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Abstract ─ This paper presents a method of regularization 

for the numerical calculation of improper integrals used 

in different formulations of Boundary Element Method 

(BEM). The main attention of the readers we would like 

to focus on Fourier Formulation of BEM. The singular 

integrals arise when for discretization the elements of  

a higher order than zero are used. Very often in the 

Diffusive Optical Tomography for infant head modeling, 

triangular or square curvilinear boundary elements of 

the second order are used [12,14], hence, our interest  

in the subject of effective and accurate calculation of 

singular integrals. Even for the classical formulation of 

BEM such a problem is extremely difficult [1]. Some 

authors believe that the practical application possesses 

only flat triangular boundary elements of zero-order, 

and although there is some truth in this statement,  

the elements of the second order show a significant 

advantage [10,12] in Diffusion Optical Tomography 

(DOT) for example. 

This issue becomes even more interesting when  

we deal with the Galerkin BEM formulation offering 

the possibility of matrix of coefficients symmetrisation, 

which has fundamental importance for inverse problems. 

This matter becomes critical when we start to consider 

the Fourier BEM formulation, introduced by Duddeck 

[5]. His approach provides the possibility of a solution 

in the case which has no fundamental solution. The 

light propagation, which is described by the Boltzmann 

equation (see Arridge [2]) is such a case. 

Currently and most commonly, the Boltzmann 

equation is approximated by the diffusion equation in 

strongly light scattering media [10]. In the author’s 

opinion, the problem of numerical integration of 

improper integrals has not yet been fully exhausted  

in the classic and Galerkin BEM formulation but the 

Fourier BEM formulation still expects the proposals of 

the effective solutions. Such an offer we would like to 

present in this paper. 

Index Terms ─ Boundary element method, Fourier 

BEM, Galerkin BEM, numerical integration of singular 

integrals. 
 

I. INTRODUCTION 
In the field of digital modeling, two methods are 

used at present: the Finite Element Method (FEM) and 

the Boundary Element Method (BEM). The latter is  

less common since there is much less the professional 

computer software that uses the BEM compared to 

FEM.  

For a few decades rapid development of BEM can 

be observed [1,5-7,9-12,14,15] resulting in an increase 

in BEM’s application over time to, among other things, 

electromagnetic, thermal, and optical analysis [1,5–7, 

11]. Nevertheless, it is not easy to find ready-to-use 

BEM implementations. The situation becomes even 

more difficult if we try to find free open source 

software and worse still if we need specialized BEM 

software applicable, for example, to Diffusion Optical 

Tomography. One of the reasons why this state is 

maintained might be the complexity of integration (in 

particular singular integrals) which needs to be done 

using BEM calculations. Of course, this is not a problem 

which cannot be overcome [12,14,15]. The need for the 

BEM calculations software exists and is unquestionable, 

but it has been only insignificantly implemented (Table 

1 [10]). The other software packages for Boundary 

Element Methods is listed in Table 1. It is worth to 

emphasize that this list by no means is no complete.  

It appears that industrial and scientific groups 

would like to have a well-designed platform for BEM 

calculations which should be universal but at the same 

time have modularity that easily enables application 

[8,14,15]. Such a software is collected in Table 2. 

The plan of this article is as follows. In Section I, 

review the foundations of boundary element methods 

and standard methods for integration of singular integrals  
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is presented. Section II is devoted to a presentation of 

the major features of numerical integration for Fourier 

Boundary Element Method (FBEM). Finally, in Section 

III we discuss plans for further directions of our 

research.  

