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Abstract— Microwave-based sensing techniques consti-
tute an important tool for the detection of buried targets.
In this framework, a key issue is represented by real-
time scatterer localization. As far as such a topic is
concerned, this paper presents a comparative evaluation
of the performances provided by a conventional NN-
based inverse scattering technique and by a new SVM-
based electromagnetic approach. In order to estimate
the effectiveness values of the two methods, realistic
configurations and noisy environments are considered
and current capabilities, as well as potential limitations,
are pointed out. Finally, possible future research work is
outlined.

I. INTRODUCTION

The detection of buried objects by means of interro-
gating electromagnetic waves is usually a very difficult
task. The addressed problem is nonlinear, due to the
relation between unknown quantities (object parame-
ters and field distribution) and problem data, it is ill-
posed and, generally, only aspect-limited measures are
available.

In the past few years, considerable efforts have been
devoted to dealing with detection or, more generally,
reconstruction problems, and several approaches have
been proposed. As far as weak scatterers are con-
cerned, linearized procedures have been applied (see
[1], [2], [3] and references cited therein). The use of
closed forms of the scattering equations (based on the
diffraction theorem) and of the Fast Fourier Transform
(FFT) has made it possible to obtain faster process-
ing rates and real-time imaging. Moreover, numerical
procedures based on higher-order Born approximations
have demonstrated their effectiveness [4], [5].

On the contrary, nonlinear algorithms must be used
when strong scatterers are considered. The retrieval
problem is usually recast into an optimization one and
is effectively solved with minimization techniques [6]-
[10]. Unfortunately, large computational resources and
a high computational load are needed, thus making

these techniques impracticable (particularly when se-
rial implementations are realized) if real-time perfor-
mances are required.

In order to speed up the detection process, a key
point is the reduction in the number of unknowns. To-
ward this end, a-priori information (if available) on the
scenario under test can be very useful. This concept has
been successfully exploited in inverse methodologies
based on artificial neural networks (NNs) (see [11]
(pp. 475-479) and references cited therein). As far
as detection problems are concerned, methods based
on both multilayered-perceptron [12], [13] and radial-
basis-function [14] neural networks have demonstrated
their capabilities for on-line retrieving of buried cylin-
drical scatterers.

Though NN-based approaches have generally of-
fered good performances in solving inverse-scattering
problems, they still suffer from several drawbacks not
completely solved up to now. From the inductive-
theory point of view, the main drawback is the difficult
control of the complexity of underlying NN models.
By the term complexity it is usually meant the capacity
of a learning machine to fit the input data. Briefly, if
a machine is too complex, it will typically overfit the
data, thus losing the property of generalization for new
measures not included in the training set. If complexity
is too low, the machine will fail to correctly interpret
the underlying relations among training samples. The
complexity of a learning machine depends on many
factors. In the case of NNs, the numbers of hidden
layers and neurons, the number of interconnections,
and the learning algorithm used for the training process
[15] are the predominant parameters. Unfortunately,
NNs lack an effective theory suggesting the most
suitable NN topologies and/or calibration parameters.
An NN adapts its internal parameters (i.e., the weights)
automatically in order to best approximate the available
training data, but the topology, the transfer function
and the other parameters are heuristically selected. At
present, there is no good way to determine how many
hidden layers or how many hidden nodes each layer
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should contain, given the sample data with which to
train the NN for the solution of a given problem. From
the computational and optimization points of view,
NNs exhibit drawbacks as well. The learning process
of an NN consists in solving a nonlinear optimization
process. Therefore, any conventional optimization al-
gorithm, including the widely used back-propagation
procedure, leads to reach a solution that corresponds to
one of the local minima of the target cost function. An
empirical way to face such a problem is to train several
NNs with different starting points, thus overloading the
optimization process. However, this choice might result
in inability to unambiguously evaluate statistical and
systematic errors on neural computations.

A possibility to overcome these drawbacks is based
on new results in Statistical Learning Theory (SLT)
[16] which lead to new algorithmic paradigms and
new computational architectures that, though still based
on the NN model, entirely relinquish their biological
plausibility to achieve a firm theoretical background.
SLT allows one to derive statistical and algorithmic
properties that can limit or avoid altogether the NN
problems previously described. One of the main con-
tributions in this field has been provided by Vladimir
Vapnik [16], who has formulated and formalized the
inductive rules that regulate the learning process by
example principles. On the basis of these fundamen-
tals, a new learning paradigm, called Support Vector
Machine (SVM), has been developed. After initial
studies, SVMs are now successfully applied in several
fields ranging from pattern recognition to function
approximation tasks. From a theoretical point of view,
SVMs turn out to be very appealing, as compared with
conventional NNs, for the following two basic reasons:

� the constrained-quadratic structure of the opti-
mization problem solved for the learning process;

� the solid statistical theory on which SVMs are
based.

