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Abstract – Based on the splitting form of the Green’s
function, a hybrid fast algorithm is proposed for efficient
analysis of multiscale problems. In this algorithm, the
Green’s function is a priori split into two parts: a spec-
trally band-limited part and a spatially localized part.
Then, the fast Fourier transforms (FFT) utilizing the
global Cartesian grid and the matrix compression method
aided by an adaptive octree grouping are implemented
for these two parts, respectively. Compared with the tra-
ditional methods which only employ the FFT for accel-
eration, the proposed hybrid fast algorithm is capable
of maintaining low memory consumption in multiscale
problems without compromising time cost. Moreover,
the proposed algorithm does not need cumbersome geo-
metric treatment to implement the hybridization, and can
be established in a concise and straightforward manner.
Several numerical examples discretized with multiscale
meshes are provided to demonstrate the computational
performance of proposed hybrid fast algorithm.

Index Terms – Fast algorithm, fast Fourier transform,
Green’s function, matrix compression, multiscale prob-
lems.

I. INTRODUCTION
Many real-world electromagnetic (EM) problems

require multiscale discretization [1–4]. When the method
of moments (MoM) [5], along with classical fast algo-
rithms, is used to model the multi-scale problems, a sin-
gle fast algorithm [6–12] is often insufficient to achieve
satisfactory computational performance. Instead, due to
capturing both the circuit physics and wave physics [1],
hybrid fast algorithms [19–22] generally provide a more
practical path to efficiently solve EM multiscale prob-
lems.

As we know, the multilevel fast multipole algo-
rithm (MLFMA) is widely used for efficient simula-

tion of electrically large problems [6–8]. However, the
MLFMA encounters the sub-wavelength breakdown [8]
when dense mesh occurs. As a remedy, low-frequency
fast algorithms [23, 24] were studied. Correspondingly,
a series of hybrid algorithms were developed [25–30],
such as mixed-form FMA [19], interpolative decomposi-
tion (ID)-MLFMA [20], and adaptive cross approxima-
tion (ACA)-MLFMA [21].

Different from the MLFMA, the pre-correction-fast
Fourier transforms (FFT)-based methods [9–18] (e.g.,
adaptive integral method (AIM) [9], pre-corrected FFT
(P-FFT) [10], and integral equation FFT (IE-FFT) [11])
are free from the sub-wavelength breakdown. Neverthe-
less, due to the intrinsic uniformity of the global Carte-
sian grids, the pre-correction-FFT-based methods do not
allow for sufficient and varying spatial resolutions to
handle multiscale discretizations. That is, by simply tun-
ing the grid spacing, it is hard to achieve high com-
putational efficiency for far interactions and maintain
low storage efficiency for the near matrix at the same
time [31].

Recently, in order to overcome this shortcom-
ing of the pre-correction-FFT-based methods, a hybrid
fast algorithm was developed in [31]. In this algo-
rithm, the pre-correction-FFT-based methods is aug-
mented with the matrix compression method (ACA)
[36–38]. However, to implement such a hybridiza-
tion, the procedures are not as straightforward as they
seem [31]. In particular, a complicated spatial group-
ing strategy is inherently needed, and the relations
between the required auxiliary geometric data struc-
tures (such as the Cartesian grid, the expansion box,
and the tree-cube) are complex and require cautious
treatments [31]. Such a situation motivates us to recon-
sider the overall framework of the pre-correction-FFT-
based methods and wonder if there exists a more elegant
way to develop a hybrid algorithm that consists of
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both the FFT and the matrix compression methods
(e.g., ACA).

As an interesting alternative of the well-studied pre-
correction-FFT-based methods, some pre-splitting-FFT-
based method was developed in [32, 33]. Basically,
the pre-splitting-FFT-based method bears similarities
with the well-known pre-correction-FFT-based methods,
since it also uses the Cartesian grid and the FFT as the
essentials for the acceleration of the spatial convolutions.
However, different from the widely-used pre-correction-
FFT-based methods which typically utilize the Cartesian
grid-based near-field corrections (based on some local
expansion boxes) to compensate for the near-field con-
tributions, the pre-splitting-FFT-based method [32, 33]
instead resorts to some splitting form of the Green’s
function so as to realize accurate and efficient compu-
tations. Despite of its unique feature, this pre-splitting-
based framework has not attracted enough attentions in
the computational electromagnetics (CEM) community,
and a hybrid fast algorithm based on such framework has
never been explored yet.

In this work, based on the splitting form of the
Green’s function, a hybrid fast algorithm is proposed for
efficiently analyzing multiscale problems. Specifically,
the pre-splitting-FFT-based method originally devised
for the problems with quasi-uniform discretizations is
here further enhanced with the matrix compression
method (ACA). Thus, a hybrid fast algorithm using
both the FFT and the matrix compression method is
established. In particular, the proposed hybrid fast algo-
rithm is capable of maintaining low memory consump-
tion in multiscale problems without compromising time
cost, thus manifesting itself as a favorable multiscale
extension of the pure FFT-based method. Furthermore,
the required auxiliary geometric data structures herein
(including the Cartesian grid and the spatial grouping
octree) can be constructed independent of each other,
and are not intertwined as in [31]. Consequently, the
proposed hybrid algorithm can be implemented in a
straightforward manner without any cumbersome geo-
metric treatment.

In the following, after introducing the basic for-
mulations and implementation key points in Section II,
several numerical examples discretized with multiscale
meshes are then provided in Section III to demonstrate
the computational performances of the proposed hybrid
fast algorithm for multiscale problems.

II. FORMULATION
A perfectly electric conductor (PEC) object illu-

minated by an incident plane wave is considered. The
combined field integral equation (CFIE) is employed to
model this typical electromagnetic scattering problem.
Throughout the paper, we use λ to denote the wave-

length in free space. Moreover, we use k and η to denote
the wave number and the wave impedance in free space,
respectively.

