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Abstract – In this work, we present a new power
series solution procedure to obtain induced currents
and scattered fields on a large conducting body due
to a plane wave incidence. The procedure follows
standard method of moments approach yet is ap-
plicable to electrically large problems. The first
step involves approximating the given structure via
standard geometrical discretization and defining the
conventional basis functions to approximate the in-
duced current. The next step involves gathering
the total number of basis functions into a small
number of groups thereby casting the moment ma-
trix into a collection of submatrices representing self
and mutual interaction between the groups. Next,
the procedure involves eliminating the interaction
of two immediate neighbors on any selected group.
This process results in a diagonally-dominant mo-
ment matrix assuming the group size is sufficiently
large. Also the procedure sets the matrix blocks re-
siding on either side of the diagonal block to zero.
The new matrix equation can be solved in many
ways efficiently. However, this work proposes us-
ing power series approach to obtain accurate solu-
tion results. The present approach is simple, effi-
cient, highly amenable for parallel processing, and
retains all the advantages of conventional method of
moments scheme. Several numerical examples are
presented to validate the numerical method.

Index Terms – Electromagnetic fields, Integral
equations, Method of moments, Numerical methods.

I. INTRODUCTION

The method of moments (MOM) solution tech-
nique [1] - [5], one of the most popular methods
for solving electromagnetic scattering and radiation
problems, is limited by excessive computational and
memory requirements if applied in a conventional
way to electrically large scattering problems. The
objective of the present work is to overcome this
MOM limitation and apply the procedure to truly

complex and practical problems.

There exist several new algorithms which seem
to overcome the limitation of MOM. Notable among
them are: a) recently developed fast multipole
method (FMM) using matrix approximations to re-
duce the memory and computational time require-
ments [6], and adaptive cross approximation (ACA)
method [7]. However, both are approximate meth-
ods and the accuracy of the overall solution depends
on the level approximation and may become expen-
sive when high accuracy solutions are desired. Fur-
ther, FMM also sacrifices one of the most important
advantages of MOM, i.e., the ability to handle mul-
tiple right hand sides in a simple manner.

In a recent work, Killian et al. [8] have proposed
a method to solve the electromagnetic scattering by
electrically large conducting bodies via MOM. The
procedure involves dividing the body into relatively
large subsections and, using some simple numerical
steps, the mutual-coupling between a given subsec-
tion and related nearby subsections is transformed
into self-coupling. The resulting current distribu-
tion, sufficiently accurate on major part of the body,
is later improved to the desired degree of accuracy
on the whole body by using an iterative scheme. Al-
though the central idea of this procedure is quite
novel, the numerical procedure presented is cumber-
some, inefficient, and not easily applicable to com-
plex practical problems.

The present work adopts the central idea of [8].
However, the new procedure presented here com-
pletely modifies the numerical scheme using several
important steps. The present procedure is more ef-
ficient by several orders, very stable, accurate and
easily and efficiently applicable to complex practical
problems. The modifications and resulting novelty
of the new procedure are enumerated in the follow-
ing:

• For the new procedure to work well, a
diagonally-strong, preferably diagonally-
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dominant, moment matrix is required to begin
with. A simple scheme is devised in this work
to obtain such a moment matrix for complex
two and three-dimensional objects. The scheme
involves renumbering the basis functions using
a distance criterion and adopting Galerkin
scheme wherein the basis functions are also
used as testing functions. We note that this
step is the most important modification as
discussed further.

• The cumbersome search process for the near-
field basis functions, necessary for the algorithm
presented in [8] but made the procedure ineffi-
cient, is totally eliminated. This step makes the
algorithm not only fast but also highly suitable
for parallel processing, and much more user-
friendly.

• The new method involves dividing the total
number of basis functions into groups of equal
size. The equal size criterion makes the algo-
rithm much more simple and efficient than [8].

• The mathematical steps in the new algorithm
are simple and represent mere algebraic manip-
ulations. Hence, any standard MOM algorithm
can be easily converted into adopting the pro-
cedure presented in this work.

In the following section, we present the detailed
mathematical steps describing the algorithm. In
Section III, we present several important empirical
guidelines to apply the procedure successfully. In
Section IV, we present several numerical results to
test the validity of the technique. Finally, Section V
discusses important conclusions along with possible
improvements and future work to be undertaken in
this area.