In this paper, the detection of buried objects by means
of interrogating electromagnetic waves is addressed
by using an inductive approach. Within the frame-
work of electromagnetic retrieval, the effectiveness and
limitations of the SVM-based strategy are evaluated
and a comparative study versus conventional NN-based
methods is made. Finally, selected numerical results
on realistic configurations and noisy environments are
reported and discussed.

II. MATHEMATICAL FORMULATION

Let us consider the problem of determining the
unknown parameters of an object buried in a homo-
geneous soil. With reference to a two-dimensional ge-
ometry, let DS be a lossy region with complex contrast,
�S = ["S � 1]�j �S

2�f"0
, enclosing a circular cylindrical

scatterer of radius �B . The dielectric properties of the
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Fig. 1. Geometry of the problem

object are homogeneous, �B , and the dielectric profile
of the geometry under test (Fig. 1) can be described
as follows:

� (x; y) =

8>>>><>>>>:
�0 if y > L0S

�B if

8<:
0 � x � xB + �Bcos�

0 � y � yB + �Bsin�

0 � � < 2�

�S otherwise
(1)

This scenario is illuminated by multiple transmitters
lying on D0 and located, in the upper half space,
at the positions f(xt; yt); t = 1; :::; Tg. The probing
fields, Eirr(x; y), are radiated in the free space and at
a fixed frequency by a known distribution of current
filaments parallel to the z-axis. The same probes work
as receivers for the anomalous field.

Under these hypotheses, the addressed inverse scat-
tering problem can be mathematically stated as fol-
lows. Starting from the knowledge of the anoma-
lous field, Etot, collected at the receiver positions
f(xr; yr); r = 1; :::; Rg

Etot(xr; yrjxt; yt) = Einc(xr; yrjxt; yt)+

+k2
R
DS

ES(x; yjxt; yt)GS(xr ; yr;x; y)� (x; y) dxdy

(2)
determine the set of unknown parameters
f(xB ; yB); �B ; �Bg defining the scatterer under
test. In eq. (2):
� Einc(xr ; yrjxt; yt) = Eirr(xr ; yrjxt; yt) +

Eref (xr ; yrjxt; yt) is the electric field at the
receivers in the absence of the object;

� Eref (xr ; yrjxt; yt) is the electric field reflected
by the planar interface at the receivers;

� ES(x; yjxt; yt) is the electric field induced inside
the reconstruction domain DS when it contains
the object;

� GS(xr ; yr;x; y) is the Sommerfeld-Green func-
tion for the half-space geometry [6].
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Then the solution of the addressed inverse scattering
problem requires the determination of the nonlinear
function, �, defined as follows

� = �
�
Etot

	
(3)

where � is the “scatterer array” (� = [�p; p = 1; :::; P ]

= [(xB ; yB); �B ; �B ], P being the number
of unknown parameters) and E tot is the data
array defined as E tot = [Etot(xr; yrjxt; yt);

r = 1; :::; R; t = 1; :::; T ]. This is a regression
problem in which the unknown function (�)
must be approximated by the knowledge of a
number of known input-output pairs of vectorsn�
�
�
n
; (Etot)n

o
; n = 1; :::; N .

III. LEARNING-BY-EXAMPLES STRATEGIES FOR

INVERSE SCATTERING PROBLEMS

The inverse-scattering problem described in Section
II can be addressed in several ways. From a math-
ematical point of view, the key issue is to find an
approximation, �̂, for the unknown function � on the
basis of a set of samples f(�n; en); n = 1; :::; Ng, �n
and en being an input pattern (i.e., a data array � n �
Etot) and the corresponding target (i.e., a scatterer
array en �

�
�
�
n

), respectively. This is a typical
learning-by-examples problem, which is usually faced
in the presence of unknown systems with measurable
input/output signals. In the following, two approaches
based on a multilayer perceptron (MLP) neural net-
work and on an SVM, respectively, will be presented.

