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Abstract ─ In a reverberation chamber, analytical 

solutions exist in very limited scenarios for the 

distribution of the boundary fields. For arbitrary-shaped 

objects, analytical solutions may not exist. To solve this 

problem, a general numerical method is proposed to 

obtain the mean field distribution near arbitrary-shaped 
objects in a random diffused-wave environment. The 

proposed method combines the full-wave method and 

the Monte-Carlo method; the numerical results are 

validated and compared with that from analytical 

equations. The proposed method can be applied to 

arbitrary-shaped objects with general material properties. 

 

Index Terms ─ Boundary fields, Monte-Carlo simulation, 

plane wave model, reverberation chamber. 

 

I. INTRODUCTION 
Reverberation chambers (RCs) have been widely 

used in electromagnetic compatibility (EMC) [1] and 

over-the-air (OTA) testing [2-5] in recent years. New 

applications include antenna measurement [6], radar 

cross section measurement [7], and channel emulation 

[3]. Ideally, a statistically homogeneous and isotropic 

random multipath environment can be created in an RC. 

When the field point is far from the boundaries and 

stirrers (typically larger than λ/4 [1]), the field can be 
considered statistically uniform and isotropic. However, 

because of the boundary conditions (e.g., the tangential 

component of E-field is nearly zero 𝐸𝑡 = 0  on the 

metallic boundaries), the field statistics close to the 

boundaries deviate from ideal values and is no longer 

uniform and isotropic [1, 3]. Generally, how the power 

density (〈|𝐸𝑥|
2〉, 〈|𝐸𝑦|

2
〉 or 〈|𝐸𝑧|

2〉) distributes around 

an arbitrary-shaped object remains unsolved. This paper 

is aimed to solve this problem by applying the plane 

wave model (PWM) directly [3, 8]. 

Luckily, typical boundary fields such as planar, 

right-angle bend and right-angle corners have analytical 

solutions [9, 10]. In these cases, the distribution of the 

mean value of the boundary fields can be expressed 

analytically as a function of (𝑥, 𝑦, 𝑧)  coordinates. At 

high frequency limit, a very efficient model is proposed 

in [11, 12] by using the diffusion equation to obtain a 
system-level description. In this paper, we apply the 

PWM using the full-wave simulation and combine the 

results using the Monte-Carlo method [13-16]; the 

method is a direct method from the first principle and can 

be applied to arbitrary-shaped boundary shapes and 

material properties. 
 

 
 

Fig. 1. An arbitrary shaped object in a random field 

environment (reverberation chamber). 

 

The algorithm is detailed in Section II and the  
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simulated results are validated in Section III, general 

scenarios are investigated in Section IV and conclusions 

are summarized in Section V. 

II. ALGORITHM
For an arbitrary-shaped object in an RC in Fig.  

1, when the RC is well stirred, the random wave 

environment can be modeled using multiple plane waves. 

Each incident plane wave can be expressed as: 

�⃑� 𝑖 = 𝐴 𝑖𝑒
−𝑗�⃑� 𝑖∙𝑟 𝑖 ,                               (1)

where 𝑖  represents ith incident wave, 𝑘  is the wave 

number, 𝑟 = (𝑥, 𝑦, 𝑧)𝑇 represents the field point and 𝐴 𝑖
is a complex vector which represents the amplitude and 

initial phase of the plane wave. For many random 

incident waves we have [13]: 

�⃑� 𝑖𝑛𝑐 = ∑�⃑� 𝑖

𝑁

𝑖=1

= ∑𝐴 𝑖𝑒
−𝑗�⃑� 𝑖∙𝑟 𝑖

𝑁

𝑖=1

,  (2) 

where the amplitude and phase of 𝐴 𝑖 are Rayleigh and

uniform distributed, respectively. When the plane wave 

number 𝑁 approaches to infinity, (2) is the well-known 

PWM which is also written as [3]: 

�⃑� 𝑖𝑛𝑐 = ∬𝐴 (Ω)

4𝜋

𝑒−𝑗�⃑� ∙𝑟 dΩ ,  (3) 

where ∬ [∙]
4𝜋

dΩ means the integral over a unit sphere. 

