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Abstract ─ This paper investigates two different 
methods of implementing the Modified Equivalent 
Current Approximation (MECA) method using 
CUDA parallel programing and computing 
platform [1]. The MECA method allows the 
analysis of dielectric and lossy geometries and 
reduces to the well-studied Physical Optics (PO) 
formulation in case of PEC caterers [2]. We 
discuss the implementation details and 
performance of using both an add-on toolbox for 
MATLAB™ to offload computations to the GPU, 
as well as porting MECA code to CUDA directly. 
We show through simulations that both methods 
are effective at significantly reducing the MECA 
algorithm computation time. 
  
Index Terms ─ CUDA, GPGPU, MECA, parallel 
programming, Physical Optics.  
 

I. INTRODUCTION 
There are various methods to compute the 

effects of a wave scattered from arbitrary objects. 
Full-wave methods, like the Method of Moments 
(MoM) are very precise, but computationally 
intensive. Physical Optics methods, which 
approximate currents by a tangent plane method, 
are less accurate but faster. MECA is a good 
compromise, calculating equivalent currents based 
on oblique incidence of a plane wave on the 
interface together with a field decomposition into 
transverse electric (TE) and transverse magnetic 
(TM) components [3]. 

The current implementation of MECA using 
CPUs carries a heavy computational load when 
evaluated at multiple frequencies and observation 
points in different aspect angles and incident 
directions. However, with the recent rise in 
availability of Graphics Processing Unit (GPU) 
computing, the most processing intensive parts of 
the MECA code can be evaluated exactly without 
any approximations or interpolations at higher 
speeds. Parallelization using GPUs is desired for 
the MECA algorithm given that the algorithm is 
being implemented as a forward model in a 
personnel screening portal-based real-time whole 
body imaging system [4]. The Department of 
Homeland Security (DHS), through its mission of 
preventing terrorism and enhancing security, 
requires a high throughput, accurate, and quick 
detection of person-borne threats in highly secure 
areas. DHS calls for a security checkpoint 
throughput of 200-250 persons/hour. For this 
reason, it is essential to be able to model the 
scattered electric and magnetic fields from the 
person under test as fast as possible. 

In order to reduce the total runtime of MECA, 
two distinct approaches have been developed. Our 
first approach consists of using AccelerEyes 
Jacket [5] GPU engine for MATLAB™ to create a 
vectorized version of the existing MECA code.  
Jacket automatically wraps MATLAB™ code into 
a GPU compatible form, allowing a programmer 
to extend existing code to parallel processing with 
minimal effort. The second approach is to port 
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existing MECA code in C directly to CUDA. This 
paper will detail the implementation details and 
performance of both methods. 

The paper is divided as follows. Section II 
gives an overview of the MECA method and 
briefly describes the platform used for 
computation. In Section III, the GPU architecture 
and two approaches to speed up the MECA code 
are discussed, while Section IV details the 
performance results obtained.  
 

II. MECA OVERVIEW 
The MECA method described in [2] and [3] 

calculates the currents from scattering objects that 
need not be perfect electric conductors (PEC). The 
objects may be dielectrics or even lossy, and 
MECA provides comparable results to full wave 
methods such as Method of Moments (MoM), 
except at grazing angles, where diffraction effects 
become more pronounced. The part of most 
concern in this paper is the calculation of the 
electric and magnetic fields given the inputs of 
magnetic and electric currents, observation 
directions, and the faceted object geometry 
representation, as this is the most time consuming 
part of the algorithm. 

The MECA algorithm calculates the scattered 
electric field ࢙࢑ࡱ  at the observation point Pobs as the 
sum of the contributions of all the facets i of a given 
mesh geometry as [8]:  
࢙࢑ࡱ  ൌ ∑ࣅ૛࢐ ࢏࢑࢏࢘࢑࢏࢘૚࢑࢐షࢋ ሾࢇ࢑࢏ࡱ െ ࢇ࢑࢏ࡴ૚ࣁ ൈ  ሿ,     (1)	࢑࢏ො࢘
 
where ߣ is the wavelength used, ݆ is the imaginary 
unit, ݇ଵ is the wavenumber of the first medium, ࢇ࢑࢏ࡱ  and ࢇ࢑࢏ࡴ  are the electric and magnetic 
fields at the observation vector ࢑࢘ as defined in 
 ૚ is the intrinsic impedance of the firstࣁ ,[3]
medium, and ࢑࢏࢘ ൌ  is the position vector ࢑࢏ො࢘௜௞ݎ
from the i-th facet centroid ࢏࢘ to the observation 
vector ࢑࢘. The magnetic field is calculated in a 
similar manner. Figure 1 denotes the notation of 
the position vectors used for an oblique wave 
incidence in a faceted geometry. 