II. NUMERICAL SOLUTION
PROCEDURE

Consider an electrically large perfectly electric
conductor (PEC) problem given by,

LI = V , (1)

where L, I, and V , are the integral equation op-
erator, unknown vector describing the induced cur-
rents, and known excitation vector representing the
incident field, respectively. The integral equation
operator adopted in this work is the combined field
operator given by,

ZCFIE = γZEFIE + η(1− γ)ZMFIE , (2)

Y CFIE = γY EFIE + η(1− γ)Y MFIE , (3)

where 0 ≤ γ ≤ 1 is a constant depending on the
problem and η is the impedance of the medium. For

open body problems, we let γ = 1 and for closed
bodies γ is typically 0.5. In Eq. (3), the quanti-
ties ZEFIE , ZMFIE represent N ×N matrices and
Y EFIE and Y MFIE represent N ×1 column actors,
respectively, where N represents the number of the
unknowns in the MOM scheme. Further, these quan-
tities are obtained by applying the MOM procedure
to the integral equations given by,

Ei
tan(r) +Es

tan(r) = 0, r ∈ Sc (4)

and

J(r) = n̂× (Hi(r) +Hs(r)), r ∈ Sc (5)

where (Ei,Hi) and (Es,Hs) are the incident and
scattered fields, respectively, J is the induced cur-
rent, Sc is the conductor surface, n̂ represents the
unique outward normal to Sc, and the subscript
”tan” represents the tangential component.

To begin the numerical procedure we follow the
conventional MOM and approximate the current dis-
tribution on the given electrically large perfectly
conducting (PEC) structure using standard subdo-
main functions. Thus, for two dimensional problems
we use linear segments and define pulse basis func-
tions [3]; whereas, for three dimensional problems,
we use planar triangular subsections and define Rao-
Wilton-Glisson (RWG) basis functions [9] for the so-
lution of electromagnetic scattering problem.

Next, we order the basis functions using a dis-
tance criterion measured from a reference point, ei-
ther from one end of the scatterer or from a con-
venient point on the scatterer. This arrangement
makes the first basis function closest to the refer-
ence point and the last one the farthest. This is
a very important step in the new algorithm which
eventually eliminates the cumbersome search proce-
dure for nearest neighbors adopted in [8]. We also
note that the actual location of the reference point is
of no importance and does not affect the final results
in any way.

Using the basis functions also as testing func-
tions and following the standard method of moments
procedure, the operator equation can be transformed
into a matrix equation given by,

ZX = Y . (6)

where Z = ZCFIE is a N × N matrix and X
and Y = Y CFIE are the unknown and known col-
umn vectors of dimension N , respectively. Note
that, because of the re-ordering of the basis func-
tions as mentioned before, in each row of the Z-
matrix, the diagonal element is the largest element
magnitude-wise and off-diagonal elements progres-
sively decrease away from the diagonal element.

Next, we assemble the total number of basis
functions into groups with each group containing
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a fixed number of micro-basis functions. Here, we
note that each group corresponds to a block of ele-
ments in the global MOM matrix. Again, this step
is in contrast to the procedure adopted in [8] where
each group may have different size making the book-
keeping cumbersome.

Let us divide the N basis functions into P
groups, with M = N/P elements in each group. The
Z-matrix may be written as:

Z =


Z11 Z12 Z13 · · · Z1P

Z21 Z22 Z23 · · · Z2P

Z31 Z32 Z33 · · · Z3P

...
...

...
...

...
ZP1 ZP2 ZP3 · · · ZPP

 , (7)

where each Zij , i = 1, 2, · · · , P, j = 1, 2, · · · , P rep-
resents a submatrix of M ×M . In a similar manner,
we can express the column vector Y as:

Y = [Y 1,Y 2,Y 3, · · · ,Y P ]
T
, (8)

where the superscript “T” represents the transpose.

Next, we transform the Eq. (6) to,

Z̃X = Ỹ , (9)

where Z̃ = R1Z, Ỹ = R1Y , and

R1 =


I R12 R13 O O O
O I O O O O
O O I O O O
...

...
...

...
...

...
O O O O · · · I

 .(10)

R12 and R13 are M × M matrices with unknown
coefficients, and I and O are M × M identity and
null matrices, respectively.