As we can only simulate finite 𝑁 numerically, we start 

from (2) to detail the algorithm. 

Fig. 2. Angle definitions of an incident plane wave. 

For each plane wave, the wave propagation 

direction can be expressed as: 

𝑘𝑥𝑖 = −sin(𝜃𝑖) cos (𝜑𝑖)
𝑘𝑦𝑖 = −sin(𝜃𝑖) sin (𝜑𝑖)

𝑘𝑧𝑖 = −cos(𝜃𝑖),                                       (4)
and the E-field direction can be expressed as: 

𝐸𝑥𝑖 = cos(𝜑𝑖) cos(𝜃𝑖) cos(𝛼𝑖) − sin(𝜑𝑖) sin (𝛼𝑖)
𝐸𝑦𝑖 = sin(𝜑𝑖) cos(𝜃𝑖) cos(𝛼𝑖) + cos(𝜑𝑖) sin (𝛼𝑖)

𝐸𝑧𝑖 = −sin(𝜃𝑖) cos(𝛼𝑖),                                              (5)
where 𝜃𝑖 and 𝜑𝑖 are the polar angle and azimuth angle

respectively, 𝛼𝑖 is the polarization angle. The definitions

are illustrated in Fig. 2. Only two 𝛼 values (0º and 90º) 

are necessary which represents TE and TM waves 

respectively. 

For each incident wave �⃑� 𝑖 , the scattering problem 

can be solved by using the Finite Integral Time Domain 

(FITD) method in CST, the E-field in the solving volume 

can be solved as �⃑� 𝑖𝑇𝑜𝑡  (normalized to 1 V/m incident 

wave). Simulations using FDTD and TLM method for 
RC performance analysis have been detailed in [17-21]. 

When the system is linear, the total field in the solving 

volume can be obtained as �⃑� 𝑇𝑜𝑡 = ∑ 𝐴𝑖
𝑁
𝑖=1 exp (𝑗𝛿𝑖)�⃑� 𝑖𝑇𝑜𝑡

for 𝑁 plane waves incident simultaneously with random 

amplitude 𝐴𝑖 and 𝛿𝑖 phase. By repeating this process 𝑀
times with Monte-Carlo simulations, the mean value of 

the square of the total fields (power density) can be 

obtained. The probability density function (PDF) of the 

power density is still exponential distribution but with 
different mean parameters, thus we focus on the mean 

values in the simulation. 

Fig. 3. The workflow of the full-wave Monte-Carlo 

simulation. 

Table 1: Simulation scenarios 

Scenarios 
Simulation Time 

FW+MC (hours) 

Analytical 

scenarios 

Vacuum cube 13.2+3.9 

Right-angle bend 6.1+3.9 

Right-corner 6.4+3.9 

General 

scenarios 

Arbitrary-angle 

bend 
6.4+3.9 

Dielectric cube 17.8+3.9 

Receiving antenna 6.4+3.9 

Half-space 

aperture 
4.6+3.9 
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The workflow of the full-wave Monte-Carlo 

simulation (FWMC) is illustrated in Fig. 3. Note that the 

FITD simulation only needs to be performed for N  

times, each �⃑� 𝑖𝑇𝑜𝑡 is saved in memory and no full-wave 

simulation is necessary in the Monte-Carlo simulation. 

In the next section (Section III), we validate the 

proposed method using models with have analytical 
solutions. In Section IV, we apply the FWMC method to 

general scenarios. The simulation scenarios are given  

in Table 1, in which FW and MC represent full-wave 

simulation and Monte-Carlo simulation respectively. 

Since we use the same sampling number for �⃑� 𝑖𝑇𝑜𝑡 in all 

models, the MC simulation time are the same. 

