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Abstract – In this paper, a scheme of outlier detection-
aided supervised learning (ODASL) is proposed for
analyzing the radiation pattern of a thinned cylindrical
conformal array (TCCA), considering the impact of
mutual coupling. The ODASL model has the advantage
in speed improvement and memory consumption reduc-
tion, which enables a quick generation of the synthesis
results with good generalization. The utilization of the
active element pattern (AEP) technique in the model
also contributes to the prediction of the array perfor-
mance involving mutual coupling. The effectiveness of
the ODASL model is demonstrated through a numerical
example of the 12-element TCCA.

Index Terms – Active element pattern (AEP), conformal
array, outlier detection-aided supervised learning
(ODASL), thinned array.

I. INTRODUCTION
Recently, conformal arrays have gained popularity

in airborne and satellite applications for the sake of their
adaptability and aerodynamic performance. However,
their analysis and synthesis are particularly complicated
due to the varying positions and axial directions of the
elements [1]. In addition, the impact of mutual coupling
between elements makes it difficult to analyze the far
field of conformal arrays, using the directional product
theorem applied to planar arrays [2].

The supervised learning method has been exten-
sively recognized as a prediction tool with significant
improvement and contribution to electromagnetic (EM)
modeling [3–5]. It provides a fast synthesis process
for array behaviors while maintaining high-level accu-
racy with a reduced number of full-wave simulations.
However, a multitude of inner parameters of a super-
vised learning method needs to be determined for large-
space and high dimensional problems [6, 7], which easily
makes learning progress tardy. In addition, the depen-

dence on sampling data may affect the credibility of
the model, especially in the context of array modeling
with a complex structure and EM environment. To solve
this problem, outlier detection (OD) in data mining
is explored as an effective decision-making tool [8].
The multivariate distance-based OD method is used to
traverse the raw dataset and identify outlier objects,
helping to construct the model effectively.

Considering the impact of mutual coupling and
array environment on radiation patterns, a large-scale
array can be transformed into the superposition of small
sub-arrays by employing the active element pattern
(AEP) technique [9]. The technique offers attractive
benefits, including the avoidance of heavy calculation
burden associated with the whole-array simulation.

To make better use of sampling data, this paper
proposes an outlier detection-aided supervised learning
(ODASL) model as an alternative to the costly measure-
ment or full-wave simulation. Considering mutual
coupling and EM environment, the AEP technique is
employed to extract the patterns of sub-arrays, instead
of the whole array. By filtering out the invalid sampling
data, i.e., outlier data, the ODASL model can obtain
satisfactory prediction results, with a strong generaliza-
tion ability even for larger thinned cylindrical conformal
array (TCCA) scales. A TCCA is taken as an example to
demonstrate the effectiveness of the proposed model.

II. PROPOSED METHODOLOGY
A. Definition and realization of outlier identification

In the regression supervised learning method for
EM modeling, the learning information is completely
sourced from the sampling dataset. Hence, it is neces-
sary to perform OD on the raw dataset for the anal-
ysis to accurately construct the ODASL framework. The
training dataset TTT , defined as {SSS1,SSS2, . . . ,SSSD}, contains
a total of D labeled samples, and the EM response
denoted as yyy in each sample is obtained from full-wave
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Fig. 1. Flow diagram of outlier identification mechanism.

simulations. Assuming that there are M uncertain outlier
samples in the raw training dataset, they can be recorded
as OOO= [OOO1,OOO2, . . .OOOM−1,OOOM]. To measure the similarity
in distance between a pair of data objects SSS j and SSSk, a
distance function is defined as dis(SSS j,SSSk), satisfying the
positive definiteness: dis(SSS j,SSSk)⩾ 0, shown as

dis(SSS j,SSSk) = ∑
1⩽t⩽L

(∣∣∣ySSS j ,t ,ySSSk,t

∣∣∣q)1/q
,q ⩾ 1 (1)

where L represents the number of sampling points in
yyy for each sample, yS j,t and ySSSk,t are the the sampling
point values for samples SSS j and SSSk, respectively. Gener-
ally, the Euclidean distance, which is the second-order
Minkowski distance with q= 2 in formula (1), is adopted
as the calculation method to ensure the stability of results
regardless of the variation of the dataset space.