Considering the first row of the Z̃-matrix, we
have:

Z̃11 = Z11 +R12Z21 +R13Z31

Z̃12 = Z12 +R12Z22 +R13Z32

Z̃13 = Z13 +R12Z23 +R13Z33

...
...

...

Z̃1P = Z1P +R12Z2P +R13Z3P .

Next, we solve for R12 and R13 by forcing the
elements of Z̃12 and Z̃13 to zero. Thus, we solve

Z12 +R12Z22 +R13Z32 = 0, (11)

Z13 +R12Z23 +R13Z33 = 0, (12)

simultaneously, which results in a solution of
2M × 2M matrix with M right hand sides. Once,
R12 and R13 are known, it is trivial to obtain Ỹ .
Note that the procedure described so far sets the
interaction between groups 1 and 2 (Z̃12) and be-
tween groups 1 and 3 (Z̃13) to zero and makes Z̃11

dominant block in the row.

By applying a similar procedure to rows
2, 3, · · · , P and each time solving a 2M × 2M ma-
trix, we can generate a new matrix equation, given
by,

ZX = Y , (13)
where the new Z-matrix is given by

Z̃11 O O · · · Z̃1,P−2 Z̃1,P−1 Z̃1P

O Z̃22 O · · · Z̃2,P−2 Z̃2,P−1 Z̃2P

Z̃31 O Z̃33 · · · Z̃3,P−2 Z̃3,P−1 Z̃3P

...
...

...
...

...
...

...

Z̃P1 Z̃P2 Z̃P3 · · · O O Z̃PP


and

Y =
[
Ỹ 1, Ỹ 2, Ỹ 3, Ỹ 4, · · · , Ỹ P

]T
.

We note that the Z-matrix in Eq. (13) represents
a diagonally-dominant matrix assuming sufficient
number of basis functions are collected in a group.

Next, let Z = Zd+Zoff where Zd includes only
diagonal blocks of the Z-matrix and Zoff -matrix
includes the remaining blocks. We now have,[

Zd +Zoff

]
X = Y

⇒ Zd

[
I +Z

−1

d Zoff

]
X = Y

⇒
[
I +Z

−1

d Zoff

]
X = Z

−1

d Y

⇒ [I +U ]X = X0. (14)

In Eq. (14), X0 = Z
−1

d Y and U = Z
−1

d Zoff .

Finally, the solution X may be obtained by ex-
panding Eq. (14) in power series as,

X = [I +U ]
−1

X0

=
[
I −U +U2 −U3 + · · ·

]
X0

= X0 −UX0 +U [UX0]

−U(U [UX0]) + · · · . (15)

The necessary and sufficient condition for the
power series in Eq. (15) to converge is the Frobe-
nius norm [10] ||U || ≤ 1. To achieve this condition,

it may be easier to enforce ||Z−1

d || · ||Zoff || ≤ 1.

The norms of Z
−1

d and Zoff can be easily com-
puted while generating these terms and ensure that
the necessary condition is satisfied. Alternatively,
one may adopt the following procedure.

We note that,

||Z−1

d || =
||Z−1

d || · ||ZdX0||
||ZdX0||

≤ ||Z−1

d || · ||Zd|| · ||X0||
||Y ||

= κd
||X0||
||Y ||

, (16)
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where κd = ||Z−1

d || · ||Zd|| represents the condition
number of Zd.

Next, we define Y e = ZX0−ZdX0 = ZoffX0

and we have,

||Zoff || =
||Zoff || · ||Z

−1

offY e||

||Z−1

offY e||

≤
||Zoff || · ||Z

−1

off || · ||Y e||
||X0||

= κoff
||Y e||
||X0||

, (17)

where κoff = ||Z−1

off || · ||Zoff || represents the con-

dition number of Zoff .

Combining Eqs. (16) and (17), we have,

||Z−1

d || · ||Zoff || ≤ κdκoff
||Y e||
||Y ||

(18)

and, to satisfy the condition ||U || ≤ 1, we must en-
sure that ||Y e||

||Y ||
≤ 1

κdκoff
. (19)

We note that, it is not really necessary to compute
the condition numbers κd and κoff but ensure that

the fraction ||Y e||
||Y ||

is a small number. Our various

numerical experiments suggested that this number
must be less than 0.4. It is because the described
numerical implementation ensures that matrices Zd

and Zoff are well-conditioned matrices. Obviously,

if the ||Y e||
||Y ||

is not less than the empirical value then

the solution may diverge and the procedure needs to
be reimplemented by increasing the group size.