 

III. VALIDATIONS 
In the FWMC simulation, we use 642 sets of (𝜃𝑖 , 𝜑𝑖) 

(illustrated in Fig. 4) for �⃑�  vectors and each incident 

wave has two polarizations with 𝛼 = 0° and 𝛼 = 90°, 

thus 𝑁 = 1284  incident waves are simulated (the 

magnitude of the incident wave is normalized to 1 V/m). 

After each simulation, the total fields in the solving 

volume are saved as 𝐸𝑥𝑖𝑇𝑜𝑡(𝑥, 𝑦, 𝑧), 𝐸𝑦𝑖𝑇𝑜𝑡(𝑥, 𝑦, 𝑧) and 

𝐸𝑧𝑖𝑇𝑜𝑡(𝑥, 𝑦, 𝑧) . After the full-wave simulation, the 

Monte-Carlo simulation in Fig. 3 is performed with 𝑀 =
10000. The 𝑀 value can be understood as the number of 

independent stirrer positions in an ideal RC, as for each 

value of 𝑀, a new set of 𝐴𝑖 and 𝛿𝑖 are generated. 
 

 
 

Fig. 4. 642 incident wave directions on a unit sphere are 

used in the full-wave simulation. 
 

To normalize 〈|𝐸𝑥𝑇𝑜𝑡|
2〉  to 1 at fields far from 

boundaries, the magnitude of the incident plane wave 𝐴𝑖 

has a Rayleigh distribution and the PDF is [3]: 

𝑝𝐴(𝑥) =
𝑥

𝜎2
𝑒

−
𝑥2

2𝜎2 ,       𝑥 = 𝐴𝑖 ,                   (6) 

with 𝜎 = √3/2 √𝑁⁄ . The initial phase 𝛿𝑖 has a uniform 

distribution in (0, 2π]. To verify the proposed method 

we simulate a vacuum cube, a right-angle bend and a 

right-angle corner as they have analytical solutions. 
 

A. A vacuum cube 

We first use a vacuum cube in Fig. 5 (a) to validate 

the method, the electrical dimensions are 4λ × 4λ × 4λ. 

Since there is no scatter in the solving volume, the error 

can be explained as the numerical noise level. The 

simulated 〈|𝐸𝑥𝑇𝑜𝑡|
2〉 is illustrated in Fig. 5 (b), as can  

be seen, the values are very close to 1 and the relative 

standard deviation (which is also the field uniformity 

(FU)) is about 1% (0.05 dB). This agrees well with the 

theoretical value from the central limit theorem which is 

1 √𝑀⁄ . This also means that the statistical noise level is 

about -20 dB for 𝑀 = 10000. The FU in the simulation 

volume is given in Fig. 6 for different M and N values. 

The unit sphere is decomposed uniformly with 4𝑝−1 ×
10 + 2 (𝑝 = 1, 2,… ) points, and the plane wave number 

is 4𝑝−1 × 20 + 4. The theoretical curve of 10log10(1 +

1 √𝑀⁄ )  is also given. As can be seen, very good 

agreement is obtained; the FU is dominated by M and is 

not sensitive to N in free space. 
 

  
 (a) (b) 
 

Fig. 5. (a) A vacuum cube, and (b) simulated 〈|𝐸𝑥𝑇𝑜𝑡|
2〉, 

the plots for 〈|𝐸𝑦𝑇𝑜𝑡|
2
〉 and 〈|𝐸𝑧𝑇𝑜𝑡|

2〉 are similar. 
 

 
 

Fig. 6. Simulated FU with different 𝑀 and 𝑁 values. 
 

