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Abstract — This work presents over-the-air (OTA)
performance, near-field bit-error-ratio (BER), and
error vector magnitude (EVM) measurement using
software-defined radio (SDR) in the mode-stirred
metal enclosure at 5.8 GHz. The metal enclosure
is stirred at 5.8 GHz using metallic paddle rotating
with uniform speed. Paddle rotation creates a uni-
form electromagnetic field in the metal enclosure.
The electromagnetic field environment in the metal
enclosure can be controlled by loading the cavity
with absorbing material. Field absorption can be
different depending on the amount of absorbing ma-
terial and location of the absorbers in the metal en-
closure. It is shown that signal attenuation increases
as we increase the number of absorbers. BER and
EVM are measured in this environment and the per-
formance of SDR based digital receiver is analyzed
in this environment at RF frequency of 5.8 GHz.

Index Terms — BER, EVM, Metal Enclosure,
OTA Measurements, Reverberation Chamber, SDR,
USRP B210.

I. INTRODUCTION

The metal enclosure is a perfectly reflecting en-
vironment and when stirred with mode-stirrer it acts
as a small reverberation chamber (RC). This en-
vironment exhibits a rich isotropic multipath fad-
ing environment. It’s suitable for testing for wire-
less communication systems. Reverberation cham-
bers of various sizes have been traditionally used
for electromagnetic compatibility and electromag-
netic interference analysis, however, it has also been
used for the testing of wireless communication sys-
tem [1]. One or two mode-stirrers have been used
to create multipath fading. With adequate stirring
and the number of absorbers multipath fading can
be controlled inside the chamber [2]. Reverberation
chambers are also used for testing of antennas for
determining the total radiation efficiency [3], radi-
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ated power [4], antenna efficiency [3, 5], backscat-
tering measurement [6], diversity gain [7] and to-
tal isotropic sensitivity measurement [8]. BER mea-
surements are performed in the reverberation cham-
ber in [1]. Different techniques to create a specific
multipath fading environment are present in the lit-
erature. SDR based measurements and SDR based
testing of antennas are presented in [9] and [10, 11]
respectively. RC has been used to test more sophis-
ticated communication systems for throughput mea-
surements [12]. We tested QPSK receiver in an ane-
choic chamber with USRP X310 and measured BER
and OTA performance under different noise levels
[13, 14]. This article is divided into five sections.
After the introduction in Section I, Section IT high-
lights the importance of near-field measurements,
Section III explains transmitter and receiver base-
band models. Section IV details the near-field mea-
surement setup in the mode-stirred cavity. Section
V shows measurement results. Section VI presents
the conclusion and future aspect of this work.

II. NEAR-FIELD MEASUREMENTS

Near-field measurements are becoming popular
as the generated traffic volume and the demand for
high data rate transmission has grown manifolds.
This has led to the quest for the design, develop-
ment, and integration of high data rate short-range
wireless communication in the near-field. The po-
tential applications are in 5G/6G dense connectiv-
ity [15-17], server racks and wireless chip-to-chip
communication or board-to-board communication
[18]. The existing form of near-field communication
takes place using inductive and capacitive coupling
for contactless payment and short-distance smart
readers for low-rate applications. However, it’s not
a feasible solution for applications that are area-
constraint and require high transmission rates such
as wireless inter-core communication and wireless
chip-to-chip communication [19]. RF communica-
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Fig. 1. Frame format of QPSK receiver.
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tion using monopoles or printed patch antennas is
required. Radiation boundary around antennas is
classified in three regions as reactive near-field, ra-
diative near-field, and far-field [20]. These fields are
proportional to antenna dimension D and the oper-
ating wavelength of A\. Hence the reactive near-field:

D3
Near — field = 0.62 5 (1)

For antenna dimension, D = 8cm, the near-field
boundary in our case starts at 6cm. However, the
distance d between transmit and receive monopoles
is around 5c¢m which is below the near-field bound-
ary of 6¢cm.

ITII. TRANSMITTER AND RECEIVER
BASEBAND MODEL

A. Transmitter baseband model

QPSK transmitter consists of bits generation,
QPSK modulation, and root raised cosine transmit-
ter filter. Bits generation block generates frames of
sample size 11226 x 1. Each frame consists on pay-
load and preamble as shown in Fig. 1. The payload
is useful data which is 100 ‘Hello World’ messages.
The payload is scrambled to create an equal number
of ones and zeros. Scrambling is helpful for timing
recovery at the receiver. The preamble is created
by using a 13-bit Barker code, and it is oversampled
by a factor of two. Barker code exhibits excellent
correlation properties, hence it’s suitable for frame
detection. Scrambled bits produced by bits gener-
ation block are QPSK modulated. The modulated
symbols are upsampled by raised cosine transmit fil-
ter with pulse shaping factor of 0.35. Raised cosine
transmit filter produces samples at the rate of 400
kbps. These samples are transferred to B210 USRP
from host PC over USB3.0 cable and after RF up-
conversion, signals are transmitted over the air.