Alternatively, it is also possible to solve Eq. (13)
by carrying out the following mathematical and nu-
merical operations:

1. Obtain X0 as before by solving the equation
ZdX0 = Y .

2. Obtain Y 0 by performing Y 0 = ZX0. Then,
we have ZX = Y and ZX0 = Y 0.

3. Thus, we have Z(X−X0) = (Y −Y 0), which is
in the same form as Eq. (13). Hence, the process
can be repeated till we have convergence. Note
that, for the iterative process to converge, we
must satisfy Eq. (19).

III. IMPLEMENTATION, GUIDELINES,
AND OBSERVATIONS

The procedure developed so far can be applied
to any MOM problem involving PEC bodies. As-
suming that we have an electrically large problem
to solve, we present a few important pointers to de-
velop the solution in an efficient manner:

• Implementation

– Symmetric matrix - We note that the
procedure described so far uses same func-
tions for expansion and testing resulting
in Galerkin procedure and symmetric Z-
matrix. However, it is common to use
approximations in the testing procedure
thus destroying the symmetry property [9].
This problem can be easily remedied by
taking the average of Zij and Zji for j =
1, 2, · · · , N and i = 1, 2, · · · , j. This pro-
cedure is fairly common and, given rea-
sonable number of unknowns for the prob-
lem, does not result in loss of accuracy
[9]. In fact, many commercial algorithms
prefer this approach to take advantage of
the symmetric matrix and thereby reduc-
ing the storage requirements.

– Sorting the basis functions - The al-
gorithm requires that the basis functions
be ordered according to distance measured
from a reference point. The placement of
the reference point is not critical. It may
be placed at one end or just outside the
structure. It is quite easy to measure the
distance to the center of each basis func-
tion i.e., to the center of the linear segment
(edge) for two (three) dimensional prob-
lems. Then, one may use any efficient sort-
ing algorithm to order the basis functions.

– Generating groups - The geometry of
the problem is divided up into disjoint
groups. One way of obtaining the number
of groups is to select a reasonable group
size, i.e., number of basis functions in the
group, and divide the total number of ba-
sis functions by the group size. It is impor-
tant to note that a relatively few number
of basis functions in a group would cause
the solution to diverge. Hence, it is recom-
mended to make the group division using
distance criterion such as 0-10λ in the first
group, 10-20λ in the second group, and so
on for two dimensional problems, assum-
ing the reference point is the center of the
first basis function. For three dimensional
problems, the guide lines are 0-3λ in the
first group, 3-6λ in the second group, and
so on. Further, it is also recommended
that one would be better off by choosing as
many number of basis functions in a group
as possible since it would make the power
series solution to converge faster.
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– Storage requirements - Note that it is
efficient to store only the diagonal blocks of
the Z-matrix and the coefficient matrices.
Thus, the storage required is P ∗M2 = N ∗
M for diagonal blocks and 2P ∗M2 = 2N ∗
M for coefficient matrices. The U -matrix
is not stored and computed as needed since
only a couple terms in the power series are
needed for accurate solution. Thus, the
total required storage is 3N ∗M .

• Guidelines
– It is necessary, convenient, and hence, rec-

ommended to perform sorting and group-
ing before beginning the electromagnetic
solution. However, this only needs to be
done once.

– One may develop a simple algorithm to de-
velop the diagonal blocks of Z-matrix and
may be performed either serially or in par-
allel. Obviously, parallel solution reduces
the computation time drastically and one
can achieve almost linear efficiency with
the number of processors since computa-
tion of each block is independent from an-
other block.

– If a sufficient number of basis functions are
assembled into a group, only a few terms
are required in the power series solution.
Generally, one or two terms are sufficient
for accurate solution. For very large prob-
lems involving several hundred thousand
unknowns, it is recommended to use as
much a large group matrix as possible. For
such cases, even one term in the power se-
ries may be sufficient. It is cautioned that
an insufficiently smaller group size may re-
quire large number of terms in the power
series to converge and may even diverge.

