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Abstract— This paper presents an implementation of the Me-
thod of Lines, a semi-analytical method, for the numerical mod-
eling of radiating stratified periodic structures composed of di-
electric layers interspersed with metallic patches and slots. Beam
scanning antenna arrays and frequency selective surfaces (FSS)
are among possible applications. The combined use of the Modified
Biconjugate Gradient Squared method with Stabilization, an itera-
tive resolution method, together with the Fast Fourier Transform
allows for the analysis of a wide array of problems using uniform,
high discretization density by considerably speeding up the reso-
lution process and drastically reducing memory requirements. Pe-
riodic FSS and slot coupled patch array antennas were simulated.
A comparison of simulation results with available literature allows
validation of the new approach.

Index Terms— Method of Lines, Antenna Arrays, Frequency
Selective Surfaces, Multilayered structures, Conjugate Gradient
FFT technique.

I. INTRODUCTION

Large multilayered printed array antennas with beam scan-
ning capabilities [1] and frequency selective surfaces (FSS) are
structures of increasing interest for satellite-based telecommu-
nications. Both applications, presented in Figure 1, can essen-
tially be formulated as planar multilayered periodic arrays of
metallic patches and/or slots. The use of periodic conditions to
model the behavior of these arrays is justified by their large size
(typically,

�������������
elements).

The coupling of surface waves in these structures is of great
importance for incidence angles away from broadside. Such
coupling can lead to scan blindness at specific angles, with
important effects on the impedance over a broad angular scan
range. In addition, the trend toward multi-frequency antennas
in space applications contributes to the increase in complexity
of printed antenna structures, for instance through the combina-
tion of several dielectric substrates, metallic elements and cou-
pling slots. These two factors emphasize the need for accurate
analysis tools oriented toward such structures.

Previous work has been done on full-wave modeling tech-
niques for these types of structures [2], [3], [4], [5], mostly us-
ing the method of moments and its derivatives. In this commu-
nication, we present a novel and modular modeling technique
based on the Method of Lines [6] (MoL), a full-wave semi-
analytical technique based on the partial discretization of the
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solution space. Previous papers ([7],[8], [9]) have used the MoL
to model metallic grating structures for FSS applications which
required discretization of a single variable (1D discretization).
Here we present a model allowing for multilayered, planar ar-
bitrary metallic patterns (2D discretization). In addition to al-
lowing plane wave excitation for FSS applications, it supports
the microstrip line slot coupling scheme which is widely used
in printed antenna arrays.
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Fig. 1. Two types of planar periodic array structures.
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The semi-analytical nature of the MoL makes it particularly
well-suited for the analysis of planar multilayered structures.
Some of its merits are:� it is based on surface (as opposed to volume) discretization

of the interfaces of each layer;� it does not require the use of analytic Green’s functions;� it does not involve numerical integrals, which circumvents
any integration of poles;� it does not rely on the choice of basis functions.

A preliminary study of this technique with linear arrays was
presented earlier [10]. The generalization of the technique
for planar, multilayered structures poses challenges with re-
spect to memory requirements and computing time. In fact,
the main drawbacks of the MoL with uniform discretization
are its high memory and computing time requirements asso-
ciated with high levels of discretization. One of the impor-
tant features of the technique presented here is that it uses the
properties of periodic boundary conditions to allow great sav-
ings in memory and computing time, through the use of the
fast Fourier transform and an iterative resolution method, the
modified biconjugate gradient squared method with stabiliza-
tion (Bi-CGSTAB2) [11]. This technique gives access to the
merits of the MoL at reasonable memory and computing costs.

The main objective of this work is to establish the function-
ality of our MoL-based model for the above-mentioned struc-
tures. Extensions to the existing MoL techniques for the prob-
lems at hand will be briefly presented, and validations with typ-
ical cases of interest will be carried out. Many of the mathemat-
ical details, presented elsewhere [12], have been omitted from
the paper for conciseness.

II. GENERAL FORMULATION

A. Definition of the unit cell of the periodic structure

As illustrated in Figure 2, the analysis of a periodic struc-
ture is simplified by considering one single cell and apply-
ing the appropriate periodic boundary conditions on its sides.
The fields and currents are not properly periodic, since we
want to allow for a linear phase progression corresponding to
the angles

���������
of an incident wave on an FSS or the an-

gles
�	���

of the main antenna beam for a phased array (see
Figure 1). These angles determine the fundamental spatial
frequencies 
���
����	
�
������ � ����� � � � ��
�
������ � ��� � � and
���
 �!�	
�
������ � � ����� � � �"
�
#����� � ���$� � for all fields in the
solution, where 
�
%�'&�()+* is the wavenumber in vacuum. By ap-

plying the phase normalization factor ,�-�.0/21 * �+3 /�4 * �25 to all elec-
tromagnetic quantities, we get periodic distributions for all nor-
malized quantities.

Figure 3 presents the general topology for a single cell in-
side a planar multilayered periodic structure. It is composed of
a number of homogeneous dielectric layers interspersed with
arbitrary metallic patterns (e.g. patches, slots). By adding a pe-
riodic source and absorbing boundary conditions (ABC) over
the top layer and under the bottom layer, our generic prob-
lem is completely specified. We will be looking for a solution
that:

1) Satisfies the simple wave equation for source-free media
in all dielectric layers;
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Fig. 2. Discretization scheme of one cell with boundary conditions.
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Fig. 3. General topology of a multilayered periodic cell with employed nota-
tion.

2) Satisfies the boundary conditions at all interfaces between
dielectric layers, including the tangential magnetic field
discontinuity due to surface currents on the metallic pat-
terns;

3) Satisfies the periodic boundary conditions for all normal-
ized fields;

4) Satisfies the absorbing boundary conditions (ABC) at the
interface between the top layer and vacuum, as well as at
the interface between the bottom layer and vacuum.

B. Discretization of Helmholtz’s equation

In every distinct dielectric layer, as well as in the free
space regions over and under the structure (see Figure 3), the
z-component of the electric and magnetic fields satisfy the
Helmholtz equation [6]. In the MoL formulation, the partial
derivatives with respect to 7 and 8 are approximated by finite
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differences and the analytical derivative with respect to � is pre-
served in the Laplacian operator. Doing so, the Helmholtz equa-
tion is written for both ��� � and ��� � :���� & � �
	�
��� &� �
	�
��� &������� 
 &
 	��� � � � � �

(1)� �� & � ��	����� &� ��	�
��� &������� 
 &
 	� � � � � � �
(2)

where ��� is the relative permittivity of any particular layer,
while � � � and � � � are vectors containing the electric and mag-
netic fields, discretized in the x-z plane.

