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Abstract ─ Computation time and memory 
consumption are two crucial bottlenecks for 
solving large dense complex linear system arising 
from electric field integral equations (EFIE) 
formulation of monostatic scattering problems. 
The traditional symmetric successive over-
relaxation (SSOR) preconditioner, derived from 
the near-field matrix of the EFIE, is widely used to 
accelerate the convergence rate of iterative 
solvers. This technique can be greatly improved by 
modifying the near-field matrix of the EFIE with 
the principal value term of the magnetic field 
integral equation (MFIE) operator. Additionally, 
the adaptive cross approximation (ACA) algorithm 
is applied to compress the near-field interaction 
matrix to save memory. Numerical experiment 
results indicate that the novel technique can 
significantly reduce both the computational time 
and memory significantly with low cost for 
construction and implementation of 
preconditioners. 
 
Index Terms - Adaptive cross approximation, 
iterative methods, low-rank property, monostatic 

RCS, preconditioning techniques, and shifted 
technique. 
 

I. INTRODUCTION 
For electromagnetic scattering analysis, a 

classic problem is to compute the current 
distribution on the surface of an object illuminated 
by a given incident plane wave [1]. The 
formulation considered here is electric field 
integral equations (refer to as EFIE) since it has 
the most general form and does not require any 
assumption about the geometry of the object. The 
EFIE matrix equation can be solved by using 
iterative solvers, and the required matrix-vector 
product operation can be efficiently calculated by 
multi-level fast multi-pole algorithm (MLFMA) 
[2]. The use of MLFMA could reduce both the 
memory requirement and the computational 
complexity to O (NlogN) [3].   

It is well-known that EFIE provides a first-
kind integral equation, which is ill-conditioned 
and difficult to solve in a linear system [4]. 
Therefore, some researchers have been attempting 
to adopt the preconditioning method to accelerate 
the solution of linear systems for this problem [5-
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7]. Simple preconditioners such as the diagonal or 
diagonal blocks of the coefficient matrix might be 
effective when the matrix has some degree of 
diagonal dominance. Incomplete LU (ILU) 
factorizations have been successfully used for 
nonsysmmetric dense systems [8]. However, the 
factorization is commonly rather ill-conditioned. 
Thus, this makes the triangular solvers highly 
unstable and the use of the ILU preconditioner 
might be ineffective as a whole [9]. Presently, the 
sparse approximate inverse (SAI) preconditioning 
techniques have been successfully integrated with 
the MLFMA [10, 11]. But the construction cost of 
SAI is normally higher. Relative to ILU and SAI, 
the symmetric successive over-relaxation (SSOR) 
[12, 13] preconditioner has the obvious advantage 
in construction cost. Furthermore, the SSOR 
preconditioning technique contains more 
information of the coefficient matrix when 
compared with a diagonal/block diagonal matrix, 
which is perhaps efficient only for very long and 
narrow structures. However, the conventional 
SSOR preconditioner is sometimes ineffective for 
the iterative solution of the symmetric indefinite 
linear systems arising from the EFIE formulation 
of electromagnetic scattering problems. As an 
attempt for a possible remedy, SSOR 
preconditioner combined with a tri-diagonal shift 
from the principal value term of MFIE operator is 
proposed, which is called shifted SSOR (S-SSOR) 
[14]. Compared to original SSOR method, this 
shift scheme can significantly improve the 
performance of the SSOR preconditioner, 
meanwhile it does not require much more 
computational and storage costs. Except that the 
process of monostatic scattering computation 
could be accelerated by S-SSOR preconditioner, 
another remaining bottleneck of EFIE solution is 
the limited memory. Some previous studies have 
shown that the far-field impedance matrix can be 
compressed by MLFMA well [2-3], while the 
near-field self-interaction matrix is full rank, 
which makes it incompressible. However, in some 
cases, near-field interaction matrix (excluding the 
self-interaction matrix) might have characteristics 
of low rank [15-19], such as dealing with the 
multi-scale problems [20]. To achieve the purpose 
of low memory cost, the adaptive cross 
approximation algorithm (ACA) [21-24] is used in 
this paper to compress the near-field interaction 
matrix. 

The paper is organized as follows, section II 
gives a brief introduction to the EFIE formulation 
and the MLFMA. The shifted SSOR 
preconditioning technique is depicted for more 
details in section III. Section IV demonstrates the 
basic theory of low-rank decomposition strategy 
for near-field interaction matrix. Numerical 
experiments with several monostatic scattering 
problems are presented to verify the efficiency of 
the proposed method in section V. The 
conclusions are summarized in section VI.  
 