• Observations
– We observe that, although the numerical

procedure presented in this work is a sub-
stantial improvement to [8], the remarks
concerning the usage of CPU time, par-
allel processing, and efficiency are also ap-
plicable for the present work. Further, this
procedure eliminates several time consum-
ing steps and hence results in higher effi-
ciency. In Table 1, we present the actual
elapsed CPU time, in seconds, for conven-
tional MOM procedure and power series
procedure. The computer used for this
purpose is Intel Core2 computer at 2.66
GHz clock speed running a single thread.
We note that the computational times in
this work follow ⃝(N2) trend.

Table 1: The elapsed tine in seconds as a function
of unknowns

No. of Unknowns MOM Power Series
792 3.04 4.72
2,997 45 34
6,270 410 294
8,355 916.18 441
13,500 3,662 1,645
25,080 22, 353 5,204
53,856 147,600 27,720

– Since this procedure is designed to han-
dle electrically large problems, one may be
able to judiciously vary the order of in-
tegration depending upon the location of
source and field points.

– We observe that the procedure presented
in this work is more amenable for par-
allel processing as compared to the con-
ventional MOM. To illustrate this point,
we present an almost linear scaling of the
CPU time with number of processors as
shown in Fig. 1. Note that a ship like ob-
ject modeled with 216,000 basis functions
and a group size of 1400 is used for gener-
ating this data.

Fig. 1. Inverse of elapsed time as a function of 
number of processors.

IV. NUMERICAL RESULTS

In this section, we present a few representative
numerical results involving both two- and three-
dimensional bodies for validation purposes. We
present the bistatic/monostatic radar cross section
(RCS) calculations of several objects and compare
either with the standard method of moments solu-
tion or exact solution where available. We note that
the current distribution is also checked and found to
be of the same level of accuracy as the RCS for all the
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Fig. 2. RCS of a two-dimensional conducting cir-cular 
cylinder of 100λ circumference illuminated by a TM
wave.

representative examples even though we present cur-
rent distribution on a three-dimensional finite cylin-
der case only for the sake of completeness. Further,
for all the results presented in this section, only two
terms are used in the power series solution.

The first example is a two-dimensional circu-
lar cylinder with a perimeter=100λ illuminated by
a transverse magnetic (TM) plane wave. The cir-
cumference of the cylinder is divided into 1000 lin-
ear segments. Figure 2 shows the bistatic RCS as
a function of the azimuthal angle ϕ. We compare
the results of the present method with the standard
MOM solution. For the present solution, the total
number of basis functions has been grouped into 5
groups. The comparison is excellent between these
two procedures.

The next example is a two-dimensional square
cylinder, side length=50λ, illuminated by TM plane
wave as shown in the inset of Fig. 3. The square
cross section is approximated by 2,000 unknowns for
MOM solution. For the present method, the group
size is 200 with 10 groups in total. We present the

X

Y

35
o

E z
inc

Fig. 3. RCS of a two-dimensional square cylinder of 
200λ circumference illuminated by a TM wave.

Fig. 4. RCS of a two-dimensional complex cross-
section cylinder of 960λ circumference illuminated
by a TM wave.
bistatic RCS as a function of the azimuthal angle ϕ
and compare with MOM solution as shown in Fig. 3.
The comparison is excellent for this example also.

As a third example, we consider a two dimen-
sional cylinder with complex cross section illumi-
nated by TM plane wave as shown in the inset Fig. 4.
The total circumference of the cylinder is 960λ, ap-
proximated by 9,600 unknowns, and divided into
5 groups for the present solution. Figure 4 shows
the bistatic RCS compared as a function of the az-
imuthal angle ϕ to the MOM solution.

Next, we present the case of a large circular
cylinder with a circumference of 100,000λ. The
circumference is approximated by one million un-
knowns and divided into 1000 groups. Once again,
only two terms in the power series solution is used.
The RCS for this case is shown in Fig. 5. Although
no comparison is shown here, this case is presented
to highlight the capability of the present method to
easily handle very large problems.

Next, we consider three-dimensional problems.