A. MLP-NN Approach

Neural networks are distributed computational sys-
tems characterized by a multi-layered structure of
neurons fully interconnected by weighted links. MLP-
NNs can be considered as universal approximators for
any function � : <R�T

! <
P [17]. Therefore, they

are suitable for facing with regression problems char-
acterized by complex nonlinear relations between data
and unknowns, such as inverse scattering or buried-
object detection problems. In this context, <R�T is
the space of arrays representing measurement data, and
<
P is the space of unknown parameters describing a

buried object.
MLP-NN theory [11] suggests approximating � by

a nonlinear function of the weighted measurement datab� (�) = 	
n
�
L�1

w(L�1; L) + bL

o
(4)

where L is the number of layers; �
l

=

	
n
�
l�1

w(l�1; l) + bl

o
, l = 1; :::; L being �

0
= �; 	

is the nonlinear activation function (e.g., a sigmoid);
w(l�1; l) and bl are the weight matrix and the bias
array of the l-th layer, respectively. Given known
input-output pairs of vectors (called training set),

�training = f(�n; en); n = 1; :::; Ng, and according
to a backpropagation algorithm, weights and biases
are computed by minimizing the error function  

 
n
w(l�1; l); bl; l = 1; :::; L

o
=

NX
n=1

en � b� (�n)

(5)

by a gradient descent procedure.
Therefore, the direct solution of the inverse-

scattering problem is avoided, and real-time (after the
training phase) solutions to buried-object localization
are obtained [13]. However, as the error function
(5) is non-convex, one of the main drawbacks of
the approach is the presence of local minima where
the optimization algorithm might be trapped and the
solution of which would have no physical significance.

B. SVM-Based Approach

In order to avoid the drawbacks of the NN-based
inverse scattering method related to the nonlinear fit-
ting of the training samples, an SVM-based approach is
presented. The underlying idea of the SVM procedure
is to split the approximation for the nonlinear function
� into two steps. Instead of performing a nonlinear
fitting in the input space, a nonlinear mapping of the
training samples from the input space into a larger
(possibly infinite) space (i.e, the feature space, < eT )
is first performed. Then, a simple linear fitting is
carried out in the new space, thus avoiding typical
nonlinear-fitting drawbacks and keeping the advantages
of a linear approach. Moreover, by exploiting some
mathematical properties of nonlinear mappings, the
evaluation of the data in the feature space is not
required, as the SVM does not have to explicitly work
in this space.

In more detail, each data array �n is mapped into
the feature space through a nonlinear transformation
' : <R�T ! <

eT with eT � R � T . Then, the
samples in the feature space are linearly interpolated
by defining a hyperplane with a normal vector w. Thus,
the approximating function is given by

�̂ (�) = w � ' (�) + b (6)

Among all possible hyperplanes, SVMs find the one
that corresponds to a function �̂ having at most a
deviation � from each target e

(p)
n (*), for all the

measures �n, and that, at the same time, is as “flat”
as possible. As it is impossible for all the points to
lie inside the � band, some errors (�n, ��n, also called
slack variables) are allowed and linearly weighted.
Mathematically, this description leads to a constrained

(*) As up to now it has been possible to synthesize only single-
output SVM, we refer to the estimation of a single scatterer array
component e(p)n = (�p)n; p = 1; :::; P .
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quadratic optimization problem (CQP) where the reg-
ularized cost function 

 fw; bg =

(
1

2
kwk

2
+ C

NX
n=1

(�n + ��n)

)
(7)

is minimized over w and b, subject to the following
constraints:

8><>:
e
(p)
n � w � ' (�)� b � �+ �n

w � ' (�) + b� e
(p)
n � �+ ��n 8n

�n; �
�

n � 0

(8)

The function  is composed of two terms. The first
forces the hyperplane to be as flat as possible, and
the second penalizes the deviation of each target from
the function �̂. The constant C measures the tradeoff
between the two terms. It can be shown that this
approach can be used to control the complexity of
the learning machine, according to the Structural Risk
Minimization principle [16]. This principle guarantees
a considerable generalization ability of the model, and
provides upper bounds to such ability, albeit in a
statistical framework. It is also interesting to note that
this formulation, which derives from SLT, resembles
closely the regularization approach that is usually
exploited when dealing with ill-posed problems, like
inverse ones [18].