The positions of the � � and � � samples along the 7 and 8
directions, respectively, are indicated on Figure 2. 	���� , 	�
�� , 	����
and 	�
�� are matrix operators that implement the double partial
derivatives using finite differences along lines � � 1 , � � 4 , � � 1 and� � 4 , respectively, as shown on Figure 2. Periodic boundary con-
ditions along the 7 and 8 directions are built into these four op-
erators. More specifically, these matrix operators are obtained
from

���� � � �"!$#� � � ! � � � and
���� � � �%! � � �&!$#� � � , where ! � � �

are the 1-D difference operators in which the periodic condi-
tions are embedded [6].

C. Diagonalization of Helmholtz’s equation

Matrix equations (1) and (2) are sets of � � � � � single-
variable coupled differential equations. Following a diagonal-
ization procedure developed in [6], these equations can be re-
written in the form: ' �� & � �)(+* &�, � � � � �

(3)
' �� & � �-(.* & , � � � � �

(4)

where (+* & is a diagonal matrix given by:(+* & � � 	/ �� � � & � � 	/ �� � � & � ��� 
 &
 	� (5)� � � and � � � correspond to ��� � and ��� � expressed in the eigenvec-
tor (transformed) domain. 	/ � and 	/ � are eigenvalue diagonal
matrices depending on � � , � � and the source wavenumbers
���
 and 
���
 .
D. Construction of a general system of equations

Defining a general algorithm to build a system of equations
from any problem involving a bi-dimensionally periodic mul-
tilayered structure is key to the versatility of our formulation.
The objective here is to formulate the electromagnetic problem
of our multilayered structure as a linear system of equations
with the unknowns being, alternatively, the tangential electric
field samples on the un-metalized parts of each interface or the
surface current density samples on the metalized parts of the
interfaces. The unknowns can also be chosen as the tangential

E-field samples on some interfaces and the surface current den-
sity samples on the other ones. To preserve the generality of
the formulation, a homogeneous system of equations will first
be derived. The source problem will then be addressed by set-
ting some of the unknowns to defined values and solving for the
remaining unknowns.

Equations (3) and (4) can be solved analytically for the z-
directed fields in the transformed domain. A homogeneous sys-
tem of equations is formed by enforcing the boundary condi-
tions at each interface on the space-domain fields obtained from
a superposition of the transformed-domain analytic solutions.

1) Intermediate layer hybrid parameters: Within any di-
electric layer, the analytic solutions to (3) and (4) for all modes
in the transformed domain are given by:0 � � � �21 � ��� �43
5>
 * � �76 �98 � �����73�5�
 * � �76 (6): � � � �<; � ��� �43
5>
 * � �76 �>= � ���$�?3
5>
@* � �?6 (7)

where the real and imaginary parts of 
A* � are positive, i.e.B 5>
@* � 6DC �
and EF5>
@* � 6DC �

with G � � �IH��KJLJMJ$� � � � � . The
 * � ’s are obtained from the positive root of (5). This assump-
tion, together with source-free Maxwell’s equations, results in
hybrid parameters relating the transformed tangential electric
and magnetic field samples on both sides of any dielectric layer.
These can be written as:N ��OQPSRT� OQP�RTVU *KW.*SXZYQ[ �]\ ^ T _`Ta T ^ Tcb N �cOQPSRT� OQPSRTdU *KW.*�efYgX (8)

where the tangential components along 7 and 8 on the top and
bottom interfaces have been grouped following the same nota-
tion as in [6]:� OQPSRT �

N � � � T
�ih � � � T U � OQP�RT �kj�
 N �lh � � � T� � � T U (9)

General forms for the sub-matrices ^ T ,
a T and _`T in (8) are

given in [6]. These submatrices were modified for the specific
bi-periodic case considered [12].

2) Absorbing boundary conditions: In the top and bottom
free-space regions, the analytic solutions to (3) and (4) for all
modes in the transformed domain are assumed to be traveling
waves. This assumption constitutes a statement of the absorb-
ing boundary conditions. The assumed modes in the top and
bottom free-space regions are as follows:0 � � � �m1 � ,&n /�o�p * : � � � � 8 � ,&n /�o�p * (10)

where the real and imaginary parts of 
A* � are positive, i.e.B 5>
@* � 6DC �
and EF5>
@* � 6DC �

with G � � �IH��KJLJMJ$� � � � � . The
plus (+) and minus (-) signs refer, respectively, to the solutions
in the bottom and top free-space regions. The 
A* � ’s are ob-
tained from the positive root of equation (5). This assumed
form, together with the source-free Maxwell’s equations, al-
lows to write absorbing boundary conditions in matrix form for
the transformed fields. The ABC’s on the top and bottom sur-
faces are implemented by establishing a relationship between
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the tangential fields at the top and bottom of the solution do-
main [13]: � OQPSR � ��� � OQPSR � � �k� O ��� (11)� OQPSR � ��� � OQPSR � � �k�	� � O (12)

where the subscripts 
 and 8 correspond, respectively, to the
plus and minus signs and the compact vectors � OQPSR and � OQP�R
are as defined in (9). The ABC’s apply individually for every
mode in the transformed domain. The formulations for ���
and ��� are given by [12]:

��� � � �
� 
�
 �� (����* 5 	/ &� � ��� 	� 6 �ih (����*�� / ��� / ���h ( ���*�� / ��� / �	� ( ���* 5 	/ &� � �4� 	� 6
��

(13)

3) Interface Boundary Conditions (IBC) in the transformed
domain: The boundary conditions at each of the interfaces de-
pend on the metallic layout at each interface as well as on the
dielectric constants. Because of this, the IBC’s are responsible
for interactions among the spectral components obtained from
the previous analytic treatment. In the transformed domain, the
IBC’s are:� OQPSRT���� * W+*�efY X � � OQPSR. T ��� 5 ��� *KW.* X Yf[� OQPSRT ��� * W+*�efY X � � OQP�R. T ��� 5 ��� *KW.* XZYQ[ �  OQPSR. T ��� 5! � � �SH�� JMJLJ�� �#" � �

(14)

where �#" is the number of dielectric layers comprised between
the top and bottom free-space regions, and  OQP�R. T ��� 5 represents
the tangential surface current samples, in the transformed do-
main, on the interface between the 5 ! � � 6%$'& and the ! $(& di-
electric layers. More specifically, it is defined as:

 +OQPSRT �kj�
 N h  � � T � � T U (15)

In the following, the IBC’s will be used together with the
hybrid parameters and ABC’s to form the individual lines of
our homogeneous system of equations.