A. Combined field integral equation
The CFIE is the linear combination of the elec-

tric field integral equation (EFIE) and the magnetic
field integral equation (MFIE), which is conventionally
expressed as

CFIE = αEFIE+(1−α)ηMFIE, (1)
where α denotes the combination factor and 0 ⩽ α ⩽ 1,
the EFIE is formulated as

Einc (r)
∣∣∣
tan

=[
jkη

∫
S

(
J
(
r′
)
+
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k2 J

(
r′
))

G
(
r,r′

)
ds′

]∣∣∣∣
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, (2)

and the MFIE is formulated as

Hinc (r)
∣∣∣
tan

=[
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2
+P.V.

∫
S

J
(
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(
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In the above, Einc and Hinc are the incident electric field
and the incident magnetic field, respectively. Moreover,
G(r,r′) denotes the Green’s function with the field point
r and the source point r′. Furthermore, J(r′) denotes the
surface current.

By using the method of moments (MoM) [5] with
the RWG function [39], the CFIE can be discretized into
a matrix equation

Z[N×N] · I[N×1] = V[N×1], (4)
where Z is the impedance matrix, I is the unknown sur-
face current coefficients vector, V is the righthand side
vector of the incident field, and N is the number of
unknowns. More specifically, the impedance matrix Z
corresponding to the CFIE is described by

ZCFIE = αZEFIE +(1−α)ηZMFIE, (5)
where

ZEFIE
mn = jkη

∫
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∫
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(6)

and

ZMFIE
mn =

1
2

∫
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fm (r) · fn (r)ds

+
∫
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ds [n̂× fm (r)] ·
∫
Sn

∇G
(
r,r′

)
× fn

(
r′
)

ds′.
(7)

In the above, m = 1, · · · ,N and n = 1, · · · ,N. Moreover,
fm and fn denote the mth and nth RWG functions, respec-
tively. Furthermore, Sm and Sn are the supports of the
corresponding RWG functions, respectively.
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B. Pre-splitting the Green’s function
In the following, the splitting forms of the Green’s

function and its gradient are introduced. First, consider
the Green’s function in the EFIE, namely

G
(
r,r′

)
=

e− jkR

4πR
, (8)

where
R =

∣∣r− r′
∣∣

=

√
(x− x′)2 +(y− y′)2 +(z− z′)2

(9)

denotes the distance between the field point r and the
source point r′. Clearly, the above can also be equiva-
lently represented as

G
(
r,r′

)
= Re

[
G
(
r,r′

)]
+ j Im

[
G
(
r,r′

)]
, (10)

where
Re

[
G
(
r,r′

)]
=

coskR
4πR

, (11)

Im
[
G
(
r,r′

)]
=− sinkR

4πR
. (12)

A basic property of G(r,r′) is that, this function is singu-
lar for R = 0, and its magnitude is globally nonzero for
R > 0. Also, note that the singular behavior of G(r,r′)
comes from Re [G(r,r′)].

Using the pre-splitting strategy [32, 33], the Green’s
function (8) can be written as two parts, namely

G
(
r,r′

)
= GE

(
r,r′

)
+GP

(
r,r′

)
, (13)

where

GE
(
r,r′

)
=

{
Re [G(r,r′)]−Φ(R) , R < δ

0 , R ≥ δ
, (14)

GP
(
r,r′

)
=

{
Φ(R)+ jIm [G(r,r′)] , R < δ

G(r,r′) , R ≥ δ
, (15)

with δ being a splitting threshold, and Φ(R) being some
auxiliary function. Particularly, the above two parts man-
ifest the following properties.

• Function GE (r,r′) is a singular and spatially local-
ized function. It has nonzero function value only
when R < δ , and GE (r,r′) = 0 for R ≥ δ .

• Function GP (r,r′) is a globally oscillatory and
spectrally band-limited function. It is smooth and
bounded for ∀r and ∀r′.

To have more intuitive understanding on the properties of
function GE (r,r′) and GP (r,r′), the corresponding func-
tion images are shown in Fig. 1. Moreover, from a phys-
ical and spectral perspective, GE (r,r′) mainly captures
the evanescent waves, and GP (r,r′) mainly captures the
propagating waves.

To achieve the above splitting and correspond-
ing properties, the auxiliary function Φ(R) is specially
designed and one simple way is to choose Φ(R) to be a
polynomial of the following form [32, 33]

Φ(R) = aR3 +bR2 + c, (16)

 

Fig. 1. The Green’s function is a priori split into a singu-
lar but spatially localized part GE and a globally oscil-
latory but spectrally band-limited part GP. The relevant
magnitudes of the original Green’s function and of these
two parts are visualized in the figure.

where a, b, and c are unknown coefficients. Clearly, the
above is a three order polynomial without the linear term,
and it implies

dΦ(0)/dR = 0, (17)
meaning that the first order derivative function of Φ(R)
is zero at R = 0 (where r = r′).

Given the splitting threshold δ , the coefficients in
(16) can be determined by some continuity conditions at
R = δ as follows

Φ(δ ) = Re [G(δ )]
d Φ(δ )/dR = d Re [G(δ )]/dR
d2Φ(δ )/dR2 = d2Re [G(δ )]/dR2

, (18)

or, by solving the following matrix equation δ 3 δ 2 1
3δ 2 2δ 0
6δ 2 0

 a
b
c

=

 Re [G(δ )]
d Re [G(δ )]/dR
d2Re [G(δ )]/dR2

 . (19)

The derivative functions of Re [G(R)] used in the above
are given in the appendix. Thus, after Φ(R) is obtained,
the splitting representation (13) is completely deter-
mined.

The polynomial choice (16), the implicit continuity
condition (17), and the explicit continuity condition (18)
are based on the consideration that, after the splitting,
the resultant GP (r,r′) (or, more precisely, Re [GP (r,r′)])
should be smooth everywhere for ∀r and ∀r′, so that it
can be interpolated accurately without much difficulty
(the interpolation procedures will be discussed in the
next subsection).

