
Abstract.   The Boundary Residual Method, BRM,
is used to compare the performance of a range of
sub-domain expansion functions in three different
situations.   It is found that as the complexity of the
structure/system being studied increases the
importance of the order of the expansion function
decreases – at least for uniform segmentation.
These results point out the need for more research
into the behavior and performance of these, and
other, expansion functions.

Introduction.

In a companion paper [1], published in the same
issue of this journal, a wide range of entire-domain
expansion functions was identified and those
functions were compared for convergence – in
both a global and a local sense.   The intent of this
work is to provide similar information for a wide
range of sub-domain functions.   There are many
more sub-domain candidates than entire-domain
candidates.   Consequently, only a sub-set of the
possibilities, albeit a significant number, will be
examined.

Sub-domain expansion functions were introduced
for two main reasons.   First, there was the intent
to make the computation of the associated integro-
differential equations easier.   Second, it was
recognized that entire-domain expansion functions
were difficult, if not impossible, to use on
curves/surfaces that contained discontinuities.
Early sub-domain expansion functions were
simple – pulses, and triangles.   Subsequently,
more geometrically sophisticated functions were
proposed – ones that addressed the perceived
shortcomings of the simpler forms.   These
shortcomings centered mainly on the continuity, or
more precisely the lack of it, at the intercepts of
the expansion functions.   The newer functions
were also intended to conform to the surfaces that
they were applied to.   Unfortunately, these
developments proceeded without a thorough
comparison of the performance of the new
function with that of the prior art.   Consequently,
today there is only sparse understanding of the

merits and drawbacks of each of the alternatives
and in particular which ones are “better”.  [Better
will be defined and discussed later].   In 1975,
Butler and Wilton [2] examined various numerical
techniques which included a study of some of the
simpler expansion functions applied to a dipole.
Their work also involved examination of the form
of the integro-differential equation and the testing
function and results were presented in terms of the
current at the center of the dipole.   No estimates
of global convergence were reported and the local
convergence rates were only reported visually and
not quantitatively.    Today, much improved tools
are available to overcome these deficiencies.
With this in mind, many of the more widely used
sub-domain expansion functions were examined in
a consistent manner in different applications.

In this paper, the various relevant mathematical
issues are first reviewed.   The subsequent section
contains the results of examining the various
expansion functions and discusses those findings.
Finally, a number of conclusions are presented
and suggestions for further work made.
.
Methodology.

Error Minimization. The present numerical
work relies on least squares minimization in the
manner discussed by Bunch and Grow [3][4].
This approach was reviewed in Part I of this two
part series and is not repeated here.   It is
important to note that, using this method, one
obtains an explicit measure of the residual error
resulting from the expansion function employed.
This measure permits one to track the global
convergence – that is, how well the expansion
functions perform over the entire surface and not
just at one position such as at the center of a
dipole.

In anticipation of the study of spline expansion
functions, some additional description of Least
Squares Estimation, LSE, is necessary [5][6].   In
particular, it is useful to consider the least squares
solution when the variables are required to satisfy
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specified linear equality constraints.    In such an
instance, we wish to solve, in a least squares

sense, the equation MA B=
r r

 subject to

CA D= .   M
r

is an ( x )m n   matrix, A  is an

( x 1)n   vector representing the solution and B
r

is

an ( x 1)m   vector representing the excitation. C
is a ( x )p n   matrix and D  is a ( x 1)p   vector,

subject to m n p> > .   [In the case of spline

functions there are continuity conditions at certain
knots that must be satisfied.    These p
conditions provide the input for andC D  ].   This
conditional minimization procedure is described
elsewhere [5][6] and code is available [7].

Convergence.   Most text/research books in the

CEM area refer to errors decreasing as ( )pO h
where p is the degree of the polynomial underlying

the basis/expansion function used.   The ( )pO h
model can be developed into a formal equation.
Specifically, consider when one has computed

data for an observable, nY , using n expansion

functions and one wishes to extrapolate to an

asymptotic value, Y∞ . In the case of a single-

dimensional problem, the appropriate model is:

( )pnY Y O h Y nαβ∞ ∞= + = + .                   (1)

One expects pα = − . The ‘outer’ equation can

be differentiated and combined with the original to
produce

1
.n n

n

dY dYn
Y Y Y n

dn dnα α∞ ∞
 = + = +  
 

.       (2)

This equation permits estimations of both Y∞ and

α  through standard linear regression techniques.
These regression techniques are well developed
and allow one to determine the reliability of the
estimates of the two constants.

Here,  is replaced by n ndY Y

dn n

∆
∆

.   A plot of

 versus .n

Y
Y n

n

∆
∆

, where nY  represents the

current for a given number of expansion functions,
indicates that this is a very good model in many

cases and can be used to extrapolate for nY .

