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Abstract ─ In light of the new capability to fork an 

already parallelized kernel on a GPU, this paper 

shows how the use of the parallelization capabilities 

of a PC’s Graphics Processing Unit (GPU) makes 

the finite element design of coupled problems (such 

as the electroheat shape optimization problems we 

work with) realistic and practicable in terms of 

computational time. 

 

Index Terms - Finite elements, GPU computing, 

inverse problems, parallelization. 
 

I. INTRODUCTION: INVERSE 

PROBLEMS 
In contrast to the forward problem (Fig. 1) that 

we normally solve, inverse problems are more 

realistic in device design going from the bottom to 

the top of that figure, in such design tasks as, say, 

compute the size and other descriptions of a motor 

that can produce so much torque. Figure 2 shows 

the design cycle for an inverse problem as a 

repeating cycle of forward problems. In the first 

step, the design parameter set ℎ̅ is randomly 

selected (or estimated by a subject expert), and 

thereupon we generate the parameter based mesh, 

get the finite element solution, measure the object 

value (often conveniently defined as a least square 

difference between design objects desired and those 

computed) and check whether it is minimum or not. 

If this is minimum, we terminate the loop; 

otherwise we change the design parameters and do 

the same procedure again. 

This procedure repeats until the object value 

goes to its minimum. This solution process 

however, is computationally intensive. To address 

this problem, parallelization on GPU threads has 

been proposed [1-2]. Each finite element solution in 

its matrix solution part is computationally intensive 

[3,4] and GPU parallelization significantly reduces 

solution time. But in genetic algorithm optimization 

[5,6], several copies of the matrix are held on the 

GPU and the corresponding solutions attempted. 

This runs into the memory limits of GPUs, newly at 

12 GB from around the time of the initial 

submission of this paper [7]. 

In this paper therefore, we look more deeply at 

using the GPU to do the optimization in parallel. 

We examine memory limits and use the recently 

revived element-by-element finite element method 

for speedy finite element matrix solutions on the 

GPU [8,9] to address memory concerns and exploit 

such matrix solution speedups to obtain a speedup 
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of 28 for genetic algorithm based coupled field 

optimization. Where we are allowed to fork only 

one computational kernel and not allowed to fork 

that kernel into further parallelizable processes on a 

GPU, we delve into important considerations for 

choosing which one kernel to fork. 

 
 

 

 

 

 

 

 

 
 

Fig. 1. The typical forward problem. 

 

 
 

Fig. 2. The design cycle for inverse problem. 

 

II. GPU COMPUTATION: MEMORY 

STUDY 
In the CUDA programming model (see Fig. 3), 

a kernel is executed by a grid of thread blocks. A 

thread block is a batch of threads that can cooperate 

sharing data through shared memory and 

synchronizing their execution. Threads from 

different blocks operate independently. 

Figure 4 shows the anatomy of the CUDA 

C/C++ program. Serial code executes on a CPU 

thread. Parallel code executes in many concurrent 

GPU threads across multiple parallel processing 

elements. The main limit with GPU computing is 

memory [7]. We worked with the 4 GB NVIDIA 

system, the best available till recently. Despite this 

limit, we have shown that for a single matrix 

equation, sizes up to 32768 x 37268 can be 

broached (for the first order triangular finite 

element magnetostatic and temperature field 

devices we were working with [10]) without 

running into the limit [1]. This is quite a large 

problem and that is why seminal papers on GPU 

computation for finite elements do not mention this 

limit [2]-simply because they did not run into the 

limit. In parallelized genetic algorithm based 

optimization in inverse problems however [5,6], 

several finite element solutions have to be 

performed simultaneously. Memory limits 

therefore are critical. In the following sections we 

examine these limits with a view to establishing the 

practicality of parallelizing finite element 

optimization on the GPU for coupled field 

problems where the memory load is doubled by the 

two-stage finite element problem and exploded 

when several two-stage kernels are launched on 

parallel GPU threads in genetic algorithm 

optimization, because gradient methods of 

optimization run into problems of mesh 

discontinuity and programming complexities in 

keeping track of shape changes [10]. 