 

Table 1: Commercial software implementing BEM [11,12] 

Library (Programme) Environment (Language) Application 

BEASY Windows or Unix binaries Construction engineering 

Integrated Engineering Software Windows only Fields, wave, thermal analysis 

GPBEST Windows or Unix Acoustics, thermal analysis 

Concept analysis Windows Stress analysis 

 

Table 2: Free software implementing BEM [8,14,15] 

Library Language Distribution Conditions Application 

ABEM (by Kirkup) Fortran Commercial, open source 
Acoustics, Laplace and 

Helmholz problems 

LibBem C++ Semi-commercial Laplace equation 

BEMLIB (Pozrikidis) Fortran GPL 
Laplace, Helmholtz 

equations and Stokes flow 

BIEPACK Fortran free open source Laplace equation 

BEA Fortran Distributed with the book Acoustics 

MaiProgs [8] Fortran 

Copyright © 2007 Matthias 

Maischak. Designed by Free CSS 

Templates. All templates are 

licensed under the Creative 

Commons Attribution 3.0 license. 

Galerkin BEM for Laplace, 

Helmholtz, Lam´e and  

Stokes equations 

HyENA (Hyperbolic and 

Elliptic Numerical Analysis 

[16]) 

C++ 
Provided under the GNU Lesser 

General Public License 

Laplace, Helmholtz and Lam´e 

equations in 2D and 3D using the 

Galerkin or collocation approaches 

BETL (Boundary Element 

Template Library [Hiptmair 

and Kielhorn 2012; Kielhorn 

2012]) 

C++ 
BETL is free for academic use in 

research and teaching 

Laplace, Helmholtz and Maxwell 

equations in 3D using the  

Galerkin approach 

BEM++ [13] 
C++ 

Phyton 
Open-source 

Laplace, Helmholtz and Maxwell 

problems in three space dimensions 

BEMlab [3] C++ Open-source 
Laplace, Helmholtz and Maxwell 

problems in three space dimensions 

 

A. Standard 3D boundary element method and 

numerical integration of singular integrals 

Let’s consider Poisson’s equation in three–

dimensional space: 

 
2 (r) ,   b  (1) 

where Φ stands for the arbitrary potential function for 

temperature or electric potential. 

On the surface of the volume under consideration, 

the Robin boundary conditions are imposed:  

 
(r)

(r) ,
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where m
R
 and n

R
 are known coefficients for the Robin 

boundary condition [2]. 

The fundamental solution for 3D space is: 
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where R = |r − r′| is a distance between r (the source  

point) and r′ (the field point). 

The integral form for the Eq. (1) is: 
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When the distance between the source point and 

the element over which the integration is performed  

is sufficiently large relative to the element size, the 

standard Gauss–Legendre quadrature formula works 

efficiently. But when the distance tends to zero than 

integrals became singular and special integration strategy 

should be applied.  

Let us consider Quadrilateral boundary elements. 

The strategy used for integration rectangular boundary 

elements is as follows: mapping them at first onto 2D 

curvilinear coordinates and then dividing them into two 
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or three triangles and subsequently onto the standardized 

square. The whole procedure is shown in Fig. 1. 

 

 
 

Fig. 1. Local coordinates of the quadrilateral boundary 

element and a mapping strategy [12]. 

 

Finally in all the above cases the Gauss – Legendre 

method of numerical integration was used [4]. The 

coordinates of the numerical integration points and the 

weights are available in the literature or in the internet, 

for example, [4,12]. 

 

II. FOURIER BOUNDARY ELEMENT 

METHOD (FBEM) AND NUMERICAL 

INTEGRATION 
Let us briefly introduce some elements of basics of 

Fourier approach to BEM1.  

To obtain the Fourier transform of the Galerkin 

BEM, all quantities have to be extended from domain Ω 

to the space Rn. This can be achieved by defining a 

cutoff distribution  [5], multiplying all quantities by  

 and finally transforming the quantities into Fourier 

space:  

 1
ˆ( ) , ( ), 1   nF u u u L R i      . 