To make it more clear, without loss of general-
ity, consider the following representative situation. The
source point r′ is fixed to the coordinate origin, and
the field point r is moving along the x axis. Then, the
corresponding function values of G(r,r′) and GP (r,r′)
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are evaluated, as shown in Fig. 3. We can clearly see
that Re [G(r,r′)] is singular when r approaches r′, while
Re [GP (r,r′)] is continuous and smooth everywhere.
Here, Re [GP (r,r′)] is smooth at R = 0 (where r = r′) as
a result of (17), and smooth at the splitting point R = δ

as a result of (18).
Next, consider the gradient of the Green’s function

in the MFIE, namely

∇G
(
r,r′

)
=

...
G (R)∇R, (20)

with ...
G (R) = Re

[ ...
G (R)

]
+ j Im

[ ...
G (R)

]
, (21)

where

Re
[ ...

G (R)
]
=−coskR+ kRsinkR

4πR2 , (22)

Im
[ ...

G (R)
]
=−kRcoskR− sinkR

4πR2 , (23)

and

∇R =
x− x′

R
x̂+

y− y′

R
ŷ+

z− z′

R
ẑ. (24)

Similar to (8), function ∇G(r,r′) is singular for R = 0,
and its magnitude is globally nonzero for R > 0. Also,
note that the singular behavior of ∇G(r,r′) comes from
Re

[ ...
G (r,r′)

]
.

Again, using the pre-splitting strategy [32, 33], the
gradient Green’s function (20) can be written as two
parts, namely

∇G
(
r,r′

)
= ∇GE

(
r,r′

)
+∇GP

(
r,r′

)
, (25)

where
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[ ...
G (R)

]
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}
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,

(26)
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(
r,r′

)
=
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Φg (R)+ jIm

[ ...
G (R)
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∇R,R < δ

∇G(r,r′) , R ⩾ δ
,

(27)
with δ being the splitting threshold, and Φg (R) being
some auxiliary function.

Here, the following auxiliary function is used to
achieve the desired splitting, namely

Φg (R) = aR3 +bR2 + cR. (28)

Note that, different from (16), the above is a three
order polynomial without the constant term, and it
implies

Φg (0) = 0, (29)

which clearly means that the function value of Φg (R) is
zero at R = 0 (where r = r′).

Given the splitting threshold δ , the coefficients in
(28) can be determined by some continuity conditions at
R = δ as follows

Φg (δ ) = Re
[ ...

G (δ )
]

d Φg (δ )/dR = d Re
[ ...

G (δ )
]
/dR

d2Φg (δ )/dR2 = d2Re
[ ...

G (δ )
]
/dR2

, (30)

or, by solving the following matrix equation δ 3 δ 2 δ

3δ 2 2δ 1
6δ 2 0

 a
b
c

=

 Re
[ ...

G (δ )
]

d Re
[ ...

G (δ )
]
/dR

d2Re
[ ...

G (δ )
]
/dR2

 .

(31)
The derivative functions of Re

[ ...
G (R)

]
used in the

above are given in the appendix. Thus, after Φg (R) is
obtained, the splitting representation (25) is completely
determined.

Similar as before, (28), (29), and (30) are based on
the consideration that, after the splitting, the resultant
∇GP (r,r′) (or, more precisely, each Cartesian compo-
nent Re [∇GP (r,r′)]σ , σ = {x,y,z}) should be smooth
everywhere for ∀r and ∀r′, so that it can be interpolated
accurately without much difficulty.

To make it more clear, consider the representative
situation of r′ and r as before. Then, the correspond-
ing function values of [∇G(r,r′)]x and [∇GP (r,r′)]x are
evaluated, as shown in Fig. 4. Here, Re [∇GP (r,r′)]x is
smooth at R = 0 (where r = r′) as a result of (29), and
smooth at the splitting point R = δ as a result of (30).

Note that the auxiliary function (28) chosen for the
splitting of Re [∇G(r,r′)]

σ
(σ = {x,y,z}) is different

from the auxiliary function (16) chosen for the splitting
of Re [G(r,r′)]. Such difference is due to the fact that,
unlike Re [G(r,r′)], Re [∇G(r,r′)]

σ
(σ = {x,y,z}) man-

ifest different (i.e., positive or negative) singular behav-
iors when r approaches r′ along different directions (e.g.,
along +x or −x direction), which can be deduced from
the definition of (24), or, more intuitively, observed from
Fig. 3 and Fig. 4.

With the splitting form of the Green’s function (13)
and its gradient (25), the impedance matrix ZCFIE can be
correspondingly split into two parts, yielding

ZCFIE = ZE +ZP, (32)

where ZE is related to GE (r,r′) and ∇GE (r,r′), while
ZP is related to GP (r,r′) and ∇GP (r,r′). For conve-
nience, ZE and ZP are termed here as the evanescent
matrix and the propagating matrix, respectively. When
the commonly-used Krylov subspace iterative method
[35] is employed to solve the matrix equation (4), the
matrix-vector product ZCFIE · I is computed. Using the
splitting representation (32), this product can be equiva-
lently implemented as

ZCFIE · I = ZE · I+ZP · I. (33)

As will be shown in the following subsections, by fully
exploiting the properties of the splitting form of the
Green’s function and its gradient, both ZE · I and ZP · I
can be evaluated in an efficient manner. For clarity,
before going into further discussion, basic concepts and
key elements of the presented hybrid fast algorithm are
illustrated in Fig. 2.
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Cartesian Grid Octree Group

FFT ACA

Green’s Function

Propagating Wave Evanescent Wave

Input Vector

Output Vector

Fig. 2. Systematic diagram of the flow chart and rele-
vant key elements of the presented hybrid fast algorithm.
Particularly, the two auxiliary geometric data structures,
including the Cartesian grid and the octree grouping, can
be constructed independently.

Fig. 3. The function values of G(r,r′) and GP (r,r′). The
source point r′ is fixed to the coordinate origin, and the
field point r is moving along the x axis.

