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Abstract ─ In this paper, a mode stirrer composed of 

random positioned metal plates is proposed for 

reverberation chamber. The designing procedure of  

the mode stirrer is presented. The designed stirrer is 

compared with the common Z-shaped stirrer in both 

simulation and measurement. It is shown that in general 

the proposed stirrer outperforms the common Z-shaped 

stirrer with the same sweeping volume. Nevertheless,  

the measurement results show that the performance 

improvement of the designed stirrer becomes insignificant 

at higher frequencies with additional platform stirring. 

Albeit the difference, the stirring improvement of the 

designed stirrer is clearly demonstrated at low frequencies, 

which is more important due to the inherent low mode 

density at low frequency. 

 
Index Terms ─ Independent sample number, 

measurement uncertainty, mode stirrer, reverberation 

chamber. 

 

I. INTRODUCTION 

The reverberation chamber is a shielded room with 

various stirring mechanisms for over-the-air (OTA) and 

electromagnetic compatibility (EMC) tests [1]. Whether 

the electromagnetic fields are statistically homogeneous 

and isotropic or not is of great importance to the 

reverberation chamber testing. Due to the stochastic nature 

of reverberation chamber measurements, measurement 

uncertainty analysis is of great importance for EMC/OTA 

tests in the reverberation chamber [2]-[7]. Experimental 

evaluation of the measurement uncertainty dictates many 

independent and repeated measurements. To avoid the 

time-consuming uncertainty characterization, one can 

resort to the equivalent number of independent samples 

indN , which is related to the standard deviation 

(uncertainty)   as 1 indN =  [6]. The advantage of 

using 
indN  is that, instead of conducing many sets of 

independent measurements, one can estimate 
indN  from 

one set of measurement [2],[6]. The measurement 

uncertainty and the field uniformity are equivalent for 

evaluating the stirring performance of the reverberation 

chamber. As a result, many studies use the number of 

independent samples (or a slightly different form of it) to 

evaluate the stirring performance in the reverberation 

chamber, e.g., [7]-[11]. Hence, we will use the same 

performance indicator in this work. 

There are complicated factors affecting the 

electromagnetic field distribution in the reverberation 

chamber, including mode stirrer, turntable platform, and 

scatters on the metal walls. Many works are carried out 

to optimize these factors to reduce the measurement 

uncertainty, e.g., stirrer [12],[13], diffusors [14],[15], 

turntable platform [16] or source stirring [17],[18], 

metasurface for changing the cavity boundary condition 

[19]-[21].  

In this work, we use a random optimization 

algorithm to optimize the mode stirrer. The optimized 

stirrer is fabricated and measured in a reverberation 

chamber. Superior performance to the conventional Z-

shaped stirrer is observed by both simulation and 

measurement. This is especially true at low frequencies. 

However, it is shown from measurement result that with 

platform stirring, the superior performance of the designed 

stirrer vanish at higher frequencies. Explanation and 

verification are given. Nevertheless, since the inherent 

mode density of the reverberation chamber increases 

with frequency, it is more important to improve the 
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measurement uncertainty at the lowest usable frequency. 

Therefore, the designed stirrer proves to be useful for 

practical reverberation chamber measurements. 

 

II. DESIGN OF STIRRER 
There are in general two types of mode stirrers: 

rotating stirrer and translating stirrer. It was found that 

the rotating stirrer not only enjoys simpler motor 

structure but also has better stirring performance as 

compared with the translating stirrer, provided that the 

sweeping volume of the two types of mode stirrers are 

the same [15]. Therefore, this work focuses solely on the 

rotating stirrer.  

The (rotating) stirrer in a reverberation chamber is 

usually composed of a central axis, several metal plates, 

and an electric motor. It can be seen in Fig. 1 (a) that the 

metal plates of Z-shape stirrer are stitched one by one 

with a uniform 120 degree flare angle (except at the top 

and bottom). Note that each metal plate shall be no less 

than one quarter of the wavelength at the lowest usable 

frequency [2].  

For comparison fair in this work, we set the sweeping 

volume of all the stirrers to be 0.2 m  0.2 m  1.2 m. 

The initial state of the stirrer to be optimized is shown in 

Fig. 1 (b). There are in total 196 metal plates each with a 

size of 10 mm  10 mm. Obviously, the stirrer shown in 

Fig. 1 (b) will be inefficient for mode stirring in a 

reverberation chamber due to its symmetry around the 

rotating axis. Hence, for optimal stirring performance, 

we should make it asymmetric and irregular. 

 

 
 

Fig. 1. Models of stirrers: (a) Z-shape stirrer, (b) initial 

state of the stirrer to be optimized, and (c) optimized stirrer. 