4) Intermediate lines of the system of equations (lines ! � �
through ! �%�#"	� �

): Using the intermediate layer hybrid
parameters (8) for all dielectric layers, the IBC’s (14) can be
written in terms of the electric field only:) T �cOQPSR. T ��� 5'� � * T ��OQPSRT � � ) . T 3 � 5 ��OQPSR. T 3 � 5'� �  +OQP�RT � �! � � �SH�� JMJLJ�� �#"�� �

(16)

5) First ( ! � �
) and last ( ! � �#" ) lines of the system

of equations: The analytic absorbing boundary conditions de-
fined in II-D.2, together with the interface boundary conditions
defined in II-D.3 can be used to derive, in a similar manner, the
following two matrix equations:� ��� � + � � � OQPSR
,� � ) � � OQPSR� � �  OQP�R
 � �

(17)).-�/ � OQPSR. -�/ ��� 5'� � � + -�/ � ���0� � OQP�R-�/ �  OQPSR-�/ � �
(18)

where the
) T and + T are defined in [12].

6) Homogeneous system of equations: Taking into account
the couplings at all �1" � �

interfaces and transforming back
to the spatial domain leads to the following general system of
equations:

2354
�6666� � OQPSR
,�� OQPSR� �...� OQP�R-�/ �

�87777�
9 :<; =2� OQPSR

�
�6666�  OQPSR
 OQPSR� ... OQPSR-�/

�87777�
9 :<; =2 OQPSR

� �
(19)

where
2354

has the form:

23>4 �

�6666666666666�

* 
 ) �) � * � ) &) & * & ).?
. . .

. . .
. . .)@-�/ ��� * -�/ ��� )@-�/)@-�/ * -�/

�87777777777777� (20)

If we exclude imposed � and  sources, the system of equa-
tions (19) has twice as many unknowns as its number of equa-
tions. As described in [6], the system can be reduced to a ho-
mogeneous square system. At each interface we select � OQPSRT � or OQP�RT to be the unknown quantity of interest. It is then possible
to re-arrange equation (19) in the form:235A 2B � 2a � �

(21)

where
2B

and
2a

contain, respectively, the selected and non-
selected unknowns. The selection is done at each interface. Ex-
amples of

2B
and

2a
are:2B �DC  OQPSR
 � OQPSR� �  OQPSR&FE � (22)2a � C � OQPSR
,�  OQP�R� � OQPSR& � E � (23)

in a 3-interface model. The selection of variables forming
2B

is
done according to the following rule: if the fraction of the cell
area occupied by metal on interface ! is less than �& , then we
select  OQPSRT as the variable of interest, otherwise we select � OQPSRT � .
Then, after setting  OQPSRT � �

and � OQPSRT � �
over non metalized

and metalized areas respectively, we can form a reduced system
by retaining only the remaining non-zero elements of

2B
and the

zero elements of
2a

. This leads to the desired square system:23>A � �%G 2B � �%G � �
(24)

Re-arrangement of
2354

into
23>A

requires multiplications and
inversions of sub-matrices. These operations are performed in
the transformed domain to take advantage of sparsity.

7) Source excitation leading to a particular solution: Any
specific application in which the source can be formulated in
terms of either a distribution of tangential electric field and/or
surface current density on all or part of one of the interfaces can
be represented using (21). Section IV explains how the sources
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in the FSS and antenna array applications can be formulated as
such.

The application of a distribution of tangential source electric
fields in a slot cut in one of the metalized interfaces is equivalent
to an applied magnetic current on both sides of the un-slotted
metal interface. On the other hand, the application of a surface
electric current distribution on a portion of one of the interfaces
is equivalent to imposing a discontinuity in the tangential mag-
netic field on that portion of the interface.

Once the desired source has been written in terms of the
2B

or2a
generic vectors, it is inserted as a constant into equation (21),

which is re-written by transferring all constants on the right-
hand side. The application of the reduction process results in
the following system of equations:23>A � �%G�� 2B � �%G�� � 2� � � G�� (25)

which has as many unknowns as equations and has a unique
solution.

III. ITERATIVE RESOLUTION TECHNIQUE

In order to obtain a solution to (25), one would normally use
the LU decomposition technique. However, the high number of
unknowns generated with highly discretized interfaces results
in memory and computing time difficulties. For example, a typ-
ical single-substrate patch antenna array problem analyzed with
a discretization of

��� � � ��� �
per periodic cell would typically

result in a system of equations comprising
��� � � ���

unknowns
when the reduction scheme is applied. The mere storage of
a

��� � � ��� � ��� � �����
complex matrix

23>A � � G in double preci-
sion would require about � J
	 gigabytes (GB) of RAM, which
is highly impractical even considering today’s advanced com-
puter technology. Even if this considerable amount of RAM
was available, an LU decomposition would require nearly an
hour and a half of computing time on a 200 � :

8 Pentium I
processor.

This example emphasizes the need to resort to an iterative
resolution algorithm, which allows great reductions in memory
and computing time requirements. Using such an algorithm,
the above-mentioned problem was resolved with only

H
�
mega-

bytes (MB) of RAM, within 12 minutes of computing time on
a 200 � :

8 Pentium I processor.
Figure 4 illustrates the proposed iterative resolution algo-

rithm. It is based on the use of the Bi-CGSTAB2 routine in-
cluded with the PCG library [11]. While this method usually
provides fast resolution of large systems of equations, the pri-
mary intent for using it is to circumvent the computer memory
issue mentioned above. In order to do so, the system matrix235A � �%G�� should not be explicitly represented in the spatial do-
main, as this would require a very large amount of memory
( � J
	 GB of RAM in the above-mentioned example). Instead,
the matrix operation

23>A � �%G�� 2B � �%G�� should be performed in the
transformed domain, where all sub-matrices are diagonal.