B. A right-angle bend 

A right-angle bend with two finite plates are 

presented in Fig. 7 (a), the edge length is 4λ. Note that 

when the plates are infinitely large, analytical solutions 

exist [3]: 
〈|𝐸𝑧𝑇𝑜𝑡(𝑥, 𝑦, 𝑧)|2〉 = 

𝐸0
2

3
[1 − 𝜌𝑡(2𝑦)− 𝜌𝑡(2𝑥) + 𝜌𝑡 (2√𝑥2 + 𝑦2)] , (7) 

 

〈|𝐸𝑥𝑇𝑜𝑡(𝑥, 𝑦, 𝑧)|2〉 = 

𝐸0
2

3
[1 − 𝜌𝑡(2𝑦) + 𝜌𝑙(2𝑥) −

𝑦2

𝑥2 + 𝑦2
𝜌𝑡(2√𝑥2 + 𝑦2) 

−
𝑥2

𝑥2 + 𝑦2
𝜌𝑙(2√𝑥2 + 𝑦2)], (8) 
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where 𝜌𝑡(∙) and 𝜌𝑙(∙) are defined as: 

𝜌𝑡(𝑟) =
3

2
[
sin(𝑘𝑟)

𝑘𝑟
−

1

(𝑘𝑟)2
(
sin(𝑘𝑟)

𝑘𝑟
− cos(𝑘𝑟))] , (9) 

 

𝜌𝑙(𝑟) =
3

(𝑘𝑟)2
[
sin(𝑘𝑟)

𝑘𝑟
− cos(𝑘𝑟)].           (10) 

The simulated results are illustrated in Figs. 7  

(b)-(d). Comparisons between numerical and analytical 

results along the radial direction (𝑥 = 𝑦 , 𝑧 = 0 ) are 

given in Fig. 7 (d). As expected, the simulated results 

agree well with the analytical results, and the negative 𝑟 

represents the other side of right-angle bend. The plot for 

〈|𝐸𝑦𝑇𝑜𝑡|
2
〉 is not shown as it is similar to 〈|𝐸𝑥𝑇𝑜𝑡|

2〉. 
 

   
 (a) (b) 

 

 (c) (d)  

 

Fig. 7. (a) A right-angle bend, (b) simulated 〈|𝐸𝑧𝑇𝑜𝑡|
2〉, 

(c) simulated 〈|𝐸𝑥𝑇𝑜𝑡|
2〉, and (d) a comparison between 

results from FWMC and analytical equation. 
 

C. A right-angle corner 

A right-corner with 4-wavelength length is shown  

in Fig. 8 (a). When the plates are infinitely large, the 

analytical solution for 〈|𝐸𝑧𝑇𝑜𝑡|
2〉 is [3]: 

〈|𝐸𝑧𝑇𝑜𝑡(𝑥, 𝑦, 𝑧)|2〉 = 

𝐸0
2

3
[1 − 𝜌𝑡(2𝑥) − 𝜌𝑡(2𝑦) + 𝜌𝑡 (2√𝑥2 + 𝑦2)+ 𝜌𝑙(2𝑧) 

−
𝑥2

𝑥2 + 𝑧2
𝜌𝑡 (2√𝑥2 + 𝑧2) −

𝑧2

𝑥2 + 𝑧2
𝜌𝑙 (2√𝑥2 + 𝑧2) 

−
𝑦2

𝑦2 + 𝑧2
𝜌𝑡 (2√𝑦2 + 𝑧2) −

𝑧2

𝑦2 + 𝑧2
𝜌𝑙 (2√𝑦2 + 𝑧2) 

+
𝑥2 + 𝑦2

𝑥2 + 𝑦2 + 𝑧2
𝜌𝑡 (2√𝑥2 + 𝑦2 + 𝑧2) 

+
𝑧2

𝑥2 + 𝑦2 + 𝑧2
𝜌𝑙 (2√𝑥2 + 𝑦2 + 𝑧2)].                      (11) 

We apply the FWMC simulation and the results are  

illustrated in Fig. 8 (b). Comparisons between numerical 

and analytical results along the radial direction (𝑥 = 𝑦 =

𝑧 = 𝑟 √3⁄ ) are given in Fig. 8 (c). Not surprisingly,  

good agreement is obtained. The plot for 〈|𝐸𝑥𝑇𝑜𝑡|
2〉 and 

〈|𝐸𝑦𝑇𝑜𝑡|
2
〉  are not shown as they are similar. It is 

interesting to note that for negative 𝑟 close to 0, the field 

strength varies drastically because of the sharp corner. 