The problem defined by eqs. (7)-(8) is then rewritten
in dual form by using the Lagrange multiplier theory.
By introducing 2N Lagrange multipliers, �n; ��n; n =

1; : : :N , a dual functional, d, to be maximized is
obtained (see [19] or [16] for more mathematical
details):

d f�; �
�
g =n

�
1
2

PN

i;j=1 (�i � ��i )
�
�j � ��j

�
' (�i) � '

�
�j
�
+

��
PN

n=1 (�n + ��n) +
PN

n=1 e
(p)
n (�n � ��n)

o
(9)

subject to

NX
n=1

(�n � ��n) = 0 �n; �
�

n 2 [0; C] (10)

as

w =

NX
n=1

(�n � ��n)' (�n) (11)

Consequently, �̂ is equal to

�̂ (�) =

NX
n=1

(�n � ��n)' (�n) � ' (�) + b (12)

where only the inner product of the nonlinear mapping
function (and not the function itself) appears. This is
the well-known kernel trick that allows one to deal

implicitly with nonlinear mappings through the use of
Kernel functions

k
�
�i; �j

�
= ' (�i) � '

�
�j
�

(13)

The theory of kernels, that is, the conditions under
which equation (13) holds, has been known since the
beginning of the last century; it is based on Mer-
cer’s theorem [16] and has been applied to pattern
recognition tasks since the ’60s [20]. However, only
recently has the connection with learning machines
been well formalized [18]. Kernel functions are pos-
itive semidefinite functionals. Therefore, using this
property and the fact that the constraints of the above
optimization problem are “affine”, any local minimum
is also a global one, and algorithms exist by which
the solution can be found in a finite number of steps
[21]. Furthermore, if the kernel is strictly positive
definite (that is always the case, except in pathological
situations), the solution is also unique. These properties
overcome many typical drawbacks of classical neural-
network approaches, such as the determination of a
suitable minimum, the choice of the starting point, the
optimal stopping criteria, and so on.

Since the publication of early seminal works on ker-
nel functions, many functionals have been found that
satisfy Mercer’s theorem. As far as inverse-scattering
problems are concerned, a Gaussian kernel

k
�
�i; �j

�
= exp

(
�

"�i � �j
2

2�2

#)
(14)

performing a mapping in an infinite-dimensional fea-
ture space [18] and preliminarily used in [19], has
demonstrated its effectiveness.

Concerning the SVM parameters, the threshold b

is computed by means of the Karush-Khun-Tucker
conditions of the CQP at optimality [19], and the
hyper-parameters of the problem (�, q, C and �) are
deduced by accomplishing the model-selection task
proposed in [22].

Finally, the CQP is solved by a standard optimiza-
tion algorithm, namely, Platt’s SMO algorithm for
regression [23].

IV. NUMERICAL RESULTS

In this work, a comparative study of NN and SVM-
based approaches is made concerning the localization
of a scatterer buried in the soil. Let us consider a
square investigation domain LS = �-sided (� being
the free-space wavelength) completely embedded in
the ground. The relative permittivity of the soil is
"S = 20:0 and the conductivity is �S = 0:01 S

m
. The

center of the region under test is LOS = 7
12
� deep. The

buried object is a lossless circular cylinder of radius
�B = 1

12
� and the relative permittivity of the ground

is equal to "B = 5:0. This scenario is illuminated by
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Fig. 2. Training set. Geometrical arrangement of the center of the
cylinder under test
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Fig. 3. Test set. Geometrical arrangement of the center of the
cylinder under test

an electric line source, located in the upper region with
the coordinates xt = 0 and yt = 2

3
�; t = T = 1, and

parallel to the air-soil interface. The anomalous field
is collected at R = 16 measurement points equally
spaced (d = �

16
) and located on a line placed close to

the air-soil interface (LST = �
12

).

The data used to generate the training set and
those used to test the SVM approach, as well as
the MLP neural network, were obtained synthetically
by a Finite Element code and a PML technique
[24]. During the learning phase, the training set,
f�training ; ; N = 729g, was obtained by moving the
center of the cylinder inside DS among the positions
shown in Figure 2 and collecting the anomalous field
at the receiver positions. As far as the test phase is
concerned, M = 84 randomly chosen locations of the
scatterer (Fig. 3) were considered in order to define
the test set �test = f(�m; em); m = 1; :::;Mg. An
additive Gaussian noise, characterized by the signal-
to-noise ratio (SNR)

SNR = 10log10

PT
r=1

PT
t=1 jE

tot(xr ; yrjxt; yt)j
2

2T 2�2noise
(15)

�2noise being the variance of noise, affected the mea-
sured signals.

A two-layer MLP-NN [12], characterized by 32

inputs, 32 hidden neurons, and 2 output neurons, was
trained by using a delta-bar-delta back algorithm [25]
in order to overcome the shortcomings of the gradient-
descent procedure and to increase the convergence rate
of the standard back-propagation learning algorithm.