The n-dimension Fourier transform is defined as:  

  
ˆ,

ˆ ˆ ( ) ,


 
n

i x x

R

u x u x e dx  (5) 

 
1

ˆ ˆ, .


 k k

k

x x x x  (6) 

The discretized Fourier BEM leads to an algebraic 

system identical to that obtained in the original space: 

 ,    ji i j ji i ji i

u u u u

i i i

K u F H t G u  (7) 

where now, the matrices and vectors are computed in 

the transformed space, 

                                                 
1 Based on F.M.E. Duddeck. Fourier BEM. 

Springer–Verlag, 2002. Lecture Notes in Applied 

Mechanics, vol. 5. 
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A. Numerical example 

The Fourier formulation of BEM is only presented 

for the boundary integral equations limited to constant 

elements and 2D space. As the test example, the 

Dirichlet problem of the Poisson equation is considered: 

( ) ( ),       ,       ( ) 0,       .      u x f x x u x u x  (9) 

The Dirichlet problem is solved in a quadratic two-

dimensional domain Ω [0, 1]x[0, 1]. At the boundaries, 

u=0 is imposed. The interior is subjected to stationary 

heat source f. The boundary Γ is divided into 16 elements. 

In our case when the source function f=1 the exemplary 

entries are: 
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Fig. 2. Quadratic domain under consideration. 
 

B. The integration in R2 space and numerical 

challenges of improper integrals 

Improper integrals present great challenges for 

numerical integration, but they are important in certain 

parts of science, like for example physics [13,14]. 

The trapezoidal and Simpson's methods use the 

value of the integrand at the endpoints of the domain of 
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integration. If the function is not defined there, these 

methods cannot be used. The midpoint and Gauss-

Legendre methods use only interior points, so these are 

better suited to improper integrals. 

However, as we will see, that these methods 

always return a result is not necessarily a good thing. 

Interior point methods return finite values when applied 

to both convergent and divergent integrals. It is 

something of an art to decide when an integral is 

divergent or how accurately the numerical value 

returned matches the integral. 
 

C. Changing from infinite domains to finite domains 

of integration 

Process of numerical integration in such a case of 

R2 space could be divided into several steps. 
 

STEP No. 1 

The integrand (see Eq. (10)) has a singularity along 

the axis of the coordinate system 
1 2,x x  as it is shown in 

Fig. 3. Therefore, in order to successfully integrate such 

a function numerically, we divide the space R2 into four 

quarter in accordance with Fig. 4. 
 

 
 

Fig. 3. Function being integrated in R2 according to Eq. (10). 
 

 
 

Fig. 4. R2 space partition onto four quarters. 

STEP No. 2 

After dividing the area into four infinite subareas 

and unifying the limits of integration (for easier 

algorithmization) we have: 
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f x x dx dx

f x x dx dx f x x dx dx

f x x dx dx f x x dx dx

f x x dx dx f x x dx dx

f x x dx dx f x x dx dx
0

.

 

 

 (11) 

After dividing the area into four infinite subareas 

and unifying the limits of integration, for easier 

algorithmization according to the last row of Eq. (11). 

Every subarea was transformed into a local 

coordinate system using the transformation T (the same 

for both 
1x  and 

2x  coordinates): 

 
 

2

2
( ) ,    1, 2,

1





 



i

i i

i

x i  (12) 

where 
1 2,   are the local coordinates. 

Double integrals in local coordinates 
1 2,   

corresponds to the integration under square domain as it 

is shown in Fig. 5.  
 

 
 

Fig. 5. One of the quarters after mapping into the 

normalized square. 

 

The integrals can be calculated in a similar way as 

for the conventional BEM using twice Gauss-Legendre 

integration rules.  

After transformation the numerical integration in 

the local coordinate system over each boundary element  
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is equal to: 

     
1 1

1 1 2 2 1 2 1 2
1 1

,  ( ) ( ) ,     
 

  I f x x J J d d  (13) 

where, f means any function for example the integrand 

from Eq. (10): 

 
 

 

2

2
2

2 1
( ) ,    1,2,

1




 


  



ii

i

i
i

dx
J i

d
 (14) 

( ) for  1,2, iJ i  are the Jacobians of the transformation. 

After transformation of one quarter of the 

integration space to the normalized square (see Fig. 5) 

the integrand from the Eq. 10 is presented in Fig. 6 (a). 

Unfortunately, we can observe a big oscillation close to 

the boundaries of the square. Oscillating functions are 

the most difficult for numerical integrations. That is 

why the 80 integration points were used (Fig. 6 (b)) to 

achieve satisfactory results. 

