests

are on computational electromagnetism, THz sensing
systems, and quantum cryptography.

733TIRADO, ET. AL.: GPU IMPLEMENTATION OF THE MODIFIED EQUIVALENT CURRENT APPROXIMATION METHOD