Concerning the SVM-based approach, two SVMs
were used to estimate the center coordinates of the
buried object. Moreover, after the optimal selection
procedure, the values of the SVM hyperparameters
turned out to be constant quantities equal to (C)xB =

(C)yB = 100 and � = 0:001. On the contrary,
the variance values of the Gaussian kernels,

�
�2
�
xB

and
�
�2
�
yB

, were determined independently of each
scenario under test.

A. Definitions

In order to quantitatively estimate the effectiveness
of the presented approaches, some error values are
defined. Let us introduce the

� local errors on the center location, Æux and Ævy :

Æux =
jx
u

act
�xv(u)

rec j

dmax

u = 1; :::; U ;

v (u) = 1; :::; V (u)

Ævy =
jy
v

act
�yu(v)

rec j

dmax

v = 1; :::; V ;

u (v) = 1; :::; U (v)
(16)

� local average errors on the object localiza-
tion, �x = f�ux ; u = 1; :::; Ug and �y =�
�vy ; v = 1; :::; V

	
:

�ux =

���xuact� 1
V (u)

PV (u)

v(u)=1
xv(u)
rec

���
dmax

u = 1; :::; U

�vy =

���yvact� 1
U(v)

PU(v)

u(v)=1
yu(v)
rec

���
dmax

v = 1; :::; V
(17)

� global average errors, �x and �y:

�x = 1
dmax

s
1
U

PU

u=1

�
xuact �

PV (u)

v(u)=1
x
v(u)
rec

V (u)

�2
�y =

1
dmax

s
1
V

PV
v=1

�
yvact �

PU(v)

u(v)=1
y
u(v)
rec

U(v)

�2
(18)

where the subscripts rec and act refer to the estimated
and actual coordinates of the scatterer, respectively;
dmax = LS is the maximum error in defining the
coordinates of the center of the circular scatterer when
it is contained in the investigation domain, DS .
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Fig. 4. Reconstructed data versus actual data (Noiseless Case). (a)-(b) MLP-NN approach, (c)-(d) SVM-based approach. (a)-(c) xB
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B. Numerical Assessment - Scenario 1

The first example is aimed at evaluating the pos-
sibility of locating the buried object starting from
the knowledge of the measured electric field and
assuming the knowledge of the soil characteristics
to be a-priori information about the geometry un-
der test. Consequently, the incident field is a known
quantity and the data array is defined as follows:
Escatt =

�
Etot(xr ; yrjxt; yt)�Einc(xr; yrjxt; yt);

r = 1; :::; R; t = 1; :::; T ]. In this context, the SVM
parameters have been chosen equal to

�
�2
�
xB

= 0:64

and
�
�2
�
yB

= 0:32.
Figure 4 shows the localization results for the ex-

amples making up the test set and obtained by using
the MLP-NN (Fig. 4(a)-(b)) and the SVM-based proce-
dure (Fig. 4(c)-(d)), respectively. As can be observed,
a good accuracy concerning the center location is
achieved along the two reference axes and for both the
MLP-NN and SVM-based approaches. In particular,
even if the detection accuracy decreases as the distance
from the air-soil interface increases, good localizations
are achieved in the whole domain, as confirmed by
the statistics shown in Table I. In particular, as far as
the scatterer depth estimation is concerned, the SVM

sharply reduces the error of the MLP-NN, reaching
an average error equal to < Ævy >SVM= 0:0584

(< Ævy >MLP= 0:1004 being the average error made
by the MLP-NN approach). Moreover, it should be
noted that the time required for the SVM training is
about one tenth of the one required by the MLP-NN,
whereas there is no significant difference between the
computation times taken by the two approaches for the
object localization (i.e, after the learning phase).

TABLE I

SCENARIO 1 (Noiseless Case). LOCAL ERROR STATISTICS

< Æ
u
x > maxfÆuxg minfÆuxg

MLP 0.0347 0.2098 7.14�10�4

SVM 0.0177 0.1243 7.30�10�5

< Æ
v
y
> max

�
Æ
v
y

	
min

�
Æ
v
y

	