It should be emphasized that, although this iterative reso-
lution technique was primarily chosen in order to reduce the
memory requirements, it has also proven to be a very fast way
to resolve such systems.
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Fig. 4. Depiction of the iterative resolution algorithm.

IV. ANALYSIS OF FREQUENCY SELECTIVE SURFACES

In the analysis of periodic multilayered FSS structures such
as the one illustrated in Figure 1(a), we are interested in finding
out the reflection and transmission coefficients for an incoming
plane wave with an incidence angle

�t�
with respect to 	� and

a plane of incidence making an angle µ � with respect to 	7 . If
we choose the periodicity such that there are no grating lobes,
the only fields present in the far-field region are the incoming,
reflected and transmitted plane waves. We will only present the
developments and results for the 
 0 polarization here; for the
�� case, the reader should consult [12].

A. Definition of 
 0 excitation

In order to analyze FSS structures, the general method that
was defined in section II will be combined with a specific def-
inition of the source for this particular problem, as explained
in II-D.7. The Transverse electric ( 
 0 ) excitation is illustrated
in Figure 5. Our general formalism requires that the excitation
be expressed in terms of total tangential fields. Since in the
present case the physical source is an incident plane wave, we
can only formulate a total fields source in the far-field region
of the antenna, where the only contribution to the electromag-
netic fields are the incident and reflected plane waves, provided
that the element spacing is chosen such that no grating lobes
are generated by the array. A thick free-space dielectric layer is
added in the simulation model on top of the real structure and
the total tangential electric fields are specified on top of it.

The electromagnetic fields of the incident plane wave for the
 0 case are:

¶, �� 4 5 7 � � � 8 6�� 0 
�, � -�.�/N1 * �+3 /�o�p *�3 /�4 * �25
� � � 	7 ��� � � � ��� � � � � 	� ���$� � � � 	8 ��� � � � ����� � � � (26)

¶· �� 4 5 7 � � � 8A6��¹¸ �4� 
j�
 0 
+, � -�.�/ 1 * �+3 / o4p *�3 / 4 * �25
� � 	7	���$� � � � 	8 ��� � � � � (27)

CHOINIERE, LAURIN: MODELING PLANAR MULTILAYERED PERIODIC ARRAYS USING MOL 149



����
�����
	���


�����

������

������

���! #"%$!&'�)(
*,+.-/&

02143!1'57681#9
:,;#<)1

=?>8@)ACBEDGFIHJH8K#L
M,@#N)K

OQPJR.R7S�T8U�VXW4R
YZV.[/R#P

\!]X^`_J\?aIb�cedgf2b.h/aeikj

lnm!m

Fig. 5. Transverse electric (TE) plane wave incident upon a periodic frequency
selective surface.

where
0 
 refers to an arbitrary amplitude taken on top of the

free-space layer,
� �

and
� �

refer to the incidence angles shown
on Figure 1(a) and the propagation constants can be written in
terms of those angles:


���
 � � ¸ ��� 
+
�
������ � � ��� � � � (28)


@* � � � ¸ ��� 
+
�
 ��� � � � (29)


��i
 � � ¸ ��� 
+
�
������ � � ����� � � (30)

with 
�
Q� &�()+* . The total tangential electric and magnetic fields
on top of the free-space layer (i.e. at � � � O � � ) can thus be
written as:

¶, OQPSR 5 7 � 8 6�� � * X%o�p; =<9 :5 � � q 6 0 
�, � -�/�o�p * X Yf[ , � -�.0/21 * �+3 /�4 * �25
� � � 	7 ��� � � � ��� � � � � 	8 ��� � � � ���$� � � � (31)

¶· OQP�R 5 7 � 8A6\� � * Xrosp; =<9 :5 � � q 6 ¸ ��� 
j�
 0 
�, �À-�/�o�p * XZYQ[ , �À-�.�/N1 * �+3 /N4 * �25
� � 	7	����� � � � 	8 ��� � � � � (32)

where
q

is the reflection coefficient of the FSS.
In order to obtain a numerical value for the reflection coef-

ficient
q

, a total tangential electric field source (31) with arbi-
trary amplitude , 
OQP�R is used as the specified source in the sim-
ulation instead of an incident wavefield. The simulation results
will then allow us to confirm that the tangential magnetic field
on top of the free-space layer is of the form specified by (32).
The resulting magnetic field amplitude

· 
OQPSR can then be used to
compute the reflection coefficient

q
using a well-known trans-

mission line relationship:

q �
t OQPSR �)j�
4u ¸ �4� 
t OQPSR�� j�
4u ¸ �4� 
 , with

t OQPSR � , 
OQPSR· 
OQPSR J (33)

The transmission coefficient 
 can be obtained simply by
comparing the amplitude of the fundamental spectral compo-
nent of the transmitted wave’s tangential electric field to that of
the incident wave,

0 
 . If all the dielectric and metallic layers
are lossless, the results for

q
and 
 should obey the following

conservation of power law:

v q v & � v 
 v & � �
(34)

q
and 
 are determined independently from the simulation re-

sults, that is, (34) is not assumed a priori, it is a consequence of
the fact that the proposed analysis technique conserves power,
as it should. The verification of this relationship provides a val-
idation checkpoint for the proposed analysis technique.

B. Numerical results for an array of metallic strips

Our modeling technique is first tested with a relatively sim-
ple structure (see Figure 6) of a linear periodic array of metal-
lic strips printed on a dielectric substrate and forming a simple
FSS. The physical parameters for this structure are the dielec-
tric permittivity �4� , the substrate thickness

�
, the strip widthwyx OZ� � � and the periodic cell width

w " �sz{z .
In order to provide a validation for our algorithm, we com-

pare our results with those presented in [14], which were ob-
tained using a “Single-edge mode expansion”. Here,

� u#|�
 �� J �
, �4� � H J �

and the strips are positioned with a period of� J�	 | 
 . The simulated results are in terms of the power reflec-
tion (

v q v & ) and transmission (
v 
 v & ) coefficients as a function of

the relative strip width, for the case of a plane wave incident
with

��� � 	 ��}
and
� � � �

. Since we need to sample the results
over a range of strip widths, we may do so with a relatively
good accuracy even for small discretization numbers, provided
that the sample widths are chosen such that they allow a posi-
tioning of the lines compatible with the optimal edge parameter
given in [6] (~ � � J H
� 1), which is valid for structures compris-
ing metal discontinuities in a single direction.