Fig. 5. RCS of a two-dimensional conducting cir-cular 
cylinder of 100, 000λ circumference illuminated by a
TM wave.
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Consider a long conducting cylinder, L = 20λ and
radius a = 0.318λ, closed at both ends.The cylinder
is placed along the x-axis and illuminated by a x-
polarized plane wave traveling along the z-axis. The
cylinder is approximated by 6270 RWG basis func-
tions. For the present solution method, the total
number of basis functions are divided into 10 groups
with each group consisting 627 basis functions. In
Fig. 6, we present the real part of the induced cur-
rent as a function of basis function numbers. Note
that only a part of the figure, i.e., basis functions
from 1 to 1000, is presented for the sake of clarity.
The bistatic RCS for this case is shown in the Fig. 7
and compared with the MOM solution. We note a
good comparison of the present method with MOM
solution for both current distribution and RCS. Al-
though not presented here, the imaginary part of the
current shows similar level of comparison.

X

Y

Z

R
C

S 
(d

B
)

MOM
Power Series

Theta (degrees)
Fig. 7. RCS of a three-dimensional conducting c-
ylinder, L = 20λ and radius a = 0.318λ, placed along
the x-axis illuminated by a x-polarized, z-
traveling plane wave.
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Y

Z

R
C

S(
dB

)

Next, consider a 4λ square plate placed in the
xy-plane and illuminated by a x-polarized plane
wave traveling along the z-axis. The plate is ap-
proximated by 5,000 triangles resulting in 7,400 ba-
sis functions. For the present solution method, the
total number of basis functions are divided into 10
groups with each group consisting of 740 basis func-
tions. The bistatic RCS for this case is shown in the
Fig. 8 and compared with the MOM solution. The
comparison of the present method with MOM solu-
tion is again very good except at θ = 900 where the
MOM procedure presents a deeper null. For this ex-
ample, we added more terms in the power series to
show the convergence of the procedure. It is noted
that after two terms, the results did not change ap-
preciably except at the null region.

Next, we consider two conducting spheres, with
radii of 3.0λ and and 5.0λ illuminated by a x-
polarized plane wave traveling along the z-axis. The

Theta (degrees)

R
C

S 
(d

B
)

EXACT
Power Series

Fig. 9. RCS of a three-dimensional conducting 
sphere, radius a = 3λ, placed with center coinciding
with the origin and illuminated by a x-polarized, z-
traveling plane wave. Number of unknowns=29,400.
Number of groups=50.
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Theta (degrees)
Fig. 8. RCS of a three-dimensional conducting square 
plate, L = 4λ, placed along the xy-plane il-luminated
by a x-polarized, z-traveling plane wave.

Basis Function Number
Fig.    6.    Real part of the current distribution on a 
three-dimensional conducting cylinder, L= 20λ and
radius  a = 0.318λ, placed along the x-axis illumina-
ted by a x-polarized, z-traveling plane wave.



Theta (degrees)

R
C

S
 (
d
B

)
EXACT

ower Series

Fig. 10. RCS of a three-dimensional conducting 
sphere, radius a = 5λ, placed with center coinciding
with the origin and illuminated by a x-polarized, z-
traveling plane wave. Number of unknowns=93,750.
Number of groups=125.

spheres are approximated by 29,400 and 93,750 basis
functions, respectively. The group size for the 3.0λ
case is 588 implying 50 groups in total. Similarly,
the group size for the 5.0λ case is 750 and a total of
125 groups. The bistatic RCS for these two cases is
shown in the Figs. 9 and 10, respectively and com-
pared with exact Mie series [11] solution. We note a
reasonably good comparison for each example with
only two terms in the power series.

Now, we consider more complex, non-canonical
objects to illustrate the usefulness of the proposed
method. Consider an aircraft-type model illumi-
nated by a x-polarized plane wave traveling along
the z-axis. The object is located in the XY-plane

Fig. 11. Triangulated model of an aircraft.

R
C

S
 (
d
B

)

Power Series

MOM

Theta (degrees)
Fig. 12. RCS of an aircraft-type object. Number of
unknowns=25,080. Number of groups=12.

with nose along the x-axis. The largest dimensions
of the aircraft along x, y and z directions are 11.6λ,
9.2λ, and 1.6λ, respectively. The aircraft is approxi-
mated by 25,080 basis functions as shown in Fig. 11.
For the power series solution, the total number of ba-
sis functions is divided into 12 groups with 2090 ba-
sis functions in each group. The bistatic RCS along
XZ-plane is shown in Fig. 12. The power series solu-
tion is compared with MOM solution and we note a
reasonably good comparison for this complex struc-
ture.