 
Fig. 1. Position vectors, observation point Pobs, 
propagation vector ࢖ෝ࢏, angle of incidence ߠ௜, 
incident electric and magnetic fields, and facet Si. 
 
III. GPU IMPLEMENTATION DETAILS 

A. Fermi CUDA architecture 
The Fermi parallel architecture in the Tesla 

C2070 GPU consists of a Single Instruction 
Multiple Data (SIMD) processor with 14 
Streaming Multiprocessors (SM). Each SM design 
contains 32 Streaming Processors (SPs), also 
called CUDA cores, 32,768 registers and 64 KB of 
RAM with a configurable partitioning of shared 
memory and L1 cache [7]. Each SM can run a 
variable number of threads, and the local resources 
are divided among them [1]. A thread on the GPU 
is a basic element of the data to be processed. 
Threads are grouped into blocks which can contain 
64 to 1024 threads. Blocks are grouped together 
into a grid. A kernel is a code function that is 
executed by the CUDA device using the number 
of specified blocks and threads (see Fig. 2). 
 

The CPU and GPU maintain their own DRAM 
and address spaces, respectively called host and 
device memory. Device memory can be of 
different types: global, shared, and constant. Table 
1 lists the differences between these memory 
types. 
 
Table 1: CUDA memory types 

Memory Scope Lifetime Access 
global grid application slow read/write 
shared block kernel fast read/write 

constant grid application cached read only 
 

A challenge in developing MECA on NVIDIA 
CUDA enabled GPUs is making the most effective 
use of the platform’s memory system and 
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resources. In addition, the productivity of GPUs 
under different programming paradigms can be 
significant depending on the application [8], which 
brings forth the two subsequent approaches. 

 

 

 
 

Fig. 2. CUDA Threading model. 
 
B. JACKET GPU engine implementation 

The first approach to parallelizing the existing 
MATLAB code is to vectorize the arithmetic 
operations. MATLAB and GPU computing both 
tend to perform best on vectorized code. The same 
is also true of Jacket, especially for element-wise 
operations which are performed just-in-time, i.e. 
they are batched together and performed in a single 
kernel. 

Once the code is vectorized, input data is cast to 
Jacket’s GPU data structure, allowing real-time 
compile-on-the-fly calculations and memory 
management on the GPU behind-the-scenes. 
Functions called on GPU data execute on the GPU 
automatically without any extra programming. 

As an example, assume that there are 80,000 
facets (nT), and 181 observation points (nr) in 
the polar angle ࣂ sweep for a single circumferential 
angle ࣘ in our simulation. The single-threaded 
MATLAB implementation relies on a loop that 
iterates over the observation points, calculating the 
electric and magnetic field x, y, and z components 
for each point. The Jacket GPU implementation, 
however, reshapes the intermediate data quantities 
into single matrices of size (3, nT*nr), which 
eliminates looping, and many GPU threads work at 
the same time to compute the output fields in steps. 
The end result is that the GPU multiprocessor 
occupancy is increased up to 72% for the example 

case, and thus, the vectorized code runtime is 
reduced as compared to the single-threaded for-loop 
version of the code. 

One disadvantage of this type of vectorization 
is that, for the example case, up to 2.5 GB of GPU 
memory is allocated to perform the calculations. In 
order to be able to process a larger data set, the 
algorithm needs to be broken down into chunks, 
and many intermediate calculations are repeated. 
The data chunks then have to be arranged to match 
the original output format. Thus, for each additional ࣘ cut in our example, the computational time is 
doubled due to memory constraints. Even though 
the MECA runtime is reduced with the Jacket code, 
there is still room for improvement in reducing 
memory usage and maximizing GPU resource 
occupancy. 
 
C. CUDA C code implementation 

It was advantageous to reuse the existing 
structure of an already existing and validated 
version of the MECA code ported to C [2].  In the 
OpenMP C version of MECA, the sum in Eq. (1) is 
calculated in series by use of an accumulating 
variable. Figure 3(a) shows the implementation of 
the scattered field computations for the OpenMP C 
version of the code.  