Unfortunately, although widely available linear

regression tools can be used to solve (2) for nY
and α , they cannot be used to make predictive

statements about the reliability of the values so
obtained.   Most linear regression tools expect the
independent variable to be essentially error free.

Such a claim cannot be made for 
Y

n

∆
∆

 and this

makes the reliability claims questionable.
Nevertheless, the plots can be made and visually
examined to see whether the model is applicable.
On the other hand, if we use (1) and recast it as:

log( ) log( ) log( )nY Y nβ α∞− = +            (3)

then we can use conventional linear regression.

This formulation requires prior knowledge of Y∞ ,

typically the term of most interest and in such
instances only provides information about α .
Equation (3) is used in this study.

Numerical Procedures.

General. The numerical procedures used
here were the same as in the companion paper [1]
with the following exceptions
1) The SVD routine was replaced by the

appropriate routine for constrained least
squares, ZGGLSE, from LAPACK 3.0 [7].

2) The value of m, in the matrices, was set at
3( )N q+ .   This multiple was found by

numerical experimentation to provide reliable,
stable values.   A minimum multiple of 2 was
suggested by Ikuno and Yasuura [9].

3) The term 
X

n

∆
∆

 was computed using a simple

central difference approach.

Edge Mode.   It is well-known that whenever
surfaces contain physical discontinuities they
require special treatment.   For example, most
practical structures, with the notable exception of
complete loops, incorporate edges.  Nevertheless
few, if any, sub-domain functions incorporate the
edge mode/condition into their formulation.    A
model that does not incorporate consideration of
the edge mode is inherently deficient.   In the
current work, the edge mode is incorporated
explicitly.   This will be illustrated in the context of
a straight dipole.   According to theory developed
by Meixner [10], the current at the edge of a dipole
with an infinitely thin wall thickness is proportional

to vd  where v =0.5 and d is the distance from the
end of the dipole.   In this work, the end segments

are 
0

v
y h

y

 −
 ∆ 

 and 
1

( )
v

n

h y

y +

 −
 ∆ 

 where y is the
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distance from the center of a dipole of length 2h

and 0 1 and ny y +∆ ∆  are the segment dimensions

at the ends of the dipole.   These definitions can
be differentiated to whatever level is required by
the continuity conditions of the model under
investigation.

Splines.   Mathematical splines were first
discussed in 1946 [11].   An interesting history of
their early development is reported by Ahlberg, et
al [12]. A spline is a low order polynomial, such as

2 3 4........i i i i iI a b y c y d y e y= + + + +
where the subscript i  refers to spline segment i ,
and 1 i n≤ ≤ .   The degree of the spline, q , is

defined by the highest power of y employed.   The
use of splines specifically in EM work was first
proposed by Davies [13], but surprisingly splines
have not been widely adopted.   Several reasons
are possible.   
The literature on splines almost all assumes the
use of a square matrix and interpolation of data
points.   In order to satisfy these two requirements
it is necessary to introduce constraints, so-called
auxiliary conditions, that may not be
relevant/appropriate for the EM problem at hand.

In this study, and by intent, the matrix is not
square, the splines are not interpolant and no
artificial auxiliary conditions are enforced.   With
these constraints removed the use of splines
becomes very attractive

Continuity between adjacent splines is enforced

up to a level of
1

1

q

q

d I

dy

−

− .   These continuity

conditions can be enforced as constraints,
segment by segment, in the least-squares
estimation process.   This approach has two short-
comings.   First, it creates a high degree of
redundancy and the results are not very stable.
Second, the resulting matrix can become very
large with .( 1)N q +  unknowns.   It is better to

eliminate the majority of redundancies by direct
elimination.   When this is done, the result is a
reduction in unknowns to ( )N q+ .   For

example, in the case of a quartic spline after
elimination the defining coefficients are

1 1 1 1 1 1, , , , ......... ,N Na b c d e e a + .   A similar approach

was taken by Mahr [14] when considering the
current on micro-strip antennas.   The coefficients

Table I.    A description of the eight expansion functions used in the current study.
1 i n≤ ≤

Legend Type Mathematical Description
P Pulse

11
( )

0 otherwise
i iy y y

I y +< <
= 


        

        

Trg Triangle
1 1 1

1 1 1

( ) /( )
( )

( ) /( )
i i i i i

i i i i i

y y y y y y y
I y

y y y y y y y
− − −

+ + +

− − ≤ ≤
=  − − ≤ ≤

   

   