With the aid of the transfer function (TF) [10], poles
ppp and residues rrr, which are TF coefficients to describe
behaviors of samples, are extracted as the corresponding
measurement values and used to identify outliers. The
implementation of the specific steps in the OD stage
shown in Fig. 1, is described as follows:

1. Step 1: For each sample in TTT , the full-wave simu-
lation of the EM response target yyy, representing
the results obtained with AEP, is completed in
the range of the specified geometric parameters.
The results obtained from the frequency-domain
analysis are then fitted to poles/residues-based
transfer functions utilizing the vector fitting (VF)
technique [11].

2. Step 2: The TF coefficients extracted from
all samples have the same order N, and

the poles of a sample SSSd are set as pppSSSd
=

(pSSSd ,1, pSSSd ,2, . . . , pSSSd ,i, . . . , pSSSd ,N). Similarly, the
residues of SSSd are represented by rrrSSSd =
(rSSSd ,1,rSSSd ,2, . . . ,rSSSd ,i, . . . ,rSSSd ,N), where d = 1,
2, . . . ,D, i = 1,2, . . . ,N, pSSSd ,i and rSSSd ,i are the
pole and residue values of the ith order of SSSd ,
respectively. pSSSd,i and rSSSd ,i in the dataset are
clustered according to their corresponding order.
For the calculation of dis(SSS j,SSSk), it is converted
to the calculation of the accumulation of two-
part distances: one is related to ppp expressed as
dis

(
pppSSS j

, pppSSSk

)
= ∑1⩽i⩽N dis

(
pSSS j,i, pSSSk,i

)
, and

another is dis
(
rrrS j ,rrrSk

)
= ∑1⩽i⩽N dis

(
rSi,i,rSk,i

)
for rrr.

3. Step 3: The given dataset TTT is evaluated by
a) To distinguish obvious outliers unequivocally,
the distances of dis

(
pppS j

, pppSk

)
and dis

(
rrrS j ,rrrSk

)
with the same order are subject to a restric-
tive distance threshold RRR =

[
RRRpppdis ,RRRrrrdis

]
, with a

dimension of 2N × 1. The threshold varies with
different sampling datasets. b) Intrinsically, due
to the interdependence among the data points,
detecting micro-clusters becomes more complex as
these outliers may be neglected as data points from
the dense regions of data distribution. Therefore,
the outlier score mechanism (OSM) is adopted,
denoted as

score
(

pppSSSd
,rrrSSSd

)
=

N

∑
i

score
(

pSSSd ,i,rSSSd ,i
)
, (2)

where

score
(

pSSSd ,i,rSSSd ,i
)
=

∥∥∥∥∥ pSSSd ,i − pave
SSS,i

pstd
SSS,i

,
rSSSd ,i − rave

SSS,i

rstd
SSS,i

∥∥∥∥∥ , (3)

where pave
s,i and rave

s,i are the average values of the ith
order pole and residue, respectively, pstd

s,i and rstd
s,i repre-

sent the standard deviation. The absolute value of the
score indicates the distance between the data points and
the population averages, within the scope of the standard
deviation. By filtering out samples with outlier points,
a collection of outlier samples OOO is obtained, and the
remained dataset is TTT n = TTT −OOO.

To sum up, the approach for analyzing and iden-
tifying outliers can be accomplished by choosing the
top M outliers with the largest outlier scores from
the score ranking list and by selecting outliers from
a cut-off threshold, depending on the distribution of
outliers.

B. Proposed ODASL for array modeling
Taking the parametric modeling of arrays for

example, the specific procedure with various stages of
the ODASL model is presented in Fig. 2. The overall
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input xxx consists of geometric parameters of the element
and element spacing. In practice, we want to obtain the
relationship between variables in xxx and EM response yyy
that is affected by mutual coupling and array environ-
ment. For exploring the relationship of labeled data pairs
of (xxx,yyy), we have

f : Vxxx →Vyyy, (4)
where f is the nonlinear function for the mapping of
input space Vxxx to output space Vyyy. In the whole set, Vxxx and
Vyyy cannot be traversed completely because of the limita-
tion of the sampling requirement, expressed by

f (Vxxx) = { f (xxx) : xxx ∈Vxxx} ⊆Vyyy. (5)
In Phase I of the ODASL architecture, dataset

generation is the first step to provide the samples for
modeling. According to the modeling requirement, the
EM response is set as the target, such as S11 or pattern
information. Then the next step is to obtain the samples
with the variable geometric structure and element spac-
ings from the full-wave simulation, and to extract the
relevant TF coefficients from EM response.