 

  
 (a) (b) 

 
   (c) 

 

Fig. 8. (a) A right-angle corner, (b) simulated 〈|𝐸𝑧𝑇𝑜𝑡|
2〉, 

and (c) a comparison between results from FWMC and 

analytical equation, note that because of the finite mesh 

resolution, small error exist when 𝑟 is close to zero. 

 

We have verified the numerical results in three 

specific scenarios and the results are correct. In the next 
section, we apply this method to more general scenarios. 

 

IV. GENERAL SCENARIOS 
In this section we apply the FWMC method to 

general scenarios, in which four types of models are 

demonstrated: arbitrary angle bends, dielectric objects, a 

receiving antenna and a half-space aperture. 
 

A. Arbitrary angle bends 

For a right-angle bend, analytical solution exists. 

For a bend with an arbitrary angle 𝛾 , the results can  

be obtained by using the FWMC method which are 

illustrated in Figs. 9 (a)-(g). The simulation model is 

given in Fig. 9 (a) and the plots for 〈|𝐸𝑥𝑇𝑜𝑡|
2〉, 〈|𝐸𝑦𝑇𝑜𝑡|

2
〉 

and 〈|𝐸𝑧𝑇𝑜𝑡|
2〉 in the cut plane 𝑧 = 0 are illustrated in 

Figs. 9 (b)-(d) and Figs. 9 (e)-(g) with 𝛾 = 30°  and  

𝛾 = 60° respectively. Not surprisingly, when 𝛾 becomes 

smaller, the FU in the corner becomes poorer. 
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 (a) 

   
  (b)   (c) 

   
  (d)   (e) 

 
    (f)   (g) 
 

Fig. 9. (a) A bend with angle 𝛼, (b) simulated 〈|𝐸𝑥𝑇𝑜𝑡|
2〉, 

𝛾 = 30°, (c) simulated 〈|𝐸𝑦𝑇𝑜𝑡|
2
〉, 𝛾 = 30°, (d) simulated 

〈|𝐸𝑧𝑇𝑜𝑡|
2〉, 𝛾 = 30°, (e) simulated 〈|𝐸𝑥𝑇𝑜𝑡|

2〉, 𝛾 = 60°, 

(f) simulated 〈|𝐸𝑦𝑇𝑜𝑡|
2
〉 , 𝛾 = 60° , and (g) simulated 

〈|𝐸𝑧𝑇𝑜𝑡|
2〉, 𝛾 = 60°. 

 

B. Dielectric objects 

A dielectric block is shown in Fig. 10 with relative 

permittivity 𝜀𝑟 , the dielectric block is placed in an  

ideal multipath environment. The simulated 〈|𝐸𝑧𝑇𝑜𝑡|
2〉 

are illustrated in Figs. 10 (b)-(d) for 𝜀𝑟 = 2, 5 and 10 

respectively. Because of the symmetry, only 〈|𝐸𝑧𝑇𝑜𝑡|
2〉 

are plots in Figs. 10 (b)-(d). The fields on the line 𝑦 = 0, 

𝑧 = 0  are extracted and given in Fig. 10 (e). It is 

interesting to note that the field inside the dielectric is 

not statistically uniform although the environment is 

statistically uniform. When 𝜀𝑟 increases, both the inside 

E-field and the nonunifomity increases. This model can 

be used to simulate the heating power distribution of an 

arbitrarily shaped object inside a microwave oven. 

An interesting example is the sparking of grapes in 
a household microwave oven [22]. A similar model in 

[22] is shown in Fig. 11 (a) with two dielectric spheres 

gapped with 1mm. The power density of 〈|𝐸𝑥𝑇𝑜𝑡|
2〉 is 

illustrated in Figs. 11 (b) and (c). The interesting effect 

as in [22] is observed, the power density is enhanced 

greatly (more than 100 times) between the two spheres. 
 