C. Propagating matrix calculation
Due to the unique properties (smoothness and trans-

lation invariance) of GP (r,r′) and ∇GP (r,r′), the matrix-
vector product ZP · I can be calculated accurately and
efficiently, with the aid of proper interpolation and the
FFT.

To this end, some auxiliary geometric data struc-
tures need to be defined first. Specifically, the object con-
sidered is enclosed by a three dimensional (3D) rectan-

Fig. 4. The function values of [∇G(r,r′)]x and
[∇GP (r,r′)]x. The source point r′ is fixed to the coor-
dinate origin, and the field point r is moving along the x
axis.

gular bounding box. Then, this bounding box is subdi-
vided regularly along each Cartesian dimension, yielding
a cluster of global Cartesian grids [9–14]. The grid spac-
ings along these Cartesian dimensions are here denoted
by hx, hy, hz, respectively. The number of grids along
these Cartesian dimensions are denoted by Nx, Nx, Nx,
respectively. Thus, a total of NGrid = Nx ×Ny ×Nz Carte-
sian grids are defined.

Recall that GP (r,r′) and ∇GP (r,r′) obtained from
the splitting process are smooth everywhere for ∀r and
∀r′. Thus, they can be well approximated using the fol-
lowing Cartesian grid-based sampling expansions

GP
(
r,r′

)
= ∑

u∈Bm

∑
v∈Bn

βu (r)GP (u,v)βv
(
r′
)
, (34)

∇GP
(
r,r′

)
= ∑

u∈Bm

∑
v∈Bn

βu (r)∇GP (u,v)βv
(
r′
)
, (35)

for ∀r and ∀r′, where Bm and Bn denote the corre-
sponding local expansion boxes that enclose r and r′,
respectively. Note that, depending on the relative posi-
tion between r and r′, Bm and Bn can be either well-
separated or overlapping, as illustrated in Fig. 5. More-
over, u and v denote the coordinates of the Cartesian
grids related to Bm and Bn, respectively. Furthermore,
βu (r) (or βv (r′)) denotes the 3D Lagrange interpolation
basis function based on the Cartesian grids of Bm (or Bn),
which is defined concretely by

βu (r) = βpx (x)βpy (y)βpz (z) , (36)
where

βpσ
(σ) =

Mσ

∏
pσ=0,pσ ̸=p′σ

(
σ −σp′σ

)(
σpσ

−σp′σ

) , σ = {x,y,z} ,

(37)
with Mσ being the expansion order and σpσ

being the
coordinates of the Cartesian grids involved. Clearly,
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r r
u v

Fig. 5. Computation corresponding to the propagating
matrix ZP can be accelerated by the FFT using the Global
Cartesian grid and the local expansion boxes. Typical
examples of the expansion boxes are illustrated using dif-
ferent colors. Here, Box 1 and Box 2 are well-separated,
while Box 2 and Box 3 are overlapping.

when Mx = My = Mz = M, a total of (M+1)3 Cartesian
grids are involved in (36).

With the expansions (34) and (35), ZCFIE
P · I can be

correspondingly rewritten as

ZCFIE
P · I = jΦkηΠ̄ · [GP (u,v)] · Π̄T · I

− jα
η

k
Πd · [GP (u,v)] ·ΠT

d · I

+(1−α)ηΠ̄g · [∇GP (u,v)]× Π̄
T · I,

(38)

where [GP] and [∇GP]σ are triple block Toeplitz matri-
ces of dimension NGrid × NGrid. Moreover, Π̄, Πd, and
Π̄g are sparse matrices of dimension N ×NGrid, defined
concretely by

Π̄ =
∫
S


f1 (r)
f2 (r)

...
fN (r)

[
β1 (r) , · · · ,βNGrid (r)

]
ds, (39)

Πd =
∫
S


∇ · f1 (r)
∇ · f2 (r)

...
∇ · fN (r)

[
β1 (r) , · · · ,βNGrid (r)

]
ds, (40)

Π̄g =
∫
S


n̂× f1 (r)
n̂× f2 (r)

...
n̂× fN (r)

[
β1 (r) , · · · ,βNGrid (r)

]
ds.

(41)
Exploiting the block Toeplitz structure of [GP] and

[∇GP]σ , the matrix-vector product ZP ·I can then be eval-

uated efficiently by the FFT as follows
ZCFIE

P · I = jαkηΠ̄ ·F−1{F {[GP]} ·F
{

Π̄
T · I

}}
− jα

η

k
Π̄d ·F−1{F {[GP]} ·F

{
Π̄

T
d · I

}}
+(1−α)ηΠ̄g ·F−1{F {[∇GP]}×F

{
Π̄

T · I
}}

,
(42)

where F and F−1 denote the forward and inverse FFT.
Notably, in the conventional pre-correction-based

framework [9–13], the original Green’s function G(r,r′)
is approximated with the grid-based sampling expan-
sion. Differently, for the pre-splitting-based framework
[32, 33] adopted herein, the function GP (r,r′) is instead
approximated with the grid-based sampling expansion,
as in (34). Since GP (r,r′) is smooth everywhere with-
out singularity, it is possible to approximate GP (r,r′)
with sufficiently good accuracy for arbitrary r and r′ by
proper interpolation. Consequently, unlike [9–13, 31],
the Cartesian grid-based near-field corrections are not
necessary here.

D. Evanescent matrix calculation
Referring to (14) and (26), we know that ZE, domi-

nated by GE (r,r′) and ∇GE (r,r′), has nonzero elements
only when R< δ . Therefore, with quasi-uniform meshes,
ZE is a typical sparse matrix with few nonzero elements,
and thus it can be stored without much effort. How-
ever, in multiscale problems, dense mesh always occurs.
Thus, near-field interactions within R < δ increase sub-
stantially. In this case, the nonzero elements of ZE will
increase dramatically.

Fortunately, in the pre-splitting-based framework
adopted, this difficulty can be trivially addressed. In a
nut shell, we first construct a spatial grouping only based
on the geometric position of the basis functions, and then
apply the matrix compression methods based on such a
grouping to achieve memory reductions of ZE.