Doing this, we obtain results that fit surprisingly well with
the results of [14], even for very coarse discretization, as is
shown on Figure 7. The only points that are somewhat off
���

is defined as the fraction of the discretization interval comprised between
the edge of a metal strip in the model and the closest E-field line passing through
the metal layer in the vicinity of the edge.

�

�

�

���r����� �
���%��� �

�

Fig. 6. A truncated section of a linear periodic array of metallic strips that
form a simple frequency selective surface.

ACES JOURNAL, VOL. 17, NO. 2, JULY 2002150



�
� �

��
� �

�� � �

�

�� � �

�

�� � � � �
�

�

�

�� � � � �
�

�

�

�� ��� � � � � � � � �
�

�
�

�
�

�� ��� � � � � � � � �
�

�
�

�
�

���� ���	� 
��	� �
�	� ����� �
��� ����� ����� ���	� �
�	� � 
�� �
��� �
��� 

��� �
��� �
��� �
��� �
��� �
��� �
��� �
��� �

�� �

�
������� � !#"$�&%('*) )

+ ,-+ .
/10+ 23+ .

+ ,4+ .

+ 23+ .

5657598;:=<?>
@6@7@ 8 : <3A
B6BCB 8;:=<?D
E6E7E 8;:=<GF H

8 : <-IKJKH
[14]

Fig. 7. Power reflection ( L MNL O ) and transmission ( L PQL O ) coefficients as a func-
tion of relative strip width for a plane wave incident with RTS3UWVYX#Z and[ S7U\X on a linear array of infinitely long metallic strips. The strips are lo-
cated at X^] V`_1a intervals and deposited on a dielectric substrate with a thicknessb UGX^]�c�_da and a relative permittivity egfCU&h .

the reference curve are for discretization levels of 3 and 4 lines
per cell. In addition, we confirm that the power conservation
law (34) holds for the two coefficients that were computed in-
dependently.

C. Numerical results for an array of metallic patches

The structure considered here is that of Figure 1(a), that is,
a periodic planar array of rectangular metallic patches printed
on a dielectric substrate. This is still a very simple structure,
since it only features one dielectric substrate; we use it again as
a validation case for our more general algorithm which supports
multi-layer structures. The physical parameters for this struc-
ture are the dielectric permittivity � � , the substrate thickness

�
,

the patch dimensions i � � iX� as well as the patch spacings, or
periodic cell dimensions, j � � j � .

Here we will consider fixed physical dimensions and look at
the power reflection and transmission coefficients as a function
of frequency. The

�lk ! � �lk ! patches are positioned with
a period of

H k ! in each direction. It turns out that, for this
particular ratio iX� udj � �miX�4udj � � �& , the use of odd numbers
for the discretization levels � � and � � corresponds to an edge
parameter value ~ � � J H~�

[6], which would correspond to the
optimal value if the edges were infinitely long. Since this is
never the case, the edge parameter can not be tuned that well
for arbitrary sized patches and cell sizes. Consequently, we in-
tentionally choose to use even numbers for � � and � � in order
to force the non-respect of the edge parameter prescriptions and
find out what it implies in terms of convergence. In other tests
not reported here, it was determined that convergence of the
results as a function of the discretization level is slowed down
when non-optimal values of the edge parameter are used.

Figure 8 shows the simulation results as a function of fre-
quency, compared against results reported in [15] based on an
analysis performed using the method of moments. The results
compare well with the references; the slight remaining differ-
ence could be attributed to the limited discretization that was

nononqp;r`s?putvs?w
p r s?p t s?x�y
p r s?p t s?zK{
p;r`s?putvsG|gy}w~6~C~

� � � � � � � � � � � �
� � �

�

�
� � � �

�

�

�

�

�

� � � � � � � � � � � �
� � �

�

�
� � � �

�

�

�

�

�

� � � � � � ��� ��� ��� �g� ��� �g���� �
��� �
��� �
��� �
��� �
��� �

�����Y�$���Y�����G�������o�

� �-�  

� � � � � � ��� ��� ��� �g� ��� �g���� �
��� �
��� �
��� �
��� �
��� �

�����Y�$���Y�����G�������o�

� ¡l�  

[15]

Fig. 8. Power reflection ( L M¢L O ) and transmission ( L P¢L O ) coefficients as a func-
tion of frequency for a plane wave with normal incidence on a planar array
of metallic patches. The c`£�¤¦¥?c§£�¤ patches are located at h;£�¤ intervals
along both directions and deposited on a dielectric substrate with a thicknessb UGX^] h=£�¤ and a permittivity egfCU�V#] ¨ .

used in [15], where 15 rooftop basis functions per wavelength
were used to discretize the metallic patch. This is much less
than the level of discretization used here, which is in the range
between 480 (at 4 GHz) and 1280 (at 15 GHz) samples per
wavelength for the results shown in Figure 8. Such high dis-
cretization level required to obtain convergence would be a
problem if a regular inversion technique was used, since it in-
volved © �=	 H � unknowns per frequency point. However, use of
the iterative technique allowed to resolve this system of equa-
tions, comprising a © �=	 H � � © �=	 H � matrix, in an average time
of

��� �
seconds per frequency point using a

H ��� � :
8 Pentium

I desktop computer and less than 15 MB of memory.

V. ANALYSIS OF SLOT-COUPLED PERIODIC ANTENNA

ARRAYS

The same core analysis tool can be used as well for the analy-
sis of periodic antenna arrays, provided that new source models
are adapted to the general model (see section II-D.7). We will
consider two types of sources. The first one, described in V-A,
is an ideal and simple source that, although non-practical, pro-
vides a good validation of the core analysis tool, since macro-
scopic effects at the input port are mostly independent of the
nature of the source. The second source, considered in V-B,
is an actual physical feeding technique called “microstrip slot
coupling” that requires a more involved model based on the
reciprocity theorem.