 

 
 

Fig. 3. The CUDA programming model. 

 

 
 

Fig. 4. Anatomy of the CUDA C/C++ program. 

Device description: dimensions, currents, material, etc. 

Analysis technique: closed form, finite elements, etc. 

Device performance: force, inductance, electric stress 
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The test problem we finally take up is that of 

reshaping an originally square conductor which is 

heated by eddy currents (Fig. 5). The object is to 

have a constant temperature along a straight line. 

This paper being on parallelizing already forked 

kernels, the actual description of the geometry and 

analysis by first order triangular finite elements for 

the first stage problem from eddy current magnetics 

and the second stage by thermal analysis of the 

Poissonian temperature system (also with first order 

triangles), is left to references [10, 11]. In [11], the 

shape is optimized by gradient techniques, and [10] 

elaborates on the details of genetic algorithm 

optimization which are not taken up here but rather 

are left to [10]. 

 

 
 

Fig. 5. The electro-thermal shape optimization by 

two-stage finite element analysis. 

 

In this section, we investigate the standard 

sparse and profile matrix storage methods [3,4], in-

order to reduce the matrix storage requirement and 

to use those storage scheme representations to get 

the solution. 

We began this study looking at the largest 

single precision matrix sizes we can store on a 

single GPU. Besides full matrix storage and even 

symmetric matrix storage, which we do not 

consider because of the memory need running into 

order n2 for an nxn matrix, we looked particularly at 

profile storage and sparse storage [3,4]. Our 

findings are shown in Table 1. Clearly, neither 

sparse storage nor profile storage runs even close to 

the 4 GB memory limit (superseded today by the 12 

GB limit [7]) at the practically large matrix size of 

10,000. However, they could if we were launching 

several threads, each with a matrix solution, as 

required with the GPU implementation of the 

genetic algorithm [5,6,8,10]. Therefore, we will 

confine ourselves to the sparse storage scheme, the 

better of the storage schemes as seen from Table 1. 

 

Table 1: Storage demand with matrix size for 

different storage schemes 

Matrix 

Size 

Storage (MB) 

Regular Profile Sparse 

100 0.0400 0.0044 0.0065 

400 0.0686 0.0413 0.0169 

900 3.1070 0.1271 0.0363 

1,600 9.7961 0.2870 0.0703 

2,500 23.8895 0.5438 0.1137 

6,000 137.4435 1.5428 0.2734 

8,000 244.2932 2.6614 0.3594 

10,000 381.66046 4.0821 0.4502 

 

A further study was done to compare the 

performance of different methods with sparse 

storage. As seen from Table 1 for sparse storage, 

the memory requirement is approximately 0.45 

MB, even for the unlikely large matrix size of 

10,000 x 10,000. For the two-stage problem 

therefore, we still need only 0.45 MB since the eddy 

current and thermal problems are solved in 

sequence, because the thermal solution needs the 

thermal Specific Absorption Rate (SAR) from the 

eddy current solution. With 4 GB available, 

8000+parallel threads are allowed, corresponding 

to a genetic algorithm population of 8000+. Now 

that 8 GB is available to us [7], memory we 

conclude is not an issue, except for very large 

problems or when full storage is used. 

 

III. ELEMENT-BY-ELEMENT FINITE 

ELEMENTS 
In the mid-1980s, the then new IBM PC 286 

had a memory limit of 612 KB, which could not 

hold even a trivial matrix in memory. To overcome 

this, researchers used the Jacobi method of matrix 

solution (also known as Gauss-Seidel by power 

systems engineers) in a modified form [3,4]. 