     
(a)                                   (b) 

  
(c)                                         (d) 

 
    (e) 
 

Fig. 10. (a) A dielectric block with relative permittivity 

𝜀𝑟 , simulated 〈|𝐸𝑧𝑇𝑜𝑡|
2〉 for (b) 𝜀𝑟 = 2, (c) 𝜀𝑟 = 5, (d) 

𝜀𝑟 = 10, and (e) extracted plots on the line 𝑦 = 0, 𝑧 = 0, 

〈|𝐸𝑦𝑇𝑜𝑡|
2
〉 are not shown as they are the same as 〈|𝐸𝑧𝑇𝑜𝑡|

2〉. 
 

C. A receiving antenna 

A horn antenna working in receiving mode is shown 

in Fig. 12 (a). The simulated mean power densities  

are illustrated in Figs. 12 (b)-(d). Since the horn antenna 

is y-polarized, 〈|𝐸𝑦𝑇𝑜𝑡|
2
〉  gives smaller values than 

〈|𝐸𝑥𝑇𝑜𝑡|
2〉 and 〈|𝐸𝑧𝑇𝑜𝑡|

2〉 in the horn. 
 

D. A half-space aperture 

When two RCs are contiguous or nested in to 

measure the shielding effectiveness of a planar material, 
we have a half-space aperture model. A half-space 

aperture with dimensions of 2λ × 2λ is shown in Fig. 13 

(a). The random incident waves are from +𝑧 half space. 

In the FMWC simulation, we only need to generate half 

number of plane waves in Fig. 4. The simulated mean 

power densities are illustrated in Figs. 13 (b)-(c) in which 

we can identify how random waves diffused through  

an aperture and apply this method to arbitrary shaped 

apertures [23].  
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 (a) 

 
 (b) 

 
  (c) 
 

Fig. 11. (a) Two spheres gapped with 1 mm, the material 

is set as sea water, (b) simulated 〈|𝐸𝑥𝑇𝑜𝑡|
2〉, and (c) 

extracted plots on the line 𝑦 = 0, 𝑧 = 0. 
 

  
 (a) (b) 

 
 (c) (d) 
 

Fig. 12. (a) A horn antenna, (b) simulated 〈|𝐸𝑥𝑇𝑜𝑡|
2〉, (c) 

〈|𝐸𝑦𝑇𝑜𝑡|
2
〉, and (d) 〈|𝐸𝑧𝑇𝑜𝑡|

2〉. 

 

 
 (a) 

   
 (b) (c) 

 

Fig. 13. (a) A half-space aperture, (b) simulated 〈|𝐸𝑥𝑇𝑜𝑡|
2〉, 

and (c) simulated 〈|𝐸𝑧𝑇𝑜𝑡|
2〉. 

 

V. CONCLUSIONS 
We have proposed the FWMC method in this paper 

and validated the results with analytical equations. The 

method is from the first principle of PWM and has been 

applied to general scenarios with arbitrary angle bends, 

dielectric materials, a receiving antenna and a half-space 
problem. 

For the models in this paper, the simulation time for 

each plane wave incident is less than 2 minutes and the 

total simulation times for 1284 incident waves are less 

than 43 hours (on a computer workstation). The Monte-

Carlo simulation consumes less than 4 hours for 𝑀 =
10000 . Since each plane wave is independent with 

others, the parameter sweep process (for each plane 

wave) can be parallelized with more computers.  

Compared with the diffusion equation model, 
although the accuracy of this method is very high, the 

memory consumption for electrically large objects is 

significant. However, for waves far from scatterers, the 

mean power density becomes uniform in a well-stirred 

condition and the simulation could be unnecessary. A 

typical distance of at least 𝜆 4⁄  from any scatterers  

is suggested for EMC applications [1]. For non-ideal 

reverberant environment, this method could be combined 

with the diffusion equation model to provide more 

accurate boundary conditions. 
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