II. EFIE FORMULATION AND MLFMA 

The EFIE formulation of electromagnetic 
wave scattering problems using planar Rao-
Wilton-Glisson (RWG) basis functions for surface 
modeling is presented in [1]. The resulting linear 
systems from EFIE formulation after Galerkin’s 
testing are briefly outlined as follows, 
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Here ( , ')G r r  refers to the Green’s function in 
free space and {In} is the column vector 
containing the unknown coefficients of the surface 
current expansion with RWG basis functions fm. 
Also, as usual, r and r' denote the observation and 
source point locations. Ei(r) is the incident 
excitation plane wave, and  and k denote the free 
space impendence and wave number, respectively. 
Once the matrix in equation (1) is solved by 
numerical matrix equation solvers, the expansion 
coefficients {In} can be used to calculate the 
scattered field and RCS. In the following, we use 
Z to denote the coefficient matrix in equation (1), 
I = {In}, and V = {Vm} for simplicity. Then, the 
EFIE matrix in equation (1) can be symbolically 
rewritten as, 

ZI = V.                            (2) 
 

The basic idea of the fast multipole method 
(FMM) is to convert the interaction of element-to-
element to the interaction of group-to-group. Here 
a group includes the elements residing in a spatial 
box. The mathematical foundation of the FMM is 
the addition theorem for the scalar Green’s 
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function in free space. Using the FMM, the 
matrix-vector product ZI can be written as, 

 

                       ZI = ZNI +ZFI                             (3) 
 

where ZN is the near part of Z and ZF is the far 
part of Z.  

In the FMM, the operation complexity to 
perform ZI is O(N1.5). If the FMM is implemented 
in multilevel, the total cost can be reduced further 
to O(NlogN) [2]. The calculation of elements in 
the matrix ZN remains the same as in the method 
of moments (MoM) procedure. However, those 
elements in ZF matrix can not be explicitly 
computed and stored. Hence, it is impossible to 
use the matrix ZF directly.  

 
III. SHIFTED SSOR PRECONDITIONER 
WITH LOW-RANK DECOMPOSITION 

STRATEGY 
In the traditional SSOR preconditioning 

scheme, the preconditioner is chosen as follows, 

             -1= ( )( ) ( + )SSORM D L D D U  +            (4)       

where ZN = L+D+U in equation (3), L is the lower 
triangular matrix, D is the positive diagonal matrix, 
U is the upper triangular matrix, and 

= (1 )D D / , 0 2< <  (  is the relaxation 
parameter). 

Although the SSOR preconditioner performs 
well in the case of Hermitian positive definite 
matrices, the performance is often poor when the 
matrices are indefinite or non-Hermitian, as in the 
case of the EFIE. The matrix of MFIE has good 
condition number mainly due to the existence of 
the principal value term [25]. Accordingly, 
combining the EFIE and MFIE leads to the well-
conditioned combined field integral equations 
(CFIE). Inspired by CFIE, the principal value term 
of MFIE is used in order to improve the condition 
of EFIE matrix. More specifically, we use [14], 

 

                         N MFIE  Z Z Z                 (5) 

to construct the S-SSOR preconditioner S -SSORM . 
The impedance matrix ZMFIE is the discretized 
tridiagonal matrix from the principal value term of 
MFIE operator and  stands for a nonnegative 
real parameter. It is known that ZMFIE is a well-
conditioned and very sparse real symmetric matrix. 
As a result, it requires a small amount of 
computation and storage.  

In order to save memory consumption for 
construction of S-SSOR preconditioner, an ACA 
based method is proposed and the methodology is 
discussed in this section. The ACA decomposition 
is used to the near-field sub-matrices (exclude the 
self-interaction sub-matrices) [15]. Although the 
efficiency of ACA filled the near-field sub-
matrices is not better than that of the ACA filled 
the far-field sub-matrices, it is still a little more 
efficient than that of direct fill. 