 

  
  (a)   (b) 

 

Fig. 6. (a) Function being integrated (see Eq. (10) after 

mapping into square. (b) For numerical calculation - the 

80 integration points were used. 

 

The 16 elements the coefficients matrix H (size of 

4x4, see Eq. 8) were calculated numerically and the 

results of calculations are shown in Table 3 for the 

region and its discretization shown in Fig. 2. As we  

can see the discretization is not particularly dense – only 

16 elements. As a reference solution, the analytical 

integration was treated (see Table 3). 

 

Table 3: Comparison between exact and numerical 

integration 

Exact 

Solution 

Numerical 

Solution 

Relative 

Error [%] 

0.166736 0.166059 0.41 

0.336249 0.343520 2.16 

0.336249 0.343520 2.16 

0.166736 0.166059 0.41 

 
In Fig. 7 the relative error of the final solution is 

presented.  

One can say that the errors reported in the Table 3 

are quite satisfactory. But still two problems remain. 

The first one that we are forced to use a vast number of 

integration points what has a profound influence on the 

computation time for BEM. And the second problem 

that for the BEM such a level of relative error could not 

be sufficient in some applications like the DOT. 

That is why we decided to develop the next steps 

of the integration procedure. 
 

  
 

Fig.7. The relative error of the final solution. 

 

STEP No. 3 

Each quarter of the R2 space is split onto two 

subspaces for which only one edge possess singularity 

as it is shown in Fig. 8. 
 

 
 

Fig. 8. Quarters are split onto eight parts. 
 

STEP No. 4 

Eight subspaces are mapped into the polar 

coordinate system. The polar coordinate system reduces 

infinity to one dimension only. In the Fig. 9 only the 

first two quarters of the R2 space are presented but the 

rest is mapped in the similar way: 

 
( , ) cos ,

( , ) sin .

  

  

x r r

y r r
 (15) 

Now, the Eq. (11) become more complicated as it  

is expressed in Eq. (16): 
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Fig. 9. The first two quarters are presented in polar 

coordinate system and next are mapped into normalized 

squares in local 1 2,   coordinate system. 

 

STEP No. 5 
Each of the eight subareas are transformed into a 

local coordinate system using the transformation T: 
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π
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k
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 (17) 

where 
1 2,   are the local coordinates, k = 1  8 is the 

number of considered sub areas. 

 

D. Using the Gauss-Legendre method of improper 

integrals with finite domains 

After transformation, the numerical integration in 

the local coordinate system over each boundary element 

is equal to: 
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where, f means any function, 
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are the Jacobians of transformation and are the same for 

all eight subareas. 

Next, we import the Gauss-Legendre coefficients 

from the following webpage: 

http://www.math.ntnu.no/num/nnm/Program/Numlibc/g

auss_co.c 
 

III. CONCLUSION 
This paper presents the regularization method  

for the integration of singular integrals for Fourier 

formulation of BEM. With the help of numerical 

experimentation, the effectiveness of the proposed 

method of integration was proven. Additionally, the 

authors tried to demonstrate that the degree of difficulty 

increases in the direction from the classical to the 

Fourier approach.  

A very interesting formulation of the BEM was 

presented by Duddeck in his monograph [1], however 

the problem of integration was not considered 

thoroughly. One of the main goals of this paper was to 

address this gap. Without effective numerical integration, 

the Fourier approach to BEM becomes useless. 

The authors believe that the Fourier’s formulation 

holds enormous potential, for the Diffusion Optical 

Tomography. The light propagates in accordance with 

the Boltzmann equation [2]. The Boltzmann equation 

does not have a fundamental solution. Therefore, 

classical formulation of BEM becomes useless. Usually 

in case of environments strongly dissipative the 

Boltzmann equation is approximated by the diffusion 

equation [2,12].  

The authors are aware that this work on numerical 

integration particularly in the R2 space still required 

further work to improve the accuracy and reduce the 

number of integration points. This will be a critical 
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issue for real discretization with the aid of thousands of 

boundary elements. 
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