Practically, the Element-by-Element Finite 

Element Method (EbEFEM) does not need a large 

amount of memory because it never stores or forms 

the global matrix except the diagonal. Generally, 

iterative algorithms such as the Jaccobi method, 

Conjugate Gradient method, etc., are used to get the 

solution of the problem [3]. During the 1980s, 

researchers could not represent big problems in 
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very limited memory so they used the EbEFEM 

method with an iterative method to represent very 

large problems [12]. Mahinthakumar and Hoole 

[13] used parallel implementation of the Jacobi 

conjugate gradients algorithm for field problems. In 

order to reduce the cost of memory, they used 

EbEFEM with the Jacobi Conjugate Gradients 

algorithm (JEBECG), which is very fast [13]. 

Figure 6 shows the sequential execution time 

against matrix size under for Incomplete Cholesky 

Conjugate Gradients (ICCG), Jacobi Conjugate 

Gradients (JCG) and Jacobi EbECG (JEbECG) on 

a SEQUENT SYMMETRY parallel computer for 

matrices from magnetic product design using first 

order traingles. Until matrix size 750, the ICCG 

method dominates; between 750 and 2500, JCG 

dominates rather than the other two methods; and 

for matrix size greater than 2500, JEbECG 

dominates. 

 

 
 

Fig. 6. Sequential execution times for ICCG, ICG, 

and JEBECG methods for matrix sizes. 

 

Figure 7 for parallel implementation on the 

same shared memory machine using all its 4 

processors shows similar findings. One processor 

does book-keeping, and with the 3 remaining 

processors working in parallel, the speedup is 2 or 

less (and not 3 because of communication 

bottlenecks). It is critical to note that more 

processors are not available for faster computation; 

nor to parallelize the genetic algorithm, and in one 

such genetic algorithm thread to parallelize matrix 

solution. 

For matrix size under 500, ICCG dominates; 

for matrix size between 500 and 1800, JCG 

dominates; and for matrix size greater than 1800, 

JEbECG dominates. For simple problems, 

conjugate gradient schemes with sparsity 

computation or renumbering are suitable. It is not 

widely recognized that although renumbering: a) is 

necessary only for reducing storage in ICCG and 

Cholesky schemes of solution, and b) speeds up 

Cholesky by reducing fill-in, we are able to show 

that in ICCG it also unintentionally speeds up 

computations because the approximate Cholesky 

preconditioner gets to be more accurate [3]. For 

large problems, the element-by-element scheme is 

very profitable because it does not need matrix 

formation computation and storage capacity for the 

global matrix. 

 

 
 

Fig. 7. Parallel execution times for ICCG, ICG, and 

JEBECG methods for matrix sizes. 

 

IV. ELEMENT-BY-ELEMENT GAUSS-

SEIDEL METHOD ON THE GPU 
First ,we will describe the element-by-element 

scheme [8-13] which we are going to exploit for 

parallelizing already parallelized kernels. In 

solving the finite element matrix equation: 

 [𝑃]{𝜙} = {𝑄}, (1) 

far more powerful methods exist like the 

Incomplete Cholesky-preconditioned Conjugate 

Gradients algorithm (ICCG) than the older Gauss-

Seidel iterations. The Gauss-Seidel iterations, 

commonly used by power engineers, are an 

improvement on the even older Gauss iterations. In 

Gauss-Seidel in each iteration m+1 we use the latest 

available values of the unknowns ϕ, using equation 

i of (1) to compute ϕi, treating only ϕi as the 

unknown and all the other variables as known and 

given by their latest values, some from the present 

iteration m+1 and the rest from the previous 

iteration m: 

𝜙𝑖
𝑚+1 =

1

𝑃𝑖𝑖
(𝑄𝑖 −  ∑ 𝑃𝑖𝑘𝜙𝑘

𝑚+1 −𝑖−1
𝑘=1 ∑ 𝑃𝑖𝑘𝜙𝑘

𝑚𝑛
𝑘=𝑖+1 ), (2) 