Here, a standard adaptive octree is utilized for
accomplishing the spatial grouping, and the basic pro-
cedures for its construction are outlined as follows.

1. A root cube enclosing the whole object is con-
structed.

2. The nonempty cubes are subdivided into eight sub-
cubes recursively until the number of basis func-
tions within each cube is smaller than a prescribed
constant.

3. An octree is built when the process finishes.

Accordingly, several concepts related to the octree
are then defined as follows.

• Those cubes that do not need to be further subdi-
vided are called leaf cubes. Here, the leaf cubes are
denoted by Cs, with s being the index of some leaf
cube. It should be noted that not all of the leaf cubes
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Fig. 6. The storage of ZE is effectively compressed by
using the spatial grouping octree and the matrix com-
pression method. Illustration of the octree grouping is
shown in the left subfigure, where some leaf cubes are
highlighted using colors. Here, Cube 5 is neighbor cube
of Cube 1, while Cube 2, Cube 3, Cube 4 are all well-
separated cubes of Cube 1. Besides, the nonzero range
of GE (r,r′), characterized by R < δ , is illustrated in the
right subfigure. Note that the establishment of the group-
ing and the application of the compression can be real-
ized independent of the Cartesian grids and the FFT.

are located at the same octree level. Typical exam-
ples of the leaf cubes are shown in Fig. 6 and are
highlighted with colors.

• Two leaf cubes (e.g., Cs and Ct ) are called neigh-
bor cubes if they share at least one vertex, such as
Cube 1 and Cube 5; otherwise, they are called well-
separated cubes, such as Cube 1 and Cube 3. For
convenience, we use Cs ∩Ct ̸= /0 to denote that two
cubes are neighbor cubes, and use Cs ∩Ct = /0 to
denote that two cubes are well-separated cubes.

Note that, in [31], the conventional octree grouping
cannot be directly applied, and a more involved group-
ing scheme is developed, in which the cubes for group-
ing the basis functions are induced from the Cartesian
grids. In contrast, here the basis function grouping does
not have to be dependent on the Cartesian grids, and
can be implemented independently and conventionally.
In other words, the commonly-used adaptive octree can
be directly employed to achieve the required groupings,
and the treatments of the required auxiliary geometric
data structures herein are thus simple and straightfor-
ward.

On the basis of the spatial groupings above, ZE can
then be rewritten as

ZE =
{

Zst
E
}

Cs∩Ct ̸= /0 +
{

Zst
E
}

Cs∩Ct= /0, (43)

where

•
{

Zst
E
}

Cs∩Ct ̸= /0 denote those matrix subblocks cor-
responding to the interactions between neighbor
cubes. They are directly computed and stored.

•
{

Zst
E
}

Cs∩Ct= /0 denote those matrix subblocks corre-
sponding to the interactions between well-separated
cubes. These matrix subblocks can be low-rank.
They can be compressed and stored in a compact
form.

Here, the ACA [36–38] is employed for accomplish-
ing the matrix compression. Detailed procedures of the
ACA can be found in, for example, [37, 38]. Correspond-
ingly,

{
Zst

E
}

Cs∩Ct= /0 can be then factorized as{
Zst

E
}

Cs∩Ct= /0 =
{

Us
E ·Vt

E
}

Cs∩Ct= /0. (44)
Thus, the matrix-vector product ZE · I can be calcu-

lated as
ZE · I =

{
Zst

E
}

Cs∩Ct ̸= /0 · I+
{

Zst
E
}

Cs∩Ct= /0 · I

=
{

Zst
E · It}

Cs∩Ct ̸= /0 +
{

Us
E ·

(
Vt

E · It)}
Cs∩Ct= /0.

(45)

Some implementation details for the compression of{
Zst

E
}

Cs∩Ct= /0 are further clarified as follows. In particu-
lar, as shown in Fig. 6, due to the localized nature of ZE
decided by R < δ , for a basis function φ in Cube 1, all
the basis functions in Cube 2 have full interactions with
φ , while all the basis functions in Cube 4 have zero inter-
actions with φ . Meanwhile, only parts of the basis func-
tions in Cube 3 and Cube 5 have nonzero interactions
with φ . Hence, for two well separated groups with index
sets s and t, only the submatrices representing nonzero
interactions is to be compressed. Thus, the matrix Zst

E
which represents the interactions between the two groups
is in fact described more precisely by

Zst
E = Pss

[
Zs′t′

E O
O O

]
Qtt, (46)

with subsets s′ ⊂ s and t′ ⊂ t. Here, Pss and Qtt are per-
mutation matrices, Zs′t′

E denotes the matrix subblock cor-
responding to nonzero interactions. Note that, depending
on the relative position between the two cubes consid-
ered, there can be many zero interactions in Zst

E , due to
the sparsity pattern of ZE. Therefore, the matrix com-
pression is in fact applied to Zs′t′

E rather than Zst
E , and we

have
Zs′t′

E = UEVE, (47)
where |s′| and |t′| denote the sizes of index sets s′ and t′,
respectively. Meanwhile, the dimension of the matrix UE
is |s′|×Γ, and the dimension of the matrix VE is Γ×|t′|.
Here, Γ denotes the compression rank of Zs′t′

E for a given
tolerance. Ultimately, the compressed matrices UE and
VE in (47) are stored, and are applied to the surface cur-
rent vector I in an efficient manner. For many practi-
cal problems that involve multiscale discretization, the
matrix block Zs′t′

E can be effectively compressed, and the
memory consumption for UE and VE are greatly reduced
compared to that for Zst

E .