In the FMM, the near-part matrix ZN can be 
rewritten as, 

                       ZN  = ZNS + ZNI                    (6) 
where ZNS is near-field self-interaction matrix and 
ZNI is near-field interaction matrix. According to 
the theory of FMM, the near impedance can not be 
decomposed. However, if the diagonal part is 
removed from the near impedance matrix, it can 
be decomposed by low-rank decomposition 
method. As ZNI denotes the near impedance matrix 
excluding the diagonal part, the matrix ZNI could 
be divided into many sub-matrices by a tree data 
structure in MLFMA. Obviously, each none-zero 
sub-matrix of ZNI denotes the near action. 
Accordingly, the adaptive cross approximation 
approach is used and the sub-matrix of ZNI can be 
approximated by two small sub-matrices UACA and 
VACA. Denoting the sub-matrix of ZNI with Z', we 
have [21], 

[ ]QMZ' ≈[ ]ACA QkU ·[ ]H
ACA MkV   (7) 

where M and Q are the dimensions of matrix Z'. 
The symbol k is the rank of the matrix Z', which 
is much smaller than M and Q. According to 
equation (7), the memory requirement of the 
matrices UACA and VACA is much less than that of 
the direct filling of Z'. The procedure of the ACA 
algorithm is present as follows [22]: 
First, let UACA = NULL in order to save the 
selected columns and VACA = NULL in order to 
save the selected rows. 

Step1: Choose the first column u1 randomly 
and let UACA = UACA ∪ {u1}. Find the maximum 
value u1k in u1. Then choose the first row v1, which 
is located at the kth row in the matrix. Let VACA = 
VACA ∪ {v1}. 

Step 2: Find the maximum value vik in vi. Then 
choose the (i + 1)th column ui+1, which is located 
at the kth column in the matrix. 

Step 3: Let UACA = UACA ∪ {ui+1}. 
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Step 4: Find the maximum value ui+1,k in ui+1. 
Then choose the (i + 1)th row vi+1, which is 
located at the kth row in the matrix. 

Step 5: 1 1 ,
1

i

i i j i j
j

u 


 v v v , and let VACA = 

VACA ∪ {vi+1}. 

Step 6: If 1 1

1 1

i i   
u v

u v
, the algorithm will 

stop, otherwise, go to Step 2. The low-rank 
decomposition form of near-field interaction 
matrix is  ZNI≈ UACA·VACA

H. 
This algorithm produces a sequence of 

decompositions of a matrix into a sum of low-rank 
matrix and error matrix. Neither the original 
matrix nor the error matrix will be computed 
completely. The decision of the tolerance error ε 
needs a trade-off between accuracy and 
effectiveness. If the tolerance error is set too high, 
the solution results will lead to less accurate or 
even wrong. In contrast, a too-low tolerance error 
will degrade the compression effect. By classic 
ACA reference [23], as well as our numerical 
experiments, ε = 10-3 is appropriate for most cases. 
Furthermore, single precision is used in the 
remaining part of this paper. 

When ACA technique is used, the near 
impedance matrix can be compressed to save the 
memory. Moreover, the computation time to fill 
the near impedance will be saved. However, the 
diagonal part of the near impedance can not be 
compressed due to its full rank. This part should 
be computed by conventional MoM procedure. 
Since the ACA technique is only for compression, 
the SSOR accelerated iterative solver will not be 
affected by ACA. Accordingly, the SSOR and 
ACA can be integrated to improve the efficiency. 

 
IV. NUMERICAL EXAMPLES 

In this section, numerical results based on on-
site experiments will demonstrate the accuracy and 
efficiency of the proposed method for fast 
calculation of monostatic RCS. In our experiments, 
the restarted version of GMRES algorithm [12] is 
used as the iterative solver, and the dimension of 
Krylov subspace is set to be 30 in this paper. All 
experiments are performed on a Core(TM)II 
E8400 with 3 GHz CPU and 3.24 GB RAM in 
single precision. Additional details and comments 
on the implementation are given below: 

 zero vector is taken as initial approximate 
solution for all examples, 

 the iteration process is terminated when the 
normalized backward error is reduced by 10-3 
for all examples, 

 the dimension of Krylov subspace is taken to 
be 30,  

 1.0 is taken as the relaxation parameter ( ) 
for building both SSOR and S-SSOR 
preconditioner mentioned in this paper, 

 3.0 is taken as the shift parameter for building 
S-SSOR preconditioner. 
 

Although CFIE shows higher efficiency for 
objects with closed structure than EFIE, it fails for 
geometries with open structure [26]. As a result, 
proposed technique in this paper is a suitable 
choice to alleviate this difficulty due to its fast 
iteration capability and less memory requirement.  
The performance of the proposed method is 
investigated on three examples with open structure 
for monostatic RCS calculation. As shown in Fig. 
1, we consider a cube-plate perfect electrical 
conductor (PEC) scatterer consisting of a plate of 
size (1 m × 0.5 m) placed on a 1 m × 1 m × 1 m 
cube with 4867 unknowns at 400 MHz. The 
second example, as shown in Fig. 2, is a 1 m × 1 m 
× 1 m open cavity with 8101 unknowns at 500 
MHz and the final structure in Fig. 3, is a disk 
(radius is 2 m) with 4280 unknowns at 300 MHz. 
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Fig. 1. The monostatic RCS for a cube-plate 
scatterer using the proposed method. 
 