B. Receiver baseband model

The receiver design is more challenging than the
transmitter since multipath fading introduces signal
attenuation, phase-shift, and delay in the transmit-
ted signal. The received signal is not only affected by
fading in the channel but other hardware imperfec-
tions at the transmitter and receiver including power
amplifier non-linearity and filtering-imperfections.
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This signifies the complexity of wireless communi-
cation receiver design. Hence, the QPSK receiver
consists of automatic gain control (AGC) which sta-
bilizes weak signal amplitude as it’s important for
optimum loop design for carrier symbol synchroniza-
tion. AGC stabilizes the input signal to a constant
level for subsequent stages in the QPSK receiver.
Raised cosine receive filter performs matched filter-
ing with the pulse-shaping factor of 0.35. Synchro-
nization is vital for the optimal performance of the
wireless receiver. Frequency and timing synchro-
nization can be performed by using external 10 MHz
reference (REF) and 1 pulse-per-second (PPS) tim-
ing signal from Octoclock-G or it can be performed
using digital receiver blocks in the baseband model
at host PC. We used digital synchronization stages
to compensate for any frequency and timing offset.
Hence, the QPSK receiver employs different syn-
chronization stages such as coarse frequency com-
pensation, symbol synchronization, carrier synchro-
nization, and frame synchronization followed by the
data decoding stage. Synchronization techniques for
digital receiver design are discussed in [21-24].

1. Coarse Frequency Compensation: This stage of
the digital receiver produces a rough estimate
of frequency offset. This works on averaging of
the output of the correlation-based algorithm.
There is still a residual frequency offset present.
The performance and accuracy of this stage
are affected by the maximum frequency offset.
Following coarse frequency compensation tim-
ing recovery and fine frequency compensation
is performed.

2. Symbol Synchronization: Symbol synchroniza-
tion performs timing recovery based on Gard-
ner’s time-invariant algorithm. Timing recov-
ery is achieved using PLL which is defined by
normalized loop bandwidth, damping factor,
and detector gain. Critically damped PLL locks
quickly to correct symbol timing and hence in-
troduces little timing jitter.

3. Fine Carrier Synchronization: This stage com-
pensates the residual frequency offset present
in the signal that was not compensated by
the coarse frequency compensation stage. This
stage uses PLL which tracks the residual fre-
quency offset and phase offset in the signal. The
damping factor and normalized loop bandwidth
are tunable. PLL is critically damped so that
it quickly locks to the intended phase while in-
troducing little ’phase noise’.
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4. Frame Detection and Frame Synchronization:
Frame boundary detection is performed by a
13-bit Barker code that was used as preamble
in the transmitted frames. Frame detection and
frame alignment are done using the Barker code
autocorrelation peak. The threshold designed
for peak detection is critical for this block.

5. Data Decoding: Here phase ambiguity resolu-
tion, QPSK demodulation and payload retrieval
is preformed. Phase ambiguity subsystem ro-
tates the received signal by estimated phase off-
set and correct data is demodulated. Payload
information is descrambled and decoding bits
are converted to "Hello World’ characters visu-
alized on diagnostic visualizer.

IV. MEASUREMENT SETUP

We have used a brass metal enclosure with di-
mensions of h x ¢ x w of 45¢m x 37cm x 55 cm.
The brass metal enclosure has a mode-stirrer whose
rotation is controlled using a battery-operated mo-
tor. The metal cavity is a perfectly reflecting en-
vironment and when excited at 5.8 GHz it pro-
duces rich isotropic multipath (RIMP) fading envi-
ronment. The sole purpose is to create a multipath
fading environment. The Tx and Rx monopoles
are in line-of-sight of each other. QPSK modulated
signals are transmitted using USRP B210 which is
connected to host PC over a USB cable. For pa-
rameters under consideration, there were some in-
stances of underflow and overflow during the mea-
surements and execution of the baseband model.
USRP B210 is a low-cost RF solution for testing
of wireless communication systems algorithms and
RF measurements. USRPB210 is based on analog
Devices AD9361 RFIC. It can operate in full-duplex
2x2 multiple-input multiple-out (MIMO) up to 56
MHz single-channel bandwidth. Figure 2 shows a
measurement setup where two Tx and Rx monopoles
are installed in near-field facing down in the cavity
when the lid of the metal cavity is closed. The mea-
surement setup shows mode-stirrer inside the brass
cavity which stirs the electromagnetic field.

V. MEASUREMENT RESULTS

In this section, we show different measurement
results recorded during the operation of the base-
band model. The first component of the baseband
receiver model is AGC which stabilizes the received
signal and it’s controlled using PLL. Figure 3 shows
input to AGC and the stabilized signal with PLL
step size. It’s shown that PLL locks quickly when
step size is increased from 0.001 to 0.01. Addi-
tionally, there could be a frequency offset present
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Fig. 2. SDR based near-field EVM and BER mea-
surement setup in metal enclosure.