III. NUMERICAL RESULTS
In this section, the computational performance of the

proposed hybrid algorithm is demonstrated through sev-
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eral numerical examples. The conjugate gradient method
(CG) [35] is used as the iterative solver, and the toler-
ance is set to 1.0E-3. The diagonal preconditioner is used
to improve the convergence. Unless otherwise stated, the
grid spacings (i.e., hx, hy, hz) for the FFT acceleration
are by default set to the common value h = 0.1 λ , and
the expansion orders (i.e., Mx, My, Mz) are by default
set to the common value M = 3. Furthermore, the well-
known FFTW [34] is used to perform the FFT. For clar-
ity, in the following, the traditional pre-splitting-FFT-
based algorithm which employs the uncompressed ZE
will be termed as the PSG-FFT algorithm, and the pro-
posed hybrid fast algorithm (enhanced with the ACA)
will be referred to as the PSG-FFT-ACA algorithm.

A. Sphere
A PEC sphere of radius 1.0 λ is first considered. The

surface of the sphere is discretized with multiscale trian-
gular meshes, resulting in 34,764 RWG functions. In par-
ticular, as shown in Fig. 7, about a quarter of the surface
is discretized with dense meshes of edge lengths about
0.02 λ , and the rest is discretized with regular meshes of
edge lengths about 0.1 λ .

For this example, the standard MoM (without using
any acceleration technique), the traditional PSG-FFT
algorithm, and the proposed PSG-FFT-ACA algorithm
are adopted as the the solution methods. After solv-
ing the corresponding matrix equations as formulated in
(4), the surface current coefficients (i.e, the solutions of
equation (4)) IMoM, IPSG-FFT, and IPSG-FFT-ACA are then
obtained, respectively. Here, it should be noticed that
both IPSG-FFT and IPSG-FFT-ACA depend on the choice of
the pre-splitting threshold δ . However, when the stan-
dard MoM is used, δ is not involved, and IMoM is there-

Multi-scale Mesh

Dense Mesh : 0.02 

Regular Mesh : 0.1

Fig. 7. Mesh configurations of the PEC sphere. The
radius of the sphere is 1.0 λ . Here, about a quarter of
the spherical surface is discretized with a relatively dense
mesh of 0.02 λ , and the rest of the surface is discretized
with a regular mesh of 0.1 λ . For clarity, the enlarged
view of the multiscale mesh is also visualized in the
above.

fore independent of δ . Thus, the solution IMoM can be
used as a proper reference, to evaluate the accuracy of
IPSG-FFT and IPSG-FFT-ACA for varying δ . The relative
errors of the surface current coefficients are defined as
follows

E =

∥∥ITest − IReference
∥∥

2∥∥IReference
∥∥

2

, (48)

where ITest denotes the surface current coefficients to be
tested, IReference denotes some specified surface current
coefficients to be used as the reference, and ∥·∥2 denotes
the 2-norm of vector. Based on (48), the relative errors
of both the traditional PSG-FFT algorithm and the pro-
posed PSG-FFT-ACA algorithm for several different δ

are calculated and shown in Fig. 8. We can see that both
algorithms can achieve accurate results and show similar
accuracy level. In particular, within the range of the δ

between 0.15 λ and 0.65 λ , the errors of both algorithms
decrease with increasing δ . Furthermore, the accuracies
of both algorithms are not strongly sensitive with respect
to the δ considered.

Fig. 8. Relative errors E of the surface currents coef-
ficients I with respect to different splitting threshold
δ . The relative errors of both the traditional PSG-FFT
algorithm and the proposed PSG-FFT-ACA algorithm
are illustrated. The surface currents coefficients obtained
using the standard MoM are used as the reference.

In the following, the choice of δ is discussed. In
principle, δ can be of any value. However, in practice,
a moderate value of δ is suggested, due to the following
considerations.

• If δ is chosen be relatively large, the number of
nonzero elements of the evanescent matrix ZE will
then become relatively large. Clearly, in this case,
the corresponding computational cost will increase.
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In Table 1, the computational costs with respect to
δ are recorded. It can be observed that the time
and memory consumptions of both the traditional
PSG-FFT algorithm and the proposed PSG-FFT-
ACA algorithm increase as δ increase. Hence, due
to efficiency considerations, δ is not suggested to
be too large.

• If δ is chosen to be relatively small, the number of
nonzero elements of the evanescent matrix ZE will
become relatively small, and the computational cost
is correspondingly reduced. However, from Fig. 8,
it is observed that the accuracy of the solution is
slightly reduced when δ becomes smaller. Hence,
due to accuracy considerations, δ is not suggested
to be too small as well.

Based on the above considerations, the δ between 0.15
λ and 0.65 λ can be proper choice. In practice, by tuning
the splitting threshold δ within this range, we can trade
off between accuracy and computational cost.

Besides, the well-studied IE-FFT algorithm [17],
being a typical instance of the pre-correction-based
methods, is also used to calculate this example. Simi-
lar to the configurations of the pre-splitting-based meth-
ods employed, the grid spacing h for the IE-FFT is set to
0.1 λ and the expansion order M is set to 3. Then, using
IMoM as the reference, the relative error of the obtained
surface current coefficients IIE-FFT is calculated, which is
2.96E-3. Referring to Fig. 8, we can see that such error
is close to the error of the PSG-FFT(-ACA) algorithm
with δ about 0.45 λ . Moreover, for the IE-FFT algo-
rithm, the memory requirement is 3.09718 G and the
CPU time required is 1.08727 m. Referring to Table 1,
we can see that such cost is slightly lower than that of
the PSG-FFT algorithm with δ about 0.45 λ . From the
above numerical results, it can be known that the compu-
tational performance of the IE-FFT algorithm during the

Table 1: Time and memory for the sphere model with
different splitting threshold δ

δ (λ )
PSG-FFT PSG-FFT-ACA

Memory
(GB)

CPU
Time
(m)

Memory
(GB)

CPU
Time
(m)

0.15(λ ) 0.9924 0.6601 0.9917 0.7087
0.25(λ ) 1.9707 0.8078 1.6581 0.8167
0.35(λ ) 3.1454 1.1445 2.2623 0.8679
0.45(λ ) 4.6662 1.2814 2.9167 0.9177
0.55(λ ) 6.3642 2.0607 3.5851 0.9812
0.65(λ ) 8.3831 1.8004 4.2083 1.0390
0.75(λ ) 10.514 2.1802 4.3177 1.0939
0.85(λ ) 11.528 2.4548 5.1668 1.2197

solution stage is slightly better than that of the PSG-FFT
algorithm. However, it should be emphasized that such
slight advantage of the IE-FFT algorithm is at the price
of the additional grid-based numerical correction opera-
tions during the setup (precomputation) stage.