In Phase II, the potential outliers in TTT are filtered
out using the previous process, and then the input
samples of TTT n are obtained. For the output, the sub-
array patterns based on TF coefficients are accurately
captured by the AEP technique. According to the posi-
tions of elements, they are categorized into edge element,
adjacent-edge element, and interior element, and their
AEPs are extracted separately [12, 13].

Fig. 2. Overall architecture of the ODASL model.

Subsequently, in the training process of the multi-
branch radial basis function neural network (RBFNN)
[14], by adjusting the network parameters of multi-
branch RBFNN, including the weights of hidden/output
layer and center/width of basis function, the relation-
ships between the input and the output in three branches
are established. The main purpose of training is to mini-
mize the disparity between yyy and the predicted yyy from
the superposition of all branch results.

To test the model, its generalization ability is crucial
to the stable prediction, especially for input xxx beyond
the range of the training dataset [15]. Combined with
AEP, a high-degree freedom of array design is guaran-
teed, and the time-consuming full-wave simulation for
the whole array is substituted by the superposition of the
predictions from multi-branch networks for sub-arrays.
Once the proposed model is well-trained, it immediately
provides an accurate response for a given input.

III. NUMERICAL RESULT
A 12-element TCCA in Fig. 3 is taken as the

example to evaluate the ODASL model, where it works
at 3.5 GHz [16]. The elements are placed on a cylin-
drical substrate with a radius ra = 800 mm and a
relative dielectric constant of εr = 2.65. To obtain a
high degree of freedom, the input is denoted as xxx =[
Lx,Wy,Wl,La,Wb, fx,ddd

]T, extracted with the design of
the experiment method for sampling [17]. The circumfer-
ential distance in ddd = [d1,d2, . . . ,de]

T is approximately
from 0.43λ to 0.54λ during the data collection, where
e is equal to 2, 3, or 4 for AEP extraction, depending
on the sub-array scale. Table 1 shows the sampling
data for the branch of the adjacent-edge element. Data
values are standardized before they are used in the
network. Similarly, 81 training samples and 36 testing
samples are collected for edge elements, and 100 training
samples and 64 testing samples are collected for interior
elements.

Fig. 3. Structure of the 12-element TCCA, with top,
back, and cross-sectional views of the planar surface.

To predict the array pattern considering mutual
coupling, firstly, the AEPs of all elements are extracted
from the raw data, and the corresponding pppSSSd

and rrrSSSd are
obtained. All collected raw datasets are operated in OD
processing, and the distances of ppp and rrr for each order
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Table 1: Definition of training and testing data for
adjacent-edge elements (unit: mm)

Structure
Parameter

Training Dataset
(100 Samples)

Testing Dataset
(49 Samples)

Min Max Step Min Max Step
Lx 18 22.5 0.5 18.6 21.6 0.5
Wy 13 17.5 0.5 13.8 16.8 0.5
W1 1.75 2.2 0.05 1.82 2.12 0.05
La 5.6 6.5 0.1 5.75 6.35 0.1
Wb 1.5 2.4 0.1 1.65 2.25 0.1
fx -8.5 -7.4 0.1 -8.75 -7.35 0.1
di 37 46 1 38.5 44.5 1

are acquired, with the maximum order N = 12. Secondly,
the correlated values of the OSM in formula (3) are
calculated, and the scores of each sample are ranked in
terms of their degree of deviation. For outlier samples,
the distance exceeds the threshold, and meanwhile, the
level of outliers is relatively obvious. An example of OD
processing for edge elements in the training process is
displayed in Table 2, where the values of RRR and score
ranking for each order are exhibited.

Further, Table 3 embodies the situations of M = 13
outlier samples, with a certain order of ppp or rrr in SSSdis,i
over RRR and a high degree of dispersion score, where
SSSdis, i is the ith distance between dis(pSSSs,i , pSSSk,i) and
dis(rSSSs,i ,rSSSk,i) for the outliers. Similarly, performing the
same operations on all element categories, the resulting
filtered sets are used as the branch target outputs.