A. Simple magnetic current source (Imposed E-field in slots)

This simple source model consists of exciting z-oriented thin
slots under each patch by imposing a uniform, x-directed elec-
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tric field in them (see Figure 9). This is equivalent to applying a
z-oriented magnetic current source on the dielectric side of the
ground plane. The total electric field source that is applied as
a source to the homogeneous system of equations can formally
be written as:

,+� �
��� x ��� � " � u��X� in the slot�

out of the slot
(35)

where
v � x ��� � " � v can be thought of as an ideal voltage source

applied across the slot of width ��� . We define the antenna (or
input) impedance at each of the elements’ input port (the slot)
as: t PSR O � v � x ��� � " � v &i #PSR O (36)

where
v � x ��� � " � v is the amplitude of the source and i PSR O is the

complex power emitted by this source through one slot. This
power is computed from the fields solution obtained using the
core MoL-based analysis tool described in section II:

i PSR O �	��

��� YgX�� ,+� 5 7 � 8 6 · #� 5 7 � 8 6t� ,�� 5 7 � 8A6 · #� 5 7 � 8A6�� � 7 � 8
(37)

where � x z � O is the area of the slot. The resulting impedance is an
active impedance since it is obtained while all slots in the array
are fed simultaneously with the proper phasing corresponding
to the desired main beam pointing direction.

Consider a source that is matched at broadside in order to
provide maximum power transfer; thus, the source impedance
has to be

tZx � t #PSR O 5 � � ��} 6 . The reflection coefficient of the
power wave [16] sent by the source thus becomes:��� 5 � 6�� t PSR O 5 � 6t� t #xt PSR O 5 � 6 � tZx �

t P�R O 5 � 6X� t P�R O 5 � } 6t P�R O 5 � 6 � t #P�R O 5 � } 6 (38)

The value of
v ��� v & corresponds to the fraction of power that is

reflected by the antenna element to the source.

��������! "�#�$ %'&(!)+*�,- ).,0/
1324�5

67
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DFEHG�IKJ�LMI+N'O;JQP�RML�S�G�TVUWJQRMLMIKX=I.JQR�Y
Fig. 9. Ideal tangential electric field source in a slot.

Figure 10 presents the graphs of the computed values for the
amplitude of the power wave reflection coefficient

v �Z� v
for a

planar array of rectangular patch antennas. Three planes were
scanned, and graphical comparison with the results of [4] is in-
cluded. The substrate used being relatively thick, it emphasizes
the effect of the excitation of the 
�� 
 surface wave mode, that
is excited at a scan angle of

� � � © J\[ } in the E-plane. This
blindness angle of the antenna can be predicted using dielec-
tric waveguide theory [17], and is accurately predicted by our
model, as seen on figure 10.
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Fig. 10. Amplitude of power wave reflection coefficient L )+*CL as a function of
the antenna main beam scan angle. The X1] h�,u_ a ¥ X^] VC_ a patches are spacedX1] ¨^c _1a in the - direction and X1] ¨T_da in the . direction. They are deposited on a
dielectric substrate with a thickness

b UGX^] X0/`_da and a permittivity egfCU&h�] ¨Y¨ .
The patches are excited by X^] X1c;_da ¥�X1] c	c�¨C_1a slots in the ground plane, in
which a uniform 132 -field is imposed. The case with the largest discretization
( 452?U76�8:9#45; U76Y¨ ) involved V:9#/YX�8 unknowns per data point; each point
was computed in 8<6 seconds on a Pentium I processor clocked at 200 =?>@. .
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One single data point from [4] on the H-plane scan at
� ��
� J � } disagrees significantly with our results. This discrepancy

can be attributed to the different type of source that was used
in [4]. A probe feeding technique was considered, which al-
lows coupling of the 
�� 
 surface wave in all directions. Since
our source only comprises an electric field in the 7 direction, it
could not excite the 
�� 
 surface wave in the H-plane. Other
than that particular data point, the results obtained with the
highest discretization compare well with the reference values.

In addition to the prediction of the blindness angle in the
E-plane and the validation with reference results, another ex-
pected feature for this specific structure was predicted by the
model. As noted in Figure 10, the element spacing along the x-
direction is j � � � J
� � |j
 , which means that grating lobes can
be excited. The fact that we do not obtain a total power reflec-
tion at endfire (

� � [ � }
) in the E-plane is consistent with the

excitation of a grating lobe pointed near endfire.

B. Microstrip line slot coupling

The geometry of the microstrip line coupling of slots is il-
lustrated in Figure 11. It consists of sending a signal on a mi-
crostrip line printed on the bottom substrate that couples to the
patch antenna through a slot in the ground plane between the
two substrates.

1) Formulation of the source using reciprocity: Because pe-
riodic boundary conditions do not allow for the representation
of a microstrip line which continues outside the basic periodic
cell, the microstrip feed line could not be directly included in
the metalization patterns that is used within our core analy-
sis technique described in section II. Instead, a technique us-
ing reciprocity, used in [18] with the method of moments, was
adapted for use with the method of lines. This technique al-
lows representation of the microstrip line coupled slot by a se-
ries impedance on the microstrip transmission line. The length
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��

���

�����

������� �����  �!"�$#&%'��(��*),+-�$%'��� ./� �$%'0

1&2 3&4
5 2 476

8�9�:
;=< >7? @

A

B

C

D

E

Fig. 11. Microstrip line coupling of a rectangular patch antenna through a slot
in the ground plane.

of the stub following the slot is used to tune out the reactive
part of the impedance, whereas the dimensions of the slot it-
self are used to match the series resistance to the characteristic
impedance of the microstrip transmission line.

In order to obtain a value for the equivalent series impedance,
an analysis based on the reciprocity principle is performed
where we consider an infinitely long microstrip transmission
line coupled to a slot. From this procedure, the coefficient of re-
flection characterizing the discontinuity created by a z-directed
thin slot centered on an x-directed microstrip line is obtained as
([12], [18], [19]):

q � �
�H � x z � O7PS� � P , x� 5 7 � 8A6 · T � "� 5 8A6 � 7 � 8 (39)

where , x� represents the actual x-directed electric field in the
slot, and

· T � "� represents the z-directed magnetic field in the
ground plane of a microstrip line carrying an incident wave with
a power of 1 Watt when no slots are present. The normalized
magnetic field distribution

· T � "� 5 8 6 can be determined from a
2D analysis of the microstrip transmission line; for the present
work, this was done by implementing a standard formulation of
the MoL with non-uniform discretization ([6],[12]).