In the CUDA version of MECA, changes must 
be made to account for the GPU architectural 
differences to avoid having many threads writing to 
the same memory address, resulting in a race 
condition. Without modifying the C code, atomic 
operations would be necessary to compute the sum 
in Eq. (1). Atomic operations read, modify, and 
write back a value to memory without interfering 
with other threads. However, the GPU cannot 
perform many atomic operations without 
considerable delays. In our example with 80,000 
facets, the computations using atomic operations 
are one order of magnitude slower than the single 
threaded MATLAB implementation of MECA. 

The CUDA implementation strategy is shown 
in Fig. 3(b). In order to avoid atomic operations, we 
structure the code to use one GPU thread to do 
intermediate calculations for each facet in the input 
geometry. For our example from the previous 
section, 256 threads per block are instantiated, so 
we end up using ceil(nT/256) = 313 blocks. 
Given that the current NVIDIA Fermi architecture 
allows for up to 65,536 blocks of up to 1024 threads 
each, it is clear that a large number of facets can be 
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evaluated in parallel limited only by GPU memory 
constraints.  
 

 
 

a) Each thread computes for a set of observation points 
(OpenMP C approach)  

 

 
 

 
 

b) nT threads compute part of Eq. (1) in nr kernels, 
parallel reduction, last kernel (nr threads) computes field 

(CUDA C approach) 
 
Fig. 3. OpenMP & CUDA MECA implementations 
 

More explicitly, the CUDA code begins by 
copying the variables used by the algorithm into the 
GPU’s global memory. Next, nr kernels are 
launched, in which each of the threads calculates 
part of the i-th term inside the sum in Eq. (1) 
independently and writes each result to a different 
index of an array initialized in GPU memory. 
Subsequently, a parallel reduction algorithm [9] is 
used to sum all the facet contributions for the k-th 
observation point. This algorithm takes advantage 
of the most efficient implementation of a parallel 
sum reduction automatically based on data input 
size, relying on use of fast shared memory [10]. 
Lastly, a kernel with nr threads loads the 
previously-saved reductions for each of the 
coordinate axes. Next, it evaluates the cross-

products of Eq. (1) and the analogous magnetic 
field equation to compute the real and imaginary 
parts of the scattered electric and magnetic fields at 
each observation point ࢑࢘. 

Comparing to the Jacket version, in the 
example case, only 25 MB of GPU memory is 
required to perform the computations, and for each 
additional observation point, only 24 extra bytes of 
memory are required to be allocated on the GPU, 
which greatly falls below the memory requirements 
for the vectorized Jacket version of the code. 

Based on the fact that the brute force 
computation of the scattered far fields is an 
O(nT*nr) operation, there is a massive amount of 
parallelism that is exploited by porting the MECA 
code to CUDA enabled GPUs. 
 

IV. RESULTS 
In addition to computing the total runtime 

results for the Jacket and CUDA implementations, 
we also compare these to MATLAB code (single 
threaded) [3] and OpenMP multi-threaded C code 
developed in [2]. The Jacket and CUDA 
implementations are also validated against the 
existing MATLAB and C codes for numerical 
accuracy. The MECA code has been widely 
validated with other electromagnetic codes in 
previous works, [2,3] which compare MECA with 
other electromagnetic methods. The discussion on 
accuracy is out of the scope of this paper, which 
focuses on the speed improvements. 

The simulations conducted in this paper are 
performed using a single workstation 2.8 GHz 
Intel® Core™ i7 930 quad-core CPU with an 
NVIDIA Tesla™ C2070 Computing Processor 
with 6 GB of GDDR5 VRAM. The Tesla™ C2070 
contains 448 stream processors running at 1.15 
GHz, which has a double precision floating point 
peak performance of 515 GFLOPs. MATLAB 
version 7.11.0.584 (R2010b) is used along with 
Jacket version 1.8.1. The compiled CUDA code 
and Jacket 1.8.1 both are based on NVIDIA’s 
CUDA version 4.0. 

A square plate geometry is used for the 
performance tests, by varying the number of facets 
and keeping the number of observations fixed to 
722 to compare the performance to the results 
presented in [2]. The number of facets is kept 
fixed at 80,000 while the number of observations 
is varied. The maximum number of facets used in 
the tests is 8 ൈ 106, and the maximum number of 
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observations points is 360 ߠ cuts ൈ 360 ߶ cuts. 
The plane incident wave frequency is 60 GHz. 