Table 2: Definition of the parameters of OD processing
of the training data for edge elements

Order 1 2 3 4 5 6
Rpppdis,i 0.71 0.87 0.55 0.68 0.89 2.87
Rrrrdis,i 2.18 2.91 3.62 2.13 6.57 2.29
pave

SSS,i 0.35 0.46 0.69 1.61 2.42 3.54
rave

SSS,i 0.37 0.49 1.41 -0.98 3.77 0.21
pstd

SSS,i 0.25 0.35 0.82 0.17 0.14 0.09
rstd

SSSi
1.31 1.15 1.52 0.81 2.20 0.83

Order 7 8 9 10 11 12
Rpppdis,i 0.29 0.55 0.48 1.76 0.87 0.45
Rrrrdis,i 1.87 1.48 2.12 4.61 1.12 1.83
pave

SSS,i -0.31 -0.42 0.45 2.23 1.08 0.74
rave

SSS,i -0.11 -0.85 1.44 1.25 0.82 0.55
pstd

SSS,i 0.13 0.06 0.05 0.08 0.14 0.06
rstd

SSSi 1.10 0.84 0.53 2.19 0.25 0.37

Assisted by the characteristics of RBFNN, fast
learning speed and high accuracy, the ODASL model
predicts the pattern promptly from the three branches,
avoiding full-wave EM simulations of the whole array.

Table 3: Outlier samples identified of the training dataset
for edge elements

No. of
Outlier

Outlier Order
SSSdddiiisss,,, iii SSScccooorrreeeIndex p/r

1 4 r 3.52 3.38
2 7 r 2.91 1.41
3 4 r 3.26 3.32
4 6 p 3.72 2.30
5 11 r 1.10 2.78
6 10 p 2.49 2.80
7 4 r 1.25 3.09
8 7 r 2.63 1.26
9 1 p 1.18 5.29

10 10 p 2.27 2.72
11 11 r 1.06 2.71
12 7 r 2.42 1.15
13 5 p 1.21 2.21

Furthermore, the predicted results can be written as
EEE total = EEEe(θ ,ϕ)+EEEa(θ ,ϕ)+EEE i(θ ,ϕ) (6)

where EEEe(θ ,ϕ),EEEa(θ ,ϕ), and EEEe(θ ,ϕ) represent the
fields acquired from the proposed ODASL model of all
the edge elements, adjacent-edge elements, and interior
elements, respectively.

To describe the above formula, EEEe(θ ,ϕ) is shown as
an example:

EEEe(θ ,ϕ) = ∑
1⩽s⩽Ne

IsFFFe
s(θ ,ϕ)e

jkr̂rr·rrrs (7)

where Is refers to the excitation amplitude of the sth edge
element, Ne is the number of edge elements, FFFe

s(θ ,ϕ) is
the AEP result of the sth edge element, k = 2π/λ is the
wavenumber in free space, where λ is the wavelength,
and ejkr̂rr·rrrs is the spatial phase factor. Accordingly, the far-
field pattern of the TCCA is obtained by superimposing
the extracted results.

Accordingly, after the OD process filters out 13
training and 6 testing outlier samples for edge elements,
15 training and 7 testing samples for adjacent-edge
elements, and 16 training and 10 testing samples for
interior elements, the construction of the ODASL model
for the 12-element TCCA costs approximately 13.92
hours, and the average mean absolute percent errors
(MAPEs) of the training and testing processes for the
whole proposed ODASL model are 3.576% and 4.358%,
respectively. All calculations are performed on an Intel
i7-6700 3.40 GHz machine with 16 GB RAM.

As an example of TCCA modeling, the results
of two separate arrays are shown in Fig. 4. For
Array 1, the parameters of input xxx1 are within the
training dataset range, while those of input xxx2 in
Array 2 are outside the range: The parameters of
xxx1 = [19.2,17.7,1.84,6.32,2.03,−8.44,37.5,39.4,37.7,
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(a)

(b)

Fig. 4. Pattern results of the proposed model and the full-
wave simulation at 3.5 GHz: (a) Array 1 and (b) Array 2.

40.1,38.6,44.2,38.5,37.2,38.3,40.7,39.8]T, with a
MAPE value 3.317%, and xxx2 = [23.2,18.3,2.
57,7.1,2.26,−8.9,36.5,36.9,46.4,36.7,46.2,35.8,36.2,
46.3, 36.8, 46.1, 36.6]T, with a MAPE value 4.334%.
From Fig. 4, the obtained agreement between the
simulation and the ODASL model results proves the
advantage of the proposed model in terms of accuracy
for input parameters both within and outside the training
dataset range.

To reflect the properties of the ODASL model with
the TF coefficients as the outputs by extracting the AEPs
from the sub-arrays, it is compared with the efficient
extreme learning machine (ELM) [18, 19] and RBFNN,
which directly output the whole array performance
without involving the AEP technique. Table 4 indicates
the network structure and computational accuracy of the
three models. The error measurement standards include
MAPE and root mean square error (RMSE), and the
small MAPE and RMSE values of ODASL show its

well-predicted performance in accuracy and stability.
The ELM and RBFNN models collect 49 training
samples and 25 testing samples within the parameter
range in Table 1.