 

By applying the genetic algorithm (GA) [12] to 

optimize the stirrer, the final design of the stirrer is 

depicted in Fig. 1 (c). Such an irregular design can be 

intuitively explained via Fig. 2, from which it can be seen 

that merely several metal plates can form different metal 

structures. Under different incident wave directions, 

different metal structures result in different wave 

reflections and diffractions. Therefore, the whole stirrer 

can be designed by using many such metal cavities with 

random positions. In order to simplify the design 

procedure, coding ideas are applied. According to the 

binary theory, the 196 metal plates are converted into  

a 196-bit code composed of 1 and 0 codes. When 

constructing the stirrer, 0 means that the corresponding 

position of the stirrer is empty, while 1 means that there 

is a corresponding metal plate at that position.  
 

 
 

Fig. 2. Different metal plate structures with different 

incident wave directions. 
 

 
 

Fig. 3. Optimization process of stirrer through the 

genetic algorithm. 

 

The optimization process is accomplished through 

co-simulations with Matlab and CST full wave simulation 

software, where the evaluation of each stirrer is carried 

through in CST and all the data processing as well as  

the optimization algorithm are conducted in Matlab. The 
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whole procedure is depicted in Fig. 3, which mainly 

demonstrates how the first generation evolves into the 

second generation. Note that in the optimization algorithm 

the stirrer is regarded as the chromosome while the  

196 metal plates are the genes. At the beginning of  

the procedure, 50 stirrers that are randomly generated 

constitute the original group (cf. orange color box) and 

there are 5 steps in its evolution into next generation  

(cf. green color boxes): 1) evaluate all members in the 

original group ranking from the best to the worst, where 

the optimal stirrer is the top one, the good stirrers are the 

2nd-10th members in rank and the other stirrers are the 

rest; 2) the optimal stirrer is chosen directly as section 1 

of the offspring; 3) two individuals from good stirrers are 

selected as parents according to probability (calculated 

from the rank) and provide their genes (half of each  

one's genes for crossover) to form one offspring. 19  

new stirrers are constructed like this in section 2; 4) there 

are 20 new stirrers born in section 3 and every offspring 

get its genes as in step 3), whereas 5% of its genes are 

chosen to mutate (random gene locations); 5) 10 stirrers 

are randomly generated in section 4 to maintain the 

population diversity. Finally, in total 50 offspring from 

the four sections become the second generation. In fact, 

these steps are the so-called evaluation fitness, natural 

selection, mate selection, mutation and offspring 

generating in the GA. When repeating the 5 steps, the 

second, third and Nth generation with 50 stirrers can be 

acquired until the optimization is converged [12]. Next, 

the evaluation process will be illustrated in the following 

paragraph. 

To evaluate the performance of the coded stirrer,  
a top view of schematic diagram is shown in Fig. 4.  

The stirrer (blue square) is located in the center and 

spherical uniform incident wave (grey dotted circle line) 

is generated impinging on it. Field probes are set 

surrounding the stirrer to observe the reflected wave. E 

and H field values recorded by the probes are used to 

calculate the average angle of the Poynting vector 

_Ave poynting , which signifies a measure of the ability of 

changing the electromagnetic field distribution. Through 

the GA algorithm optimization in Fig. 3, the proposed 

stirrer can be obtained and the comparison of the mean 

angle of the Poynting vector has been exhibited in Table 

1. As can be seen, the optimized stirrer (cf. Fig. 1 (c)) has 

the highest value, whereas the initial state of the stirrer 

(cf. Fig. 1 (b)) has the lowest value as expected. From 

Table 1, it can be inferred that the optimized stirrer has 

the best stirring performance. By applying this stirrer  

in a reverberation chamber, the electromagnetic field 

will be stirred more efficiently and its distribution can 

become more uniform from a statistical point of view. 

 

 
 

Fig. 4. Model to evaluate the stirrer. 

 

Table 1: Average angle of the Poynting vector 

Stirrer _Ave poynting  

−shape  

Original  

Final  

 

III. SIMULATIONS  
The reverberation chamber used for simulation has 

a size of 1.44 m  0.92 m  1.5 m as shown in Fig. 5.  

The dimensions are chosen to be the same as the 

reverberation chamber in the Lab. In this model, the 

transmit antenna is a discone antenna (red color) placed 

in the corner, while the stirrer is located vertically around 

the z-axis. Furthermore, the working volume is set as  

0.4 m  0.52 m  0.3 m with 8 field probes (black cross 

figure) at its 8 vertices to sample the electric field.  

(Each probe can sample three orthogonal rectangular 

components of the E field.) The testing frequency range 

is from 1 to 2 GHz. Given the chamber's dimensions, one 

can readily find out that the lowest usable frequency of 

the reverberation chamber is around 1 GHz [2]. 