The discretized version of (39), consistent with the notation
used in II, can be written as the following:

q � �
�H � � � � � � � � �.X YgX�F � � � T � "� � ��� Y X (40)

where
� 8 refers to the interface where the slot is present

(see Figure 1). � � � T � "� � �q� YgX comes from discretizing
· T � "� 5 8A6

and has no variations along the width of the slot. The to-
tal electric field component �c� � � � X YgX corresponds to that which
is obtained from the excitation of the periodic structure (ex-
cluding the microstrip line) by a current density distribution .� � � � � � 5 � � q 6 ��� � T � "� � �q� YgX within the location of each slot.
Since the value of

q
is not known prior to the simulation, the

generic system can simply be excited with  � � � � � � � � � T � "� � ��� Y X ,
which should give a scaled response � � � � � � �

� � q � � � � � O � O .
In light of these observations, equation (40) can be re-written
as a function of ��� � � � :

q �
� � � �&� � � � �GF ��� � T � "� � ��� YgX� � � � � � � � �GF � � � T � "� � ��� YgX � H (41)

Thus, it suffices to specify the source as a surface current distri-
bution  +� � � � � � �D� � T � "� � �q� YgX within the slot and to use the result-
ing response � � � � � together with (41) to compute the reflection
coefficient on an infinite microstrip line caused by the presence
of a slot in the ground plane.

2) Series impedance and stub tunning: Equation (41) as-
sumes that the microstrip line has an infinite length. The equiv-
alent series impedance along the line can be computed as:

tZx � t " PS� � � q
� � q �

t " PS� (42)

where
t " PS� is the characteristic impedance of the microstrip

line. If the line terminates at a distance j x O � � from the slot,
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we can consider it as a series open-circuit stub and compute the
resulting input impedance:

t � R � tZx �$h t " P�� ����� � � T � "�j stub � (43)

where
� T � " is the propagation constant on the microstrip line.

End effects on the line are neglected in this calculation. The
wave reflection coefficient at the line input is thus obtained
from: � � � � t � R � t " PS�t � R�� t " PS� (44)

where the phase reference is located in the center of the coupled
slot.

3) Numerical results and validation: Here we present sim-
ulation results obtained using the microstrip coupling feed
model. To provide validation of the model, results of a single-
resonator periodic array antenna are compared with experimen-
tal measurements shown in [3] on a waveguide simulator where
frequency sweeping allows for angular scanning of the main
beam in the H plane (

� � [ � }
) as prescribed by the relation� ����� � ����� � )+*�
	 4�� which links the signal wavelength to the

beam scan angle within the waveguide simulator, where j � is
the element spacing in the 8 direction.

a) Single resonator waveguide simulator: Figure 12
presents the results for the input impedance (input resistanceq

and reactance 
 ) of such a structure. Numerical results are
presented for four discretization levels, together with the ex-
perimental results from [3]. A single resonance appears on all
curves, which is expected since we have a single resonator. The
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[2] and [3]

Fig. 12. Impedance (resistance M and reactance W ) seen at the input of the
microstrip line as a function of frequency for a single resonator patch antenna
inside a waveguide simulator (similar to a periodic array of single resonators).
The parameters used were: e f a U e f%X U\c , e f � U e f O U h#] h ,

b � U b O UX1] c�¨�, cm, 2.5 cm ¥ 2.5 cm patch resonator, 3.404 cm ¥ 3.607 cm periodicity,
0.1 cm ¥ 1.0 cm coupling slot, 0.49856 cm-wide microstrip (characteristic
impedance of ¨ XZY at 3.65 GHz) and 1.3 cm-long matching stub.

number of lines was carefully selected in such a way that the
effective dimensions, computed using the line placement rules
defined in [6], were as close as possible to the design dimen-
sions of the patch and slot; this procedure, although not strictly
necessary, speeds up convergence.

It is apparent that the converged simulated curve ( � � � H H �
,� � � H ���

) approaches closely the shape and amplitude of the
experimental curves, although there is a slight frequency shift
of approximately

� J��M[
between our simulation results and the

experimental data reported in [3].
b) Dual resonator waveguide simulator: A dual-resonator

patch antenna array featuring three dielectric slabs, of which
one element is illustrated in Figure 13, was also simulated us-
ing the same model. The beam angle was linked to the signal
wavelength, as prescribed earlier, in order to compare our re-
sults with published numerical simulation results [2]. Figure 14
presents the input impedance as a function of frequency. Again,
the results present a good convergence behavior and agree fairly
well with the reference data points from [2].

c) Single-frequency beam scanning of a single resonator
patch array: Figure 15 shows the amplitude of � � � as a func-
tion of the antenna beam pointing angle for three scan planes.
In order to compare our results with available data, we based
our parameters on the geometry used in [3]. As pointed out
in V-B.3.a, there is a slight discrepancy between the resonance
frequency predicted by our code and that found in [3]. Since
the patch has a fairly narrow resonance, a study of the beam
scanning performed off resonance would not be a good indi-
cator of the actual antenna performance. Impedance mismatch
away from resonance may also hide the capability of our code

\^]�_`^a^bc^dfe g-hikjl^m�n
o
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q
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t

uwvx^yQz
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���"�w�����%���
Fig. 13. Microstrip-coupled dual resonator patch antenna that constitutes one
of the elements of a periodic array.

ACES JOURNAL, VOL. 17, NO. 2, JULY 2002154



����� �������
	��
�������
	� � �������
� � ������ � �����
����� � ���
������������
��������� ���
!
"#"#"

$ $
$

$ $ $ $ $
$

$
$

$
$

$ $
$ $ $ $ $

$
$

%�& ' %(& ) *�& ' *�& ) +�& ' +(& ) ,�& ' ,�& ) -�'�& ''-.'
/�'0�'
1 ')�'
%�'*2'

354.6�79896�:9;2<>=@?BADCFE

G =5HIE

%�& ' %(& ) *�& ' *�& ) +�& ' +(& ) ,�& ' ,�& ) -�'�& 'J 1 )J
0�)J /�)
J -.)J
) )
-.)/�)

354.6�79896�:9;2<>=@?BADCFE

K =5HIE

[2] and [3]