STrg Sinusoidal Triangle
1 1 1

1 1 1

sin( ( )) / sin( ( ))
( )

sin( ( )) / sin( ( ))
i i i i i

i i i i i

k y y k y y y y y
I y

k y y k y y y y y
− − −

+ + +

− − ≤ ≤
=  − − ≤ ≤

  

  

TTS Three Term Sinusoid

1

( ) sin( ( )) (cos( ( ) 1)

where  
i i i i i

i i

I y A B k y y C k y y

y y y +

= + − + − −
≤ ≤

Sp1 Spline – degree 1
1( ) ( )i i i i iI y a b y y y y y += + − ≤ ≤   

Sp2 Spline – degree 2 2
1( ) ( ) ( )i i i i i i iI y a b y y c y y y y y += + − + − ≤ ≤   

Sp3 Spline – degree 3 2 3

1

( ) ( ) ( ) ( )

where  
i i i i i i i

i i

I y a b y y c y y d y y

y y y +

= + − + − + −
≤ ≤

Sp4 Spline – degree 4 2 3

4
1

( ) ( ) ( ) ( )

( )   where   

i i i i i i i

i i i i

I y a b y y c y y d y y

e y y y y y +

= + − + − + −

+ − ≤ ≤ 
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1 1 and Na a +  are the amplitudes at the two ends of

the spline sequence.   The coefficient 1Na +  is

expressed in terms of 1 1 1 1 1, , , , ,......... Na b c d e e  and

then set as a constraint in the least-squares
estimation.   When 1q >  it is necessary to

match 1 1 1 1 and ,   and ,N Nb b c c+ +  etc.   Again, this

is done using constraints.

The eight sub-domain functions in this study are
identified in Table I.   The three term sinusoid,
TTS, is also treated as a spline.   The formulation
used here is more convenient than the version

normally seen.   In particular, it is only iA  that

represents the amplitude at the beginning of the
segment.   It should be remembered that use of
LSE provides not only a solution but also an
estimate of the error in that solution.   This is the
so-called sum-of-the-squares of the residuals, or
SSR.   In this work log10(SSR) is reported as Err-
sq.

Numerical Findings.

Cylinder.   The current around the surface of an
infinite, perfectly conducting cylinder is examined.
Such a structure is included to illustrate what is
possible when one examines a surface that does
not include any discontinuities/edges.   The

excitation, ( )inc
zE φ , is a normally incident TM

wave.   The current density is defined by:

' (2) '
0( ) ( ( , , )) ' ( , , )

4
inc inc

z z

k
J H kf R d E R

η
φ φ φ φ φ φ=∫

This hypothetical structure is of interest because it
has an analytical solution [p233, 15].   Hence a

value for Y∞  can be calculated independently.

For a circumference of one wavelength, the
magnitude of this value is 6.2366087D-03, for

incφ φ π= = .

When applying the various expansion functions it
is important to require that the amplitude, slopes
and any higher derivatives where appropriate, be
the same at +/-pi.   This is achieved by applying

the constraints 1 1 1 1, ,  etc.N Na a b b+ += = 

As mentioned earlier, a check on the error model
is to plot Err-sq against log10(n).   Such plots are

shown in Figure 1a and support the notion that the
error does indeed decay as some power of n.
Plots of log10(|I – Iref|) against log10(n) for each
of the eight expansion functions are provided in
Figure 1b.   These results again provide credence
for the use of the error model of equations (1) – (3)
and provide another set of estimates for values of
α  for selected functions.

Half-wave dipole. As in the
companion paper, Hallen’s equation is used to
evaluate the current on a dipole.   The study is
here restricted to dimensions of 2h=0.5 and
a=0.007 wavelengths. .   In this situation, the
amplitudes of the first and last expansion functions
need to be matched with the amplitudes of the
edge mode segments.   In the case of the triangle
and sinusoidal triangle functions this is
straightforward.   In the case of splines additional

work is needed.   In the case of 1a  matching is

trivial.   In the case of 1Na +  this coefficient is

expressed in terms of 1 1 1 1 1, , , , ,......... Na b c d e e  in

the quartic example and then set as a constraint in
the least-squares estimation.   When 1q >  it is

also necessary to match

1 1 1 1 and ,  and ,N Nb b c c+ +  etc., as required with

the corresponding edge mode conditions.   Again,
this is done using constraints.

Half-wave dipole excited by a plane wave.   The
plots of Err-sq versus log10(n), shown in Figure
2a, again support the proposition that the error
decays in proportion to some power of n.
However, when compared with the corresponding
results for the infinite cylinder two significant
differences are apparent.   First, the lowest level of
error is only around –18.0 compared with a
corresponding number of –23.0 in Figure 1a.   [By
comparison, the Err-sq value for an entire-domain
function, the Chebyshev series of second kind,
was also around –23.0].   Second, the results are
much more closely grouped indicating much less
difference in their relative performances in this
application compared with the findings around the
infinite cylinder.