680 ACES JOURNAL, Vol. 29, No. 9, SEPTEMBER 2014



with obvious modifications for i=1 and i=n. In this 

algorithm, 𝜙i−1 must be computed before 𝜙i. Here 

at iteration m+1, computing ϕi in the order i=1 to 

n, ϕ is at values of iteration m+1 up to the (i-1)th 

component of {𝜙} and at the value of the previous 

iteration m for values after i. The original Gauss 

iterations (improved by Gauss-Seidel) uses the old 

iteration m’s values for computing all ϕi in iteration 

m+1 according to: 

 𝜙𝑖
𝑚+1 =

1

𝑃𝑖𝑖
(𝑄𝑖 −  ∑ 𝑃𝑖𝑘𝜙𝑘

𝑚 −𝑖−1
𝑘=1 ∑ 𝑃𝑖𝑘𝜙𝑘

𝑚𝑛
𝑘=𝑖+1 ). (3) 

This is inefficient in the context of sequential 

computations. But in this case of parallelization, if 

we can resort to this conventionally inefficient 

method, we need not form the matrix [P]. If [D] is 

the matrix [P] with all off diagonal elements 

eliminated, then the Gauss iterations in this 

modified form gives: 

 [𝐷]{𝜙}𝑚+1 = 𝑄 − [𝑃 − 𝐷]{𝜙}𝑚. (4) 

Thus, without forming [P], the operations of the 

right hand side of (3) can be effected by taking each 

first order triangular finite element in turn, 

computing its local 3x3 Dirichlet matrix [𝑃]𝐿 and 

using that because, 

 [𝑃] =  ∑ [𝑃]𝐿
𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠  . (5) 

So as each [P]L is formed, the three values of 

{ϕ}m may be taken and subtracted as in the right 

hand side of (3) or (4) as justified by (5). Only the 

diagonal elements of [P] are stored so as to be able 

to divide by Pii = Di as required in (3) and (4) 

quickly. Figure 8 shows the speedup of the element-

by-element Gauss iterations. The speedup keeps 

increasing, seemingly endlessly, as matrix size goes 

up. 

 

 
 

Fig. 8. Speedup for element-by-element Gauss 

iterations with matrix size. 

For comparison we also parallelized on the 

GPU the ICCG algorithm with matrix storage-

Incomplete Cholesky preconditioning requires [P]. 

From the results (Fig. 9), it is seen that the speedup 

is much lower than by element-by-element Gauss 

iterations, and saturates with matrix size because of 

the increased communications in forming and 

dealing with the matrix that is stored. But these 

figures are much faster than the speedup from 6 to 

90-something reported by Kiss, et al. [7], 

presumably because of programming efficiency. 

 

 

Fig. 9. Incomplete Cholesky conjugate gradients 

algorithm: matrix size vs. CPU time/GPU time. 

 

V. NEW DEVELOPMENT IN CUDA 
Thus far, parallelization in CUDA has not 

allowed parallelism within parallelism. Although it 

is allowed in multiprocessor machines, it was not 

very useful in finite element analysis, because 

shared memory machines with 4, 8, 16 or rarely 32 

processors did not have spare processors to devote 

to parallel threads branching off from an already 

parallelized thread. (Supercomputers with more 

processors are not considered in this discussion 

because they are not readily available). 

But CUDA 5.0 recently introduced support for 

forking into branches an already parallelized 

stream. This feature is a major breakthrough of the 

CUDA programming paradigm because CUDA 

allows many threads to be supported. This in turn 

allows a kernel to be launched and synchronized 

with new grids directly from the GPU using 

CUDA’s standard<<< >>>syntax. A broad subset 

of the CUDA runtime API is now available on the 

device, allowing launch, synchronization, streams, 

events, and more. CUDA Dynamic Parallelism is 

available only on SM 3.5 architecture GPUs [14]. 
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Since SM3.5 still has not come to PCs, we 