B. Monopole antenna on top of large platform
In the following, a more realistic example is con-

sidered, i.e., a monopole antenna on top of a large plat-
form, as shown in Fig. 9. Clearly, this is a typical mul-
tiscale structure and often encountered in many practi-
cal scenarios. The width and height of the platform are
4.0 λ and 0.3 λ , respectively. Moreover, the width and
height of the monopole antenna are 0.06 λ and 0.6 λ ,
respectively. The object surface is discretized with the
multiscale triangular meshes. Specifically, the monopole
antenna is discretized with meshes of edge length about
0.01 λ , while the large platform is discretized with
meshes of edge length about 0.1 λ . With such mesh, a
total of 24,807 RWG functions are generated.

The standard MoM and the proposed PSG-FFT-
ACA algorithm are employed to calculate this exam-
ple. Here, the pre-splitting threshold δ is chosen to be
0.35 λ . Using IMoM as the reference, the relative errors
of IPSG-FFT-ACA are calculated for different grid spac-
ings h and different expansion orders M. For clarity,
the relative errors are illustrated in Fig. 10. The corre-
sponding time and memory consumptions are recorded
in Table 2. It can be clearly seen that, for decreasing grid
spacing h and increasing expansion order M, the rela-
tive error decreases and the corresponding computational
cost increases. In other words, by tuning h and M, we can
trade off between accuracy and computational cost.

Regular Mesh : 0.1

Dense Mesh : 0.01

Small Feature
Large Platform

Fig. 9. Mesh configurations of a small monopole
antenna on top of a large platform. A multiscale mesh
is used to discretize this object. The monopole antenna
is discretized using dense mesh of about 0.01 λ , while
the large platform is discretized with regular mesh of
about 0.1 λ .
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Fig. 10. Relative errors E of the surface currents coef-
ficients with respect to different grid spacings h and
expansion orders M. The relative errors of the proposed
PSG-FFT-ACA algorithm are illustrated. The surface
currents coefficients obtained using the standard MoM
are used as the reference.

Table 2: Time and memory for the monopole-platform
model with different grid spacing h and expansion order
M

h(λ )
M = 2 M = 3

Memory
(GB)

CPU
Time
(m)

Memory
(GB)

CPU
Time
(m)

0.05(λ ) 1.0074 0.7863 1.1094 0.8256
0.10(λ ) 0.8643 0.2280 0.9662 0.2792
0.15(λ ) 0.8311 0.1554 0.9304 0.2106
0.20(λ ) 0.8243 0.1155 0.9261 0.1801

C. Cone-shape object
To further study the effectiveness of the matrix com-

pression enhancement, a PEC cone model is then consid-
ered, as shown in Fig. 11. The height of the cone is 3.0
λ . The radii of the top and the bottom faces are 0.03 λ

and 0.6 λ , respectively. The surface is discretized with a
gradually-varied meshes. In particular, three mesh con-
figurations are considered. For the three cases, the edge
length for the regular part of the mesh is fixed to 0.1 λ ,
while the edge lengths for the dense part of the mesh
are set to 0.01 λ , 0.005 λ , and 0.0025 λ , respectively.
For clarity, the mesh settings considered are illustrated
in Fig. 11.

For each of these mesh configurations, we solve
the corresponding equations first using the PSG-FFT
algorithm which employs the uncompressed ZE. Then,
we recalculate these problems using the PSG-FFT-ACA
algorithm which compresses ZE with the ACA. Here, the

0.1 0.1 0.1

0.01 0.005  0.0025 

Gradually-varied Mesh

Case 1 Case 2 Case 3

Fig. 11. Mesh configurations of the PEC cone. A
gradually-varied mesh is used to discretize the cone-
shape object. The edge length for the regular part of the
mesh is 0.1 λ . The edge lengths for the dense part of the
mesh are 0.01 λ , 0.005 λ , and 0.0025 λ , respectively. For
clarity, the enlarged views are also shown in the above.

splitting threshold δ is chosen to be 0.35 λ . Notice that,
with such configuration of δ , all the interactions corre-
sponding to ZE occur within the subwavelength regime.
Thus, the ACA compression can be applied effectively
[21, 37]. In Table 3, 4, 5, we tabulate the time and
memory consumptions of both the PSG-FFT algorithm
and the PSG-FFT-ACA algorithm for the three mesh
cases considered. It can be seen that, for all the cases,
the PSG-FFT-ACA algorithm shows improved computa-
tional performances relative to the PSG-FFT algorithm.

Table 3: Time and memory for the cone model of case 1

Algorithm
Memory (GB) CPU Time

ZE Total
ZE · I
( s)

Total
(m)

PSG-FFT 0.3313 0.6286 12.128 0.6955
PSG-FFT-

ACA
0.2418 0.4738 8.3050 0.6194

Table 4: Time and memory for the cone model of case 2

Algorithm
Memory (GB) CPU Time

ZE Total
ZE · I
( s)

Total
(m)

PSG-FFT 0.9611 1.6176 69.751 2.3978
PSG-FFT-

ACA
0.4935 0.8778 35.127 1.8475
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Table 5: Time and memory for the cone model of case 3

Algorithm
Memory (GB) CPU Time

ZE Total
ZE · I
(m)

Total
(m)

PSG-FFT 2.6465 4.2615 181.47 4.4874
PSG-FFT-

ACA
1.1579 2.0570 78.678 2.8009

Further inspections show that the degree of improve-
ments becomes more prominent when the dense mesh
is finer. To make this more clear, we calculate the com-
pression ratios of the evanescent matrix ZE and use this
as an indicator to measure the degree of improvements
of the matrix compression enhancement. In Fig. 12, the
compression ratios with respect to different mesh con-
figurations are illustrated. We can clearly see that the
compression ratio becomes higher when the dense mesh
becomes finer. That is, the effectiveness of the proposed
hybrid algorithm (with matrix compression enhance-
ment) becomes more prominent when the ratio between
the regular mesh size and the dense mesh size is larger.