Table 1: System design parameters

Parameter Values
Frequency 5.8GHz
Tx/Rx Antenna Monopoles
Symbol Time 5us
Sample Rate 400K Hz
Payload Length 11200

Header Length 26

Message Bits 11200
Frame Time 0.0281s
Filter Order 10
Roll-off 0.35
USRP Frame Length 11226

USRP Interpolation Fac-|50
tor

between transmitter and receiver. In Fig. 4 top
plot shows frequency offset and the bottom plot
shows mean frequency offset estimated at the re-
ceiver. This frequency offset can be compensated
separately using separate baseband Tx and Rx mod-
els and subsequently removed at the receiver. Sub-
sequent stages of the receiver include symbol timing
error. Figure 5 shows timing error at the receiver. It
can be seen that the timing errors are dominant at
the start of the receiver. There are no timing errors
after the SDR system has stabilized. Similarly Fig.
6 shows timing error recovery which struggles when
there is low Tx gain.

Figure 7 shows detection metric for each re-
ceived frame. This frame detection metric used to
correctly decode the received frame if the metric ex-
ceeds a designed threshold. Figure 8 shows auto-
correlation of full-frame which has a peak at 26th
sample in the received frames which signifies the
availability of Barker code based header of length
26.
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Fig. 3. Input and output of AGC with step size of
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Fig. 5. Symbol timing error.

Figure 9 shows the diagram for the measure-
ment of phase angle for phase ambiguity resolution.
The output of the phase offset estimator subsystem
that’s used to correct phase ambiguity resolution of
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Fig. 8. Autocorrelation of full frame.

the QPSK system for data decoding is shown in Fig.
10.

Additionally, there were timing errors at low
transmit gains and the QPSK constellation diagram
converted into a blob of noise from ideal constella-
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(c) (d)
QPSK constellation diagram at low Tx

Fig. 11.
gains.

tion points and re-emerged smoothly to attain lock
at ideal constellation diagram as shown in Fig. 11.
The smashing and re-emergence of constellation di-
agram was continuously observed. This was consis-
tent with the timing errors as shown in Fig. 5.
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Fig. 12. QPSK constellation diagram after
carrier synchronization: (a) Tx Gain=30 dB,
EVM=16%, (b) Tx Gain=35 dB, EVM=12%, (c)
Tx Gain=40 dB, EVM=11%, and (d) Tx Gain=45
dB, EVM=10%.

Figure 13 shows cross-correlation of 500 received
packets with Barker code. A peak is observed at ev-
ery 26th sample in the packet which is header length
corresponds to 13-bit Barker code oversampled by a
factor of 2.

A. EVM measurements

It’s Euclidean distance between ideal constella-
tion point and the received constellation points in
1Q plane. Figure 12 shows a constellation diagram
and corresponding measured EVM when the Tx gain
was varied from 30 dB to 45 dB with a step size of 5
dB. With an increase in Tx gain hence an increase in
SNR, the received QPSK samples get concentrated
around ideal QPSK symbols. Such an increase in
SNR also results in a decrease in EVM magnitude.
It can be seen from Fig. 12 that EVM has decreased
from 16% to 10%. Further increase in EVM is not
observed in the current receiver structure because of
the increased noise floor no matter how large we in-
crease the gain. This behavior was observed in the
far-field in large reverberation chamber under differ-
ent fading conditions and indoor laboratory environ-
ments as well. Figure 14 shows instantaneous EVM
in percent of QPSK at five runs. The EVM remains
constant at around 11% EVM.
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B. BER measurements

BER is one of the key performance indicators of
digital communication systems, where the transmit-
ted bits are compared with the received bits. If a

large number of bits are erroneously received then
the system has high BER, however, this is com-
pensated by different receiver design stages as men-
tioned in previous sections. BER measurement is
shown in Fig. 15. It can be seen that the BER
at instants is very small and then there are transi-
tions in BER curves. BER decreases at every run
and it suddenly increases and then decreases. This
is consistent with underflow and overflow in the sys-
tem model. Underflow and overflow is an important
issue for sensitive BER measurements using SDR.
There could be other potential reasons to mention
the degradation of BER. Shielding ineffectiveness of
RF daughter boards in SDRs. The BER measure-
ments are affected when the measurements are per-
formed when Tx and Rx are located on the same
RF cards. Variation in BER pattern can also be
attributed to near-field effect or failure and instant
recovery of one of the stages of the digital receiver
including PLL based loops in carrier phase synchro-
nization and timing recovery.

VI. CONCLUSION AND FUTURE
WORK

In this work, we have shown the OTA per-
formance of the digital receiver in near-field in a
mode-stirred metal enclosure. The performance of
different stages of the digital receiver is checked
in the mode-stirred metal cavity. We measured
AGC performance, frequency offset, timing error,
and frame detection metrics of the digital receiver
in the near-field. We observed that degradation
factors of complete wireless communication system
key performance indicators (KPIs) can be attributed
to proper PLL design in the AGC, timing recov-
ery, Tx/Rx gains, frame detection metrics. We per-
formed BER measurement in the metal enclosure
and enlisted possible BER degradation factors and
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suggested ways to overcome BER degradation fac-
tors. The future aspect of this study is to optimize
BER and EVM measurements using meta-surface
based Large Intelligent Surface (LIS) structures.
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