Next, we consider a 91 meter ship-like object
illuminated by a 100 MHz, x-polarized plane wave
traveling along the z-axis. The width and length of
the object is along the x and y-axis, respectively.
The largest dimensions of the ship-like object along
x, y and z directions are 7.5m, 91.5m and 12.4m,
respectively. The ship-like object is approximated
by 53,832 basis functions as shown in the inset of
Fig. 13. For the power series solution, the total num-
ber of basis functions is divided into 20 groups with

MOM

Power Series

X

Y

Z

Fig. 13. Bistatic RCS of a 91 m ship-type object at 
100 MHz. Number of unknowns=53,856. Number of
groups=20.
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Z

Fig. 14. Triangulated model of a cylindrical-shap-
ed object.

2693 basis functions in each group. The bistatic RCS
along YZ-plane is shown in Fig. 13. The power se-
ries solution is compared with MOM solution and
we note an excellent comparison for this complex
structure.

Next, we present a few examples to illustrate the
ability of the present work to accurately predict the
monostatic radar cross-section. Consider a complex
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Fig.    15.        Monostatic    RCS    of     a    cylindrical-  
shaped object shown in Fig. 14. Number of un-
knowns=13,010. Number of groups=10.
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Fig. 16.  Monostatic RCS of NASA Almond at 10 
GHz. Number of unknowns=46,680. Number of 
groups=20.

cylindrical-shaped object as shown in the Fig. 14.
The height of the object is 105 mm and is cylindri-
cally symmetric along the z-axis. The object is illu-
minated by 10 GHz plane wave and approximated
with 13010 basis functions. For the power-series
method, the total number of basis functions are di-
vided into 10 groups with 1301 functions in each
group. We present the mono-static elevation RCS of
this object using both the conventional MOM and
the power series solution method in Fig. 15 and the
comparison is excellent between the two methods.

Next, we consider the azimuthal monostatic
RCS of NASA Almond (252mm× 98mm× 32mm),
shown in the inset of Fig. 16, at 10 GHz. The elec-
tric field is polarized along the z-axis. The object is
approximated with 46,680 basis functions. For the
power-series method, the total number of basis func-
tions are divided into 20 groups with 2334 functions
in each group. For comparison, we also present the
conventional MOM. We note excellent comparison
between the two methods.

Next, we calculate the elevation (ϕ = 900-cut)
monostatic RCS of ship-type object as shown in the
inset of Fig. 17. The dimensions and the place of
the object is same as in the bistatic ship-type object
case. The ship is illuminated by 100 MHz plane
wave and polarized along z-direction (height). The
object is approximated by 53,856 basis functions and
divided into 20 groups for power series solution. It
can be seen that there is good comparison between
the MOM solution and the present method.

As a final example, again consider the 91 meter
ship-like object as shown in the inset of Fig. 18. The
purpose of this example is to demonstrate the ca-
pability of the present method to handle electrically
large, complex shaped objects using MOM involving
around million unknowns. The object is illuminated
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Fig. 17. Monoistatic RCS of a 91m ship-type object 
at 100 MHz. Number of unknowns=53,856. Num-
ber of groups=20.

by a 500 MHz, y-polarized plane wave traveling
along the z-axis. To obtain scattering from a higher
frequency, the ship is approximated by 864,800 ba-
sis functions. For the power series solution, the total
number of basis functions is divided into 400 groups
with 2162 basis functions in each group. The bistatic
RCS along YZ-plane is shown in Fig. 18.

Power Series
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Fig. 18. Bistatic RCS of a 91 m ship-type object a 
500 MHz. Number of unknowns=864,800. Number
of groups=400.

V. CONCLUSIONS

In this work, we present a new and efficient al-
gorithm to solve the electrically large electromag-
netic scattering problems utilizing the MOM formu-
lation. The present method, while handling electri-
cally large PEC bodies, retains all the conventional
advantages of MOM, viz. accuracy of solution, abil-
ity to handle multiple excitation vectors, applicable
to scattering and radiation problems, and ability to
calculate both near and far-field patterns.The algo-
rithm can be made more efficient using GPU’s, more
efficient parallel processing, and implementing the
adaptive cross approximation (ACA) procedure to
reduce the computation of distantly located blocks

from the source block [7]. However, some of the
aforementioned improvements are not made yet and
may be reported in the near future. Lastly, since the
method can be viewed as a purely algebraic method,
it is envisaged that the method may be applied to
any MOM problem with minor modifications.
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