Figures 4 and 5 show the runtime for 
computing Eq. (3) as a function of the number of 
facets for the CUDA version of the code versus 
the MATLAB and OpenMP C versions for near 
and far-fields, respectively. Jacket M code timing 
results are not included in these figures due to a 
product limitation in the implementation of the 
Kronecker tensor product in the Jacket version 
used to construct vectorized data matrices with 
more than 1.67 ൈ 107 elements in one dimension. 
 

 
Fig. 4. Runtime vs. number of facets for near-field 
calculations (722 observations). 
 

 
Fig. 5. Runtime vs. number of facets for far-field 
calculations (722 observations). 
 

The CUDA C implementation is 1.5 to 9.3 
times faster than the OpenMP C implementation 

with GPU multiprocessor occupancy varying from 
70 to 100% as a function of the number of facets 
used in the computations.  The algorithm reaches 
100% GPU occupancy at 2.9	ൈ 106 facets and 4.5 ൈ 106 facets for the near and far-field versions, 
respectively. 

Figures 6 and 7 show the runtime for 
computing Eq. (1) for 80,000 facets and a varying 
number of observations for the MATLAB (single-
threaded), OpenMP (multi-threaded), Jacket M, 
and CUDA C codes for near and far-fields, 
respectively.  From the timing results obtained, we 
can ascertain that CUDA C code scales linearly 
with the number of observations in the same way 
as the MATLAB and OpenMP C versions do. 
 

 
Fig. 6. Runtime vs. number of observations for 
near-field calculations (80,000 facets). 
 

 
Fig. 7. Runtime vs. number of observations for 
far-field calculations (80,000 facets). 
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The Jacket M implementation for 80,000 facets 
is only 7% to 18% faster than the OpenMP C 
implementation. This is because the input data 
needs to be processed in chunks due to the high 
memory usage required by the vectorization. In 
addition, the Jacket code GPU multiprocessor 
occupancy is 72% or 68% for the near and far-
field implementations, respectively. The CUDA 
version for the same number of facets, however, is 
80% or 84% efficient for the near and far-fields. It 
computes all of the data in a single run, which 
makes it 3.8 to 5.3 times faster than the OpenMP 
code, a marked performance improvement. 

To validate the numerical accuracy of the 
CUDA implementation, the maximum error 
between the OpenMP C and CUDA C results is 
computed for both the near and far-field cases with 
varying facet numbers from the earlier simulation. 
The results are shown in Table 2 and Table 3 for 
near and far-field observations, respectively. 
 
Table 2: CUDA and OpenMP near-field maximum 
error 

Number 
of facets 

Total electric 
field maximum 

error (V/m) 

Total magnetic 
field maximum 

error (A/m) 
20000 8.39E-14 2.35E-16 
80000 1.07E-13 2.80E-16 

320000 1.94E-13 4.85E-16 
2000000 6.30E-12 1.68E-14 
8000000 8.85E-12 2.37E-14 

 
Table 3: CUDA and OpenMP far-field maximum 
error 

Number 
of facets 

Total electric 
field maximum 

error (V/m) 

Total magnetic 
field maximum 

error (A/m) 
20000 2.61E-11 6.92E-14 
80000 6.13E-11 1.63E-13 

320000 1.23E-10 3.27E-13 
2000000 8.43E-10 2.24E-12 
8000000 3.82E-09 1.01E-11 

 
The variation of the maximum error difference 

is due to the parallel sum reduction algorithm used 
to sum all the facet contributions for each 
observation point, whereas the OpenMP code adds 
up the contributions serially. Given that floating 
point operations are non-commutative, small 

differences between the CPU and GPU results are 
expected. 
 

V. CONCLUSION 
This paper presents a CUDA version of a 

modified PO method known as the modified 
equivalent current approximation (MECA), which 
is valid for both PEC and dielectric objects. Our 
results show that the computational performance 
of the CUDA version is increased up to 9.3 times 
with respect to the OpenMP C algorithm timings. 
This shows promise to implement an inverse 
reconstruction algorithm, taking advantage of the 
speedup and the excellent numerical accuracy that 
the CUDA platform provides. 
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