Table 4: Comparison of the three different models

TF Order No. of Hidden
Neurons MAPE RMSE

RBFNN 17 23 7.92% 0.0125
21 30 6.69% 0.0093

ELM 17 10 6.24% 0.0076
21 15 5.71% 0.0052

ODASL 12 7;7;8 3.58% 0.0029
14 10;11;12 3.06% 0.0018

The ELM and RBFNN models use a single hidden
layer, with 17 inputs, including the structure parameters
and non-uniform element spacings. Here two cases of
different TF orders are employed for TCCA modeling.

From Table 4, the proposed ODASL model shows
lower errors than those of ELM and RBFNN for the two
cases. In other words, more collected samples for the
training of ELM and RBFNN are needed to get the same
level of accuracy.

To examine the applicability of the OD process in
the proposed model, Table 5 provides the error compar-
ison for the multi-branch RBFNN model and the ODASL
model, which are based on the same dataset obtained
from the AEP technique. It is shown that even though
the network structures for the two models are similar, the
proposed model yields more accurate results.

Table 5: Comparison between the proposed ODASL
model and the multi-branch RBFNN model

Element
Category

ODASL Model Multi-branch
RBFNN Model

Training
Error

Testing
Error

Training
Error

Testing
Error

Edge 0.894% 0.923% 1.272% 1.709%
Adjacent-

edge 0.952% 1.106% 1.744% 2.235%

Interior 1.137% 1.194% 2.405% 2.928%

In Fig. 5 (a), the predicted MAPEs of the multi-
branch RBFNN and the proposed model are compared,
where the parameter of Lx is considered as a single vari-
able of the array. Figure 5 (b) provides the results of
the parameter of Wy. The results show that within the
training dataset range, the proposed model gets satisfac-
tory results. Even if the input parameter is out of the
range of the training dataset, the proposed model can
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(a)

(b)

Fig. 5. Comparison of MAPE results with varying
parameters: (a) Lx and (b) Wy.

obtain much more accurate results than the multi-branch
RBFNN model.

For further comparison, the proposed ODASL
model, full-wave simulation, multi-branch RBFNN and
ELM are employed to simulate a 22-element array, a 46-
element array, and a 75-element array. The CPU time is
listed in Table 6. Compared with the full-wave simu-
lation, the ODASL model is constructed at a cost of
13.9 hours. For large scale arrays, however, the well-
trained ODASL can be re-called to realize the fast simu-
lation. Because ELM does not involve the AEP tech-
nique, three ELM models corresponding to the different
array scales are constructed. Thus the whole modeling
time with ELM is much more than that with ODASL.
Compared with the multi-branch RBFNN combined with
the AEP technique, the ODASL model filters out the
invalid sampling data. Therefore, ODASL needs fewer
training samples than the multi-branch RBFNN, and then
it shows higher modeling efficiency.

Table 6: Comparison of CPU time for different arrays
Number of Elements 22 46 75

Full-wave
Simulation

CT – – –
RT 3.3 h 8.4 h 19.0 h

Total 30.7 h

ELM
CT 14.3 h 16.2 h 20.2 h
RT 1.2 m 1.5 m 1.6 m

Total 50.8 h

Multi-branch
RBFNN

CT 26.2 h – –
RT 1.8 m 2.1 m 2.7 m

Total 26.3 h

ODASL
CT 13.9 h – –
RT 1.2 m 1.4 m 1.5 m

Total 14.0 h
CT/RT: Construction/Running time, h: hour, m: minute

IV. CONCLUSION
In this paper, a novel ODASL framework is

proposed for efficient TCCA modeling, addressing the
challenge posed by mutual coupling and data depen-
dence, with the aim of meeting high-performance
requirements for radiation pattern prediction. The
proposed model provides a fast pattern realization
process with an appreciable reduction of full-wave EM
simulations. Combined with the AEP technique, the OD
method employs multivariate distance-based clustering
and OSM to enhance the discernment and quantification
of outliers, constructing the operation for a highgeneral-
izable model. The valid samples are obtained by outlier
elimination, and a numerical example demonstrates the
effectiveness of the ODASL model. Additionally, the
proposed model with the related data mining method can
be further extended to other microwave applications.
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