Multiscale Mesh Case 3

Multiscale Mesh Case 2

Multiscale Mesh Case 1

Fig. 12. Compression ratios of the cone with different
mesh configurations.

D. Aircraft model
A relatively large PEC aircraft model with multi-

scale meshes is finally considered, as shown in Fig. 13.
In this model, both the length and the wingspan of the
aircraft are about 16 λ . The surface is discretized with
triangular meshes, resulting in 120,072 RWG functions.
Here, a part of the aircraft surface on the wings is dis-
cretized with dense meshes of edge lengths about 0.02
λ , and the rest of the aircraft surface is discretized with
regular meshes of edge lengths about 0.1 λ .

The bistatic RCS curves obtained by the PSG-FFT
algorithm and the PSG-FFT-ACA algorithm are illus-

Multi-scale MeshAircraft Model

Dense Mesh : 0.02 Regular Mesh : 0.1

Fig. 13. Geometry model and corresponding multiscale
mesh of the PEC aircraft. Here, a part of the aircraft sur-
face on the wings are discretized with a relatively dense
mesh of 0.02 λ , while the rest of the aircraft surface is
discretized with a regular mesh of 0.1 λ . The enlarged
view of the multiscale mesh is also highlighted in the
above.

Fig. 14. Bistatic RCS curves of the PEC aircraft model.
The result obtained by the IE-FFT is used as the ref-
erence. The RMSE of the PSG-FFT and the PSG-FFT-
ACA are calculated.

trated in Fig. 14. The pre-splitting threshold δ is here
chosen to be 0.35 λ . The bistatic RCS curve obtained
by the well-tested IE-FFT algorithm [17] is also shown
in the figure and used as the reference to calculate the
root mean square error (RMSE). We can see that these
curves agree well with each other.

The time and memory consumptions of both the
PSG-FFT algorithm and the PSG-FFT-ACA algorithm
are tabulated in Table 6. From the table, we can see
that the memory requirement of the evanescent matrix
ZE in the PSG-FFT-ACA algorithm is reduced by
about 34.1218%, compared with that of the PSG-FFT
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Table 6: Time and memory for the aircraft model

Algorithm
Memory (GB) CPU Time

ZE Total
ZE · I
( s)

Total
(m)

PSG-FFT 3.5558 7.7408 76.910 23.580
PSG-FFT-

ACA
2.3425 5.4033 48.053 21.431

algorithm. Meanwhile, the time cost for performing ZE ·
I in the whole solution process is reduced by about
37.52%. Thus, the time and memory cost related to the
evanescent matrix ZE can be greatly reduced, as a result
of the matrix compression enhancement.

Nevertheless, the total cost of the overall algorithm
are determined not only by the cost related to the evanes-
cent matrix ZE, but also determined by the cost related
to the propagating matrix ZP. For this relatively large
object, the dense mesh region only occupies a relatively
small portion of the overall object surface, and the ratio
between the edge length (0.1 λ ) of the regular mesh and
the edge length (0.02 λ ) of the dense mesh is here not
extremely large. Thus, the time cost for performing ZP · I
still dominates the time cost for performing Z · I, and the
reduction of the time cost for performing ZE · I therefore
only has a minor influence on the total time cost for per-
forming Z · I. As a result, although the total time can be
reduced due to the reduced cost related to ZE, the reduc-
tion of the total time does not look very striking for this
example.

IV. CONCLUSIONS
In this paper, a hybrid fast algorithm has been estab-

lished for efficiently analyzing multiscale problems. In
this algorithm, the Green’s function is a priori split into
a singular but spatially localized part, and a smooth,
oscillatory but bandlimited part. Then, the fundamen-
tal blocks for acceleration, i.e., the FFT and the matrix
compression method (ACA), are applied to these two
parts, respectively. Compared with the traditional meth-
ods which only employ the FFT for acceleration, the
proposed hybrid algorithm can maintain low memory
consumption in multiscale cases without compromising
time cost, thus manifesting itself as a favorable multi-
scale extension of the traditional pure FFT-based meth-
ods. Furthermore, the required auxiliary geometric data
structures herein can be constructed independent of each
other, thus permitting the two kinds of acceleration meth-
ods to be connected seamlessly in a concise and elegant
manner.

On the basis of the present work, several future
directions may be explored. First, except for the
Lagrange interpolation used in this work, other more

accurate interpolation schemes (such as the Gaussian
interpolation [15] or the fitting techniques [12]) can be
employed to further improve the computational perfor-
mance of the overall algorithm. Moreover, although only
the PEC problems are considered here, extensions to
the dielectric problems (especially inhomogeneous cases
[16]) are clearly feasible. Furthermore, effective par-
allelization (especially on heterogeneous architectures
[13]) of the proposed hybrid algorithm can be interest-
ing subject of future research.

APPENDIX
The derivative functions of Re [G(R)], which are

used in (18) and (19), are given below
d

dR
Re [G(R)] =−cos(kR)+ kRsin(kR)

4πR2 , (49)

d2

dR2 Re [G(R)] =

−
(
k2R2 −2

)
cos(kR)−2kRsin(kR)

4πR3 .

(50)

The derivative functions of Re
[ ...

G (R)
]
, which are

used in (30) and (31), are given below
d

dR
Re

[ ...
G (R)

]
=

−
(
k2R2 −2

)
cos(kR)−2kRsin(kR)

4πR3 ,

(51)

d2

dR2 Re
[ ...

G (R)
]
=

−
3
(
k2R2 −2

)
cos(kR)− kR

(
k2R2 −6

)
sin(kR)

4πR4 .

(52)
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