The simulation is also carried out in the CST full 

wave simulation software. During the simulation, the 

proposed stirrer rotates stepwise around the vertical axis 

with an angular step of 6°. The 8 electric probes record 

the rectangular components of E field at each rotation 

angle of the stirrer. After 60 rotations, the sampled data 

of probes are collected and analyzed. To evaluate the 

stirrer’s stirring performance, the number of independent 

samples of test is calculated by the auto-correlation 

function (ACF) method [6]. According to the ACF method, 

the n-th auto-correlation coefficient is calculated by: 
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where x is the recorded data, 2  is the variance of x: 

  
0.64

1 7.22
1r

e N

 
= − 

 

, (2) 

where e is the base of the natural logarithm function 

(e≈2.7183) [2] and r is the threshold of the auto-

correlation coefficient of the measured samples [7] and 

often equal to 0.37. The offset number ,iN  is determined 

from the ACF using the threshold. The number of 

independent samples of the data is then determined as: 

  
,

,

ind i

i

N
N

N

= , (3) 

where i ranges from 1 to 24 (8 probe locations  3 

electric field rectangular components) and N = 60 is  

the whole rotation sample number. Finally, the averaged 

number of independent samples over all the probes 
allN

is calculated as: 

  

24

,

24

ind i

i
all

N

N =


. (4)  

 

 
 

Fig. 5. Simulation model of stirrer in reverberation 

chamber. 

 

The simulation procedure is repeated for the 

optimized stirrer and a common Z-shaped stirrer, 

respectively. For fair comparison, the sweeping volume 

of the two stirrers are set to be the same. Their stirring 

performances are compared in Fig. 6. The black  

line represents the number of independent samples 

corresponding to the Z-shaped stirrer, while the red color 

line stands for the number of independent samples 

corresponding to the optimized stirrer. Note that due to 

the stochastic nature of the reverberation chamber, both 

curves are fluctuated and a 50-MHz smoothing windows 

is applied to make them more readable [6]. Nevertheless, 

it is obvious that the value of the red line apparently 

larger than that of the black line over the entire frequency 

range. This implies that the optimized stirrer clearly  

outperforms the common Z-shaped stirrer. 
 

 
 

Fig. 6. Comparison of numbers of independent samples 

of simulated reverberation chamber with the two different 

stirrers. 

 

 
 

Fig. 7. Measurement setup of reverberation chamber 

with: (a) Z-shaped stirrer and (b) optimized stirrer. 

 

IV. MEASUREMENTS 
The used reverberation chamber for actual 

measurements is located at the Xi’an Jiaotong University, 

Xi’an, China. The proposed stirrer is manufactured and 

installed in the reverberation chamber as shown in Fig. 

7. The reverberation chamber is mainly equipped with a 

turntable platform, a transmit antenna, and a receive 

antenna. In the measuring process, the stirrer and 

turntable platform are controlled by a personal computer 

(PC). A vector network analyzer is used to collect the 

data from the two antennas. The sampling number of  

the test is 100 (10 stirrer rotation angles  10 platform 

rotation angles).  

Figure 8 shows the estimated numbers of independent 

samples (solid curves) with the Z-shaped stirrer and the 

optimized stirrer together. As can be seen, the number of 

independent samples of optimized stirrer is larger than 

that of the Z-shaped stirrer below 1.6 GHz. Above  

1.6 GHz, the two stirrers have essentially the same 
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stirring performance. The different trends between the 

measurement and simulation in Fig. 5 are attributed to 

several factors: 1) the boundary condition of the actual 

reverberation chamber is much more complicated than 

that of the simulated chamber; 2) the actual chamber is 

equipped with a turn-table platform that is missing in  

the simulation due to computational complexity; 3) it  

has been found experimentally that platform stirring is 

more effective than mode stirring [22]. The last factor is 

probably the dominant one, because once the distance 

between two consecutive positions of the antenna on  

the platform is larger than the coherence distance [10] 

(which is the case at higher frequencies), the stirring 

performance is dominated by the platform stirring  

and the stirrer performance improvement becomes 

insignificant. To verify the analysis, another simulation 

including the platform stirring condition is conduct and 

the results are also exhibited in Fig. 8 (dotted curves). It 

is noted that the two dotted lines above 1.55 GHz have 

smaller difference than that below 1.55 GHz, which is in 

accordance with the measurement curves. Hence the 

additional simulation results substantiate that the third 

factor is the main cause of the difference of solid lines 

between Fig. 6 and Fig. 8. Nevertheless, as mentioned 

before, for reverberation chamber measurements it is 

most challenging and important to improve the stirring 

performance around the lowest usable frequency. The 

stirring performance at higher frequencies are good 

anyway due to the inherent mode density of the 

reverberation chamber that increases with frequency. 

Thus, it is highly desirable to have such a stirrer (cf. Fig. 

1 (c)) that can improve the stirring performance at lowest 

usable frequency. 
 

 
 

Fig. 8. Comparison of numbers of independent samples 

of measurements (solid curves) and simulations (dotted 

curve) of the two different stirrers with platform. 

 

V. CONCLUSION 
In this paper, an optimized stirrer was presented. Its 

superior performance was demonstrated by simulation as 

well as measurement. The differences between simulation 

and measurement was explained. It was shown that the 

optimized stirrer could improve the stirring performance 

of the reverberation chamber around the lowest usable 

frequency. At higher frequency, however, the stirring 

performance was dominated by the turntable platform. 

Nevertheless, as explained in the paper, it was of great 

importance to have such an optimized stirrer to improve 

the performance of the reverberation chamber at low 

frequencies, where the mode density was inherently low.   
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