MLP 0.1004 0.5631 5.31�10�3

SVM 0.0584 0.3487 7.44�10�4

In order to assess the robustness of the learning-
based retrieval strategies, a noisy environment has
been taken into account. For all the simulations, the
buried cylinder and the electromagnetic scenario are
unchanged and characterized by the same dielectric
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Fig. 5. Scenario 1 (Standard Validation). Local average errors of the MLP-NN and SVM-based procedures for different signal-to-noise
ratios: (a) SNR = 5 dB, (b) SNR = 10 dB, (c) SNR = 20 dB, (d) SNR = 35 dB, (e) SNR = 50 dB, and (f ) SNR = 100 dB

properties as during the training phase. The local aver-
age errors are given in Figure 5. For different signal-to-
noise ratios, the plots of �x and �y related to both the
MLP-NN and the SVM-based procedures are shown.
As expected, the estimation of the scatterer depth turns
out to be more difficult than the horizontal detection.
However, the performances guaranteed by the SVM
procedure generally outperform those achieved by the
MLP-NN approach. Concerning the dependence of
the reconstruction properties on the SNR value, the
scatterer is located quite correctly, and �x � 0:025

whatever the noisy case considered. Moreover, �y is
greater than 0:05 only in the interface regions (i.e.,
near the air-soil interface and at the bottom of the

investigation area). This behavior is not surprising, as
confirmed by the experimental results reported in [26],
where the problem of the pollution of the useful signal
due to the reflections of the air-ground interface is
clearly pointed out.

Another evaluation of the robustness of the proposed
approaches has also been obtained by carrying out
the so-called cross validation test. The two methods
have been trained with a noisy data set (i.e., a data
set whose samples are related to an assigned signal-
to-noise ratio SNRTraining) and tested with a test set
computed in a different noisy environment (SNRTest).
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(a) (b)

(c) (d)

Fig. 6. Scenario 1 (Cross Validation). Global average errors: (a) f�xgMLP�NN
, (b) f�xgSVM , (c) f�ygMLP�NN

, and (d)
f�ygSVM

Figure 6 shows a color-level representation (*) of the
global average errors for different values of signal-
to-noise ratio of the training and test sets ranging
from 5 dB to 100 dB. Figures 6(a)-(c) and 6(b)-(d)
refer to the MLP-NN approach and the SVM method,
respectively. As expected, the smallest values of the
global errors are reached when the same noisy en-
vironment is considered for both the training and
test data-sets. Otherwise, the SVM method always
outperforms the MLP-NN approach in the estimation
of the horizontal coordinate of the scatterer (�x). As
far as the depth of the scatterer location is concerned,
similar conclusions can be drawn for the region defined
by the following ranges: SNRTraining � 10 dB and

* The two pixels at the right-bottom angles of the plots indicate
the minimum and maximum values of the global errors.

SNRTest � 10 dB. Otherwise, the comparative study
does not provide any significant information.

C. Numerical Assessment - Scenario 2

In the second example, a more complex scenario
has been preliminarily considered. No information
about the soil is available and the problem data
are the measures of the anomalous field, E tot =

[Etot(xr ; yrjxt; yt); r = 1; :::; R; t = 1; :::; T ] . As
far as the choice of the hyperparameters is concerned,
the same value equal to 0:04 has been assumed for�
�2
�
xB

and for
�
�2
�
yB

.
As expected (Fig. 7), the performances of the

learning-by-examples strategies considerably reduce,
as compared with Scenario 1. However, the higher
effectiveness of the SVM-based procedure than that
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Fig. 7. Scenario 2 (Standard Validation). Local average errors of the MLP-NN and SVM-based procedures for different signal-to-noise
ratios in the range between SNR = 5 dB and SNR = 100 dB

of the MLP-NN method is confirmed. Starting from
SNR = 20 dB, the local error values turn out to be
smaller than 0:15. On the contrary, the performances
of the MLP-NN method strongly worsen, as indicated
by the dashed lines in Figure 7.

V. CONCLUSIONS

In this paper, two inductive methods for the detec-
tion of buried objects have been extensively compared.
Starting from an integral formulation of the scattering
equations, the buried-object localization has been re-
formulated as a regression problem and successively
solved by means of two learning-by-examples strate-
gies, namely, the MLP-NN approach and the SVM-
based procedure. The estimation of the effectiveness

of the proposed procedures has been carried out in
different test cases that have clearly confirmed the
higher robustness of the SVM-based approach in solv-
ing difficult approximation problems as compared with
traditional neural networks. Several scenarios have
been considered and the behaviors of the two inductive
models have been illustrated for different operating
conditions. The obtained results have demonstrated the
successful application of the SVM-based procedure to
solve inverse-scattering problems. Future work, cur-
rently under development, will be devoted to improving
the performances of the SVM-based procedure and to
determining customized kernel functions.
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