Fig. 14. Impedance (resistance M and reactance W ) seen at the input of the
microstrip line as a function of frequency for a dual resonator patch antenna
inside a waveguide simulator (similar to a periodic array of dual resonators).
The parameters used were: e f a U e f.L U c , e f � U e f O U e X U h#] h ,

b � Ub O U b X UqX^]�c�¨�, cm, 0.9 cm ¥ 0.9 cm inferior patch resonator, 1.0 cm ¥
1.0 cm superior patch resonator, 2.01 cm ¥ 2.01 cm periodicity, 0.12 cm ¥
0.8 cm coupling slot, 0.51285 cm-wide microstrip (characteristic impedance of¨ XZY at 8.0 GHz) and 0.5 cm-long matching stub.

to predict beam scanning effects. Consequently, it was decided,
as one would do in a practical antenna design, to slightly ad-
just our patch dimensions to reach an impedance of

� �DM
at

the normal scan angle (
� � � }

). Our patch dimensions are� J H � � | 
 � � J H � � | 
 , compared to
� J H
[ |j
 � � J HQ[ | 
 in [3]. The

chosen dimensions result in a maximization of the input resis-
tance at every discretization level, which is then adjusted to� �NM

by tuning the slot length to
� J � � 	 |j
 (compared to

� J ��� � |j

in [3]).

As stated earlier, the values for � � and � � (the total number
of lines in both directions) were selected to get the most ac-
curate effective dimensions. This process results in a trade-off
between the discretization accuracy of the patch and slot, and
there is no straightforward technique to predict the “overall ac-
curacy” of the discretization for many discretized physical ele-
ments. Therefore, in the present case, � � and � � were selected
such that the input resistance came close to

� �OM
at the broad-

side (
� � � }

) scan angle. In other words, the design parameters
were effectively “tuned” for each discretization level by select-
ing the precise values for � � and � � . Nevertheless, for each of
the discretization pairs ( � � , � � ) that were selected, the result-
ing discrete metallic patterns (patch and slot) constitute the best
approximation, based on the line placement scheme prescribed
in 1D problems, to a patch of dimensions

� J H � � |e
 ��� J H � � | 

and a slot of dimensions

� J � � |j
 � � J ��� 	 | 
 . The length of a
capacitive stub, implemented using the extent of the feed line
overrunning the slot, was set independently for each discretiza-
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Fig. 15. Amplitude of the wave reflection coefficient � � � as a function of the
beam incidence angle R in the three major planes E ( � U XdZ ), D ( � U 8#¨	Z )
and H ( � U�� X^Z ). The parameters used were (ref. figure 11): e f aQU�e f%X U c ,e�f � U c�h�] , , e�f O U h#] ¨	¨ ,

b � U�X1] X#¨	_ a ,
b O U�X1] X#hY_ a , X1] h06Y¨	_ a ¥ X1] h06Y¨	_ a

patch resonator, X^] ¨Y_da4¥�X^] ¨Y_1a periodicity, X^] X1c�_da?¥�X1] c	c�V	_1a coupling
slot, X^] X�8<606 V�_1a -wide microstrip line (characteristic impedance of ¨�X Y ) andX1] X<6�Xdc�_da -long matching stub for the highest discretization level.

tion level to cancel the broadside input reactance. The re-
quired length tends to converge as the discretization is refined.
For the � � , � � pairs shown on Figure 15, the required stub
lengths were respectively

� J ���~��� |j
 , � J �;� � 	 | 
 , � J �;� � ©#|j
 and� J �;� � � | 
 . This is slightly smaller than the stub length of
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Fig. 16. Amplitude of the x-directed current density � 2 in A/m at patch level
for a slot-coupled patch resonator.
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Fig. 17. Amplitude of the z-directed current density � ; in A/m at patch level.

� J ��� � | 
 used in [3] and is attributed to the frequency shift dis-
cussed earlier.

This exercise demonstrates that the current model can be
used as a design tool for a practical slot-coupled printed array
antenna. As can be seen on Figure 15, the � � � parameter con-
verges very quickly to the reference values, except near grazing
incidence where a higher discretization is needed.

C. Sample E-field and current density distributions

All the parameters presented earlier (input impedance, reflec-
tion coefficient, etc.) were computed from the tangential elec-
tric field and current density distributions that constitute a solu-
tion to the problem. Looking at the sample distributions for �À� ,

��� , 0 � and
0 � in figures 16 through 19 provides a good insight

into the physics of the problem and, above all, serves as an ad-
ditional figure-of-merit to confirm the validity of the proposed
method, since the shapes of the illustrated distributions corre-
spond to those usually encountered with patch antennas. The
illustrated solution corresponds to the normal incidence case
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Fig. 18. Amplitude of the x-directed electric field 1�2 in V/m at patch level.
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Fig. 19. Amplitude of the z-directed electric field 1�; in V/m at patch level.

(
� � � }

,
� � � }

) with the physical parameters given in section
V-B.3.c. It was computed using a

� ��� � �
grid.

VI. CONCLUSION

We presented a novel full-wave, modular approach based on
the method of lines for the modeling of multilayered, periodic
structures with realistic source models. The modularity of the
approach allows for handling any given number of dielectric
layers; here we showed applications with 1, 2 and 3 dielectric
layers. It is also adaptable to multiple excitation schemes, pro-
vided that a proper source model is implemented and linked to
the general model. We have done this for three different types
of sources: an incoming wave for the FSS problem, an ideal
slot excitation source, and a practical slot-coupling scheme.
The adaptation of the reciprocity technique (presented in [18])
for use with the MoL, was key to the modeling of this widely
used coupling technique. The functionality of our model was
validated against published data pertaining to four particular
structures: frequency selective surfaces composed of metal-
lic strips and patches, and printed antenna arrays composed of
microstrip-coupled single and dual resonator elements.
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The uniform discretization scheme of the method of lines is
attractive for its simplicity and because it can be applied to a
very wide class of problems. However, its use often results in
very large systems of equations because it is not tailored to any
specific geometry. Such large systems can become intractable
with conventional resolution techniques (e.g. Gauss elimina-
tion), both in terms of memory and computing time. One of the
key aspects of this work is the combined use of an iterative tech-
nique and the FFT for the resolution of such large linear system.
This approach greatly reduces the memory and computing time
requirements, thereby rendering tractable, on a desktop com-
puter, problems of this type involving tens of thousands of un-
knowns.
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