The plots n Figure 2b show the convergence of
log10(|I – Iref|) versus log10(n) which again
support the proposition of equation (2).   The lines
with extreme values of slope are indicated.
Again, we see values of α  that are much lower
than observed on the infinite cylinder.   The value
of Iref was 3.4196 as derived from use of entire
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Figure 1a.   Plots of Err-sq versus log10(n) for eight expansion functions, using uniform

cell sizes on the surface of an infinite cylinder.   Sp1, Trg and Strg almost coincide.

1.3 1.5 1.7 1.9 2.1log10(n)

-9.0

-6.5

-4.0

-1.5

lo
g

1
0
(|

I|
 -

Ir
e
f)

P
Trg
Strg
TTS
Sp1
Sp2
Sp3
Sp4

Figure 1b.   Plots of log10(|I| - Iref) versus log10(n) for eight expansion functions, using uniform

cell sizes on an infinite cylinder.   The regression values are associated with the four splines.
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Figure 2a.   Plots of Errsq versus log10(n) on the surface of a cylindrical dipole

excited by a plane wave, using uniform cell sizes and all end constraints.
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Figure 2b.   Plots of log10(|I| - Iref) versus log10(n) at the center of a cylindrical dipole

excited by a plane wave, using uniform cell sizes and all end constraints.
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Figure 3a.   Plots of Err-sq versus log10(n) for eight expansion functions on a cylindrical

dipole excited by a magnetic frill, using uniform cell sizes and all end constraints.
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Figure 3b.   Plots of |I| versus n for eight expansion functions on the surface of a

dipole excited by a magnetic frill, using uniform cell sizes and all end constraints.
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domain functions, and the linearity of the plots
appears to support its use here.   However, no
statements of statistical significance can be made.

Half-wave dipole excited by a magnetic frill [16].
As illustrated in Figure 3a, the plots of Err-sq show
that, with the exception of the linear spline, there is
an even tighter grouping of the results than was
observed for plane wave excitation.

The behavior of the magnitude of the current at
the center of the dipole, |I|, is reported in Figure
3b.    This suggests that all functions are
converging toward the same final value.
However, the model of equation (1) no longer
holds for local convergence, at least in the range
of study, as we see that half of the curves cross
over the asymptotic value – something not
predicted by (1).   The study of entire domain
functions, using a Fourier series in conjunction
with a model for the current on an infinite dipole,
provided a value of |I|=9.104 for the magnitude of
the current at the center of the dipole [2h=0.50,
a=0.007].   This value agrees visually with the
apparent asymptotic value to which all series
appear to be converging.   However, this is not
strong enough to make a statement concerning
the magnitude of the asymptotic value.

Conclusions.

As a result of this work several findings are noted.
• Results for an infinite cylinder are generally in

line with expectations.   The performance of
the quartic spline in this context is particularly
impressive – being comparable with the entire
domain cosine series results.

• In the case of the dipole excited by a plane
wave, results are disappointing.   The
functions of higher degree did not perform as
well as they did on the infinite cylinder.
Figure 2b indicates that the pulse performs the
worst and that there is little to separate the
performance of the rest.   Based on the results
of Figure 2a, the two triangle series provide
the least global error.

• In the case of the dipole excited by a magnetic
frill, results are even more disappointing.    No
meaningful value can be calculated reliably.
This is in contrast to the entire domain solution
where it is possible to incorporate a special
function to account for the specific effects of
the magnetic frill and thereby achieve
convergence.

• The concept that higher order splines would
automatically lead to faster convergence is not

generally supported.   The surface of the
infinite cylinder has no discontinuities and
convergence increases with the order of the
spline.   The dipole excited by a plane wave
has one discontinuity and mediocre
convergence.   The dipole excited by a
magnetic frill has two discontinuities and
convergence is totally unacceptable for any of
the expansion functions.

• This result is probably not surprising to those
familiar with spline theory.   For example,
deBoor [p22, 7] in one chapter has a heading
“Uniform spacing of data can have bad
consequences”.   To overcome this problem
deBoor proposed the use of “expanded
Chebyshev” points.   However, deBoor also
shows that, in certain situations, one can
calculate the location of breakpoints to
achieve the optimal convergence rate.   This
approach could form the basis of future
research.

As a closing comment, it is this author’s opinion
that when it is possible to use entire domain
expansion functions then they should be used.
The improvements expected due to the flexibility
of higher order sub-domain expansion functions
cannot be realized, at least with uniform spacing.
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