merely stick here to the single forking approach in 

determining what part of a kernel on a forked thread 

is to be further forked. In our work, we use the 

genetic algorithm where the object function 

corresponding to every member h̅ of a population 

has to be computed many times to find the 

minimum. The many members h̅  form the genetic 

search space. Since h̅ consists of dimensions and 

materials of a particular design being examined for 

its goodness [15], for those dimensions a mesh is 

constructed, the finite element problem solved and 

the object function evaluated. The object function 

itself is computed from a finite element solution 

involving a matrix equation. Thus, we may treat the 

object function computation as a kernel and launch 

it on multiple threads, each for a different member 

of the population. Then, within that thread, as 

things are now on a PC, we can parallelize the 

matrix equation solution at a speedup of 147 and 

more by ICCG (Fig. 9) and even more by Gauss 

(Fig. 8). Alternatively, we may do the object 

function evaluation for each member of the 

population in sequence and in that process 

parallelize the matrix computations. Let the 

population number be n. Say the object function 

evaluation for each member of the population takes 

t0 + tm in time where tm is the time for the matrix 

solution and t0 the time for other operations. 

Therefore, if we parallelize the operations for 

different members of the population, evaluating 

time for all object functions corresponding to the 

entire population would still be, neglecting 

coordination time, 

 𝑡 = 𝑡𝑜 + 𝑡𝑚 , (6) 

since these are done simultaneously. Here, we 

assume that the work for each member of the 

population being done in parallel, the time for 

combining results and other communications is 

negligible. 

On the other hand, if we parallelized the matrix 

computation, the evaluation of the object function 

has to be in sequence since we cannot have forking 

from a parallelized kernel. The total time would 

then be the number of members in the population 

multiplied by the time for computing the object 

function for each member of the population: 

 𝑡 = 𝑛 (𝑡0 +
𝑡𝑚

147
). (7) 

Here, we have assumed that the speedup of 147 

we have obtained for matrix solution by ICCG (Fig. 

9) for matrix size upward of 10,000 would be 

achievable. A decision on which of the processes is 

to be parallelized would depend on considerations 

like this. However, we have not seen such 

considerations in the literature. On this basis, we 

found it better with a population size of 512 we 

were dealing with [10] to parallelize the population 

evaluation. The results are in Fig. 10, where the 

speedup saturates around 28 because of 

communication issues as the population rises. 

 

 
 

Fig. 10. Speedup: GA optimization GPU time/CPU 

time with population size. 

 

VI. CONCLUSIONS 
GPU parallelization is far superior to using 

multiprocessor machines because unlimited threads 

can launch computational kernels in parallel. While 

multiprocessor machines can fork a thread already 

running in parallel, they lack the processors that can 

be allocated. Although GPU cards till now did not 

allow a forked process to be further parallelized, 

this is being addressed by new architectures, such 

as the SM 3.5 architecture GPU [14]. For the vast 

majority of PCs with a GPU card but with dynamic 

parallelism not available, we have presented the 

methodology for deciding which one of the 

processes should be implemented in parallel to 

obtain the best speedup. 

In GPU computing, the memory of the 

NVIDIA GPU is limited and this affects 

optimization work rather than the direct problem, 

because of the need to keep several copies of the 

matrix of coefficients in each genetic algorithm 

thread. The sparse storage scheme is the most 

efficient way to represent the matrix for finite 

element optimization. With it, only very large 

problems will find memory an obstacle, and for that 

class of problems, the element-by-element method 

0

5

10

15

20

25

30

40 140 240 340 440 540

R
at

io
 G

P
U

/ 
C

P
U

 T
im

e

Population Size

682 ACES JOURNAL, Vol. 29, No. 9, SEPTEMBER 2014



can be used. 

If we use element-by-element FEM, practically 

unlimited size of problems can be solved without 

storing any matrix. GPU computation for finite 

element optimization by the genetic algorithm 

affords significant speedup. Element-by-element 

GPU matrix solution has even better speedup 

without saturating. 
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