The sets of angles of interest for the 
monostatic RCS vary from 0 to 180 degree for the 
first two examples and 0 to 89 degree for the last 
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instance in pitch direction when azimuth angle is 
fixed at 0 degree. The RCS curve computed with 
repeated solution at each angle are taken as 
reference values. The accuracy of the compressed 
S-SSOR preconditioner can be seen from its 
agreement with the reference values. 
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Fig. 2. The monostatic RCS for an open cavity 
using the proposed method. 

 

 
Fig. 3. The monostatic RCS for a disk using the 
proposed method. 
 
 Figures 4, 5, and 6 show number of iteration in 
each pitch angle of GMRES with 
unpreconditioned GMRES method, SSOR 
preconditioner and the proposed preconditioner for 
three geometries, respectively. It can be observed 
that the novel operator has the highest 
convergence rate for each example. Table 1 lists 
the computation time for all angles to cover the 
entire monostatic RCS curve on these three 
examples. Similar improvements can also be 

found in comparison with the conventional SSOR 
methods in terms of computational time. 
Compared with the unpreconditioned GMRES 
algorithm, the compressed S-SSOR technique 
decreases the computational time by a factor of 
3.11 on the cube-plate scatterer example, 2.78 on 
the open cavity example, and 3.26 on the disk 
example, respectively. 

 
Fig. 4. Iterative number for a cube-plate scatterer 
with unpreconditioned GMRES method, SSOR 
preconditioner, and the proposed method. 

 

 
Fig. 5. Iterative number for an open cavity with 
unpreconditioned GMRES method, SSOR 
preconditioner, and the proposed method. 

 
Table 2 demonstrates the compression effect 

of near-field interaction memory of the three 
examples. The proposed method could effectively 
reduce the near-field interaction memory 
consumption by a factor of 2.09 on the cube-plate 
scatterer example, 2.05 on the open cavity 
example, and 2.95 on the disk example, 
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respectively. The time for compressed operation is 
also listed in Table 2. It is obvious that 
compression time is much smaller than solution 
time. Summarizing the discussions we can see that, 
our proposed technique outperforms the 
conventional techniques in terms of the efficiency 
and memory consumption.  

 
Fig. 6. Iterative number for a disk with 
unpreconditioned GMRES method, SSOR 
preconditioner, and the proposed method. 
 
Table 1: Comparison of solution time (in seconds) 
with unpreconditioned GMRES method, SSOR 
preconditioner, and the proposed method on three 
different examples.  
 Solution time (s) 

Geometry No SSOR S-SSOR 

Cube-plate 7972.92 6383.61 2566.77 

Open cavity 12590.05 11123.44 4533.09 

Disk 4952.08 4700.38 1516.77 

 
Table 2: Compression effect of near-field 
interaction memory on three different examples. 

Object 
Compression 

time(s) 

Near-field 
interaction 

memory 
before 

compression 
(MB) 

Near-field 
interaction 

memory 
after 

compression 
(MB) 

Cube-
plate 

55.13 57.41 27.45 

Open 
cavity 

77.30 78.70 38.38 

Disk 37.94 55.11 18.69 
 

The SSOR technique can accelerate the 
convergence of the iterative solver while the 
GMRES method is used in this paper. Besides, the 
ACA technique can save memory consumption by 
the near impedance matrix. Numerical results 
show that the ACA technique will not affect the 
accuracy and efficiency of the SSOR 
preconditioner. An "ACA-only" technique will 
cost large computation time for iterative solution 
without using the SSOR preconditioner. 

 
V. CONCLUSION 

In this paper, a new compression scheme is 
developed and used to construct the robust shifted 
SSOR preconditioners for efficiently solving the 
electromagnetic scattering problems existed in the 
non-Hermitian linear systems derived from EFIE 
formulation. The new method can significantly 
reduce both calculation time and memory 
consumption without compromising the accuracy 
of the final result. Several numerical experiments 
for validation are performed. Compared to the 
traditional SSOR preconditioner, the novel 
compressed shifted SSOR preconditioner is more 
efficient and robust.  
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