
 

  
 
 

Abstract— In this paper, we study the plane wave scattering 
from perfectly electric conducting (PEC) bodies of revolution 
(BOR) with tip singularities. It is known that solutions to 
surface integral equations such as magnetic, electric, and 
combined field integral equations (MFIE, EFIE, and CFIE, 
respectively) are singular near the tips. Consequently, the 
convergence of method of moments (MoM) based on those 
surface integral equations is not optimal or guaranteed. By 
using appropriate graded meshes, one can retain the optimal 
convergence rate in MoM. 
 

Keywords—Tip Singularity, Graded Mesh, Optimal 
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I. INTRODUCTION 

omputational electromagnetics (CEM) technology has 
made tremendous progress in the last decade due 
largely to the advancement of fast solver and high 

performance computing technology. Consequently, CEM 
tools are being applied to ever more complex problems. 
Even though CEM tools still rely on radar cross section 
(RCS) measurements for validation, the measurement 
community is increasingly relying on CEM tools, especially 
those based on the method of moments (MoM), to validate 
their measured data to minimize measurement uncertainty. 
To provide prediction data for measurement validation, one 
typically needs to compute the RCS from 2 to 18 GHz using 
very fine grids to ensure solution convergence. This 
presents quite a challenge for MoM codes even for 
canonical targets of moderate sizes, especially if 
computation is required at every 10 MHz and every 0.1 
degree. Instead of using a uniform mesh, one would like to 
use a non-uniform mesh that is denser near the singularities 
and coarser elsewhere to minimize the number of 
unknowns. In this paper, we investigate the choices of non-
uniform mesh that give fast converging solutions for bodies 
of revolution (BOR). The theorem that defines the 
constraint for the graded mesh will be discussed and 

 
 

followed by numerical examples, particularly those of a 10-
foot ogive and a 10-inch ogive with gap. 

II. SOLUTIONS NEAR GEOMETRY SINGULARITIES 

It is known that the solution of the scattering problem by the 
perfectly conducting ogive is singular due to the ogive tips. 
In fact, if r is the distance from the tip, the solution near the 
tip behaves as  

1 21 1
1 2~ ~ 0 1E r H rµ µ µ µ− −| | , | | , < , < ,  

where 1µ and 2µ depend on the angle of the tip (see, for 

example, [1] and [2]). If piecewise polynomial basis 
functions defined on a uniform mesh are used to 
approximate the solutions, the convergence of MoM is not 
optimal due to the singular behavior of the solutions near 
the ogive tips. To retain the optimal convergence rate, one 
can either include the singular basis functions in the 
approximation or discretize the ogive with a graded mesh. It 
is easier to construct graded meshes and apply them to the 
existing MoM codes.  Here we apply graded meshes to 
Cicero [1] which is a MoM computer code for bodies of 
resolution (BOR) (see [4], [5], [6], and references therein).   
We will need the following result in approximating the 

singular function r α− on [0 1], , 0 1α< <  (see [7]): 

Theorem 1:  Let p  be such that 1 pα < / . Define the 

following partition q
nτ  of [0 1],   

( ) 0 1 2 3q
ir i n i … n= / , = , , , , , ,  

where 
1

1
p
pq α

+
−=  and is called the grading exponent of nτ .  

Let ( )q
nS τ  be the set of functions that are constant on each 

subinterval 1[ ]i ir r+, . Then  

[0 1]( )
inf ( ) (1 )

p
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r r O nα

ζ τ
ζ−

,∈ ,
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In fact, if ( ) ( )q
nr Sζ τ∈  is such that 

1( ) in [ ] 0 1 2 1i i ir r r r i … nαζ −
+= , , = , , , , − , then  
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The norm of [0,1]pf L∈ is [ ]
1 1

0,1 0

p
p

p

L
f f dx= ∫ . In 

engineering application, 2L -norm (i.e., 2p = ) is usually 

used.  In this case, Theorem 1 states that, when r α− , for 
0 1r< < , and 1

2α < , is approximated by step functions, 

the best approximation in 2L -norm is obtained when these 
step functions are defined on a graded grid with grading 

exponent 3
1 2q α−= . Note that the above theorem can be 

applied to singularities of arbitrary order such as vertices, 
edges, corners, etc.   The singularity order α of field 
solutions near the ogive tips can be approximated by that of 
the field near the tip of the cone whose interior angle is the 
same as the angle of the ogive tip.  

III. GRADED MESH AND CONVERGENCE 

Let S  be the surface of the PEC ogive which is 
parameterized by arc-length  

( ) ( ( ) ( )) [0 ] [0 2 )l l z l l Lφ ρ φ φ π, → , , , ∈ , , ∈ ,  

where L  is the total arc-length of the generating curve and 
the axis of rotation is along the z  direction. The tips occur 

at 0l =  and l L=  with (0) ( ) 0Lρ ρ= = . The 

components tJ  and Jφ  of the surface current ˆJ n H= ×  

behave like l α−  and ( )L l α−−  near the tips, where 

0 1α< < .  A graded mesh is constructed as follows. First, 

we divide [0 ]L,  into three subintervals[0 ]ε, , [ ]Lε ε, − , 

and [ ]L Lε− ,  where 4Lε < /  and is a rational. Let 

( )xβ  be a twice differentiable function defined as  

( ) for [0 ]

( ) ( ) for [ ]

for [ ]

q

q

x x

x b x x L

L x
L x L L

ε ε ε
β ε ε

ε ε
ε

⎧
⎪ / ∈ , ,⎪⎪= ∈ , − ,⎨
⎪ −⎛ ⎞⎪ − ∈ − , ,⎜ ⎟⎪ ⎝ ⎠⎩

 

where
1

1
p
pq α

+
−= , 0 1p α< < / , and ( )b x  is a “connecting 

function” which is monotonically increasing and has two 
continuous derivatives. (Such a function is constructed from 
a perfect spline in [8]). Then the nodes in the graded mesh 

q
Nτ  is defined as  

( ) ( ) 0 1 2i i il x x L i N i … Nβ= , = / , = , , , , ,             

where ix ’s represent a uniform mesh and il ’s are the 

mapped points in the graded mesh. Note that ε  needs to be 

chosen so that ε  and L ε−  coincide with one of the ix ’s. 

It is common in MoM codes to approximate the fields with 

pulse functions (or piecewise constant), i.e. ( )q
NS τ . Let 

([0 ]) ( )p q
n NP L L S τ: , →  be the orthogonal projection, 

that is,  

( )q
n n n n nP u v u v v S τ, = , , ∀ ∈ .               

Then Galerkin approximation problem is to find 

( )q
n Nu S τ∈  such that  

n n nP Au P f= ,  

where A  is the integral operator defined as in the combined 
field integral equation (CFIE) and f  is the given incident 

field. We assume that the integral equation fAu =  has a 

unique solution. It can be shown that Galerkin 
approximation scheme is stable [9], that is,  

2 2(0 2 [0 ]) (0 2 [0 ])
,p pn n nL L L L L L

P Av C vπ π, , , , , ,
≥        

for all ( )q
n Nv S τ∈ and some 0C >  independent of nv . 

Consequently, we obtain the error estimate [9]  

2 2(0 2 [0 ]) (0 2 [0 ])( )
infp p

q
n N

n nL L L L L Lv S
u u C u vπ πτ, , , , , ,∈

− ≤ − ,  

where u  is the solution of the continuous problem and 

( )q
n Nu S τ∈  is the approximating solution. This implies 

that convergence rate for the graded mesh is optimal (for 
pL -norm).  In other words, the approximating solutions 

( )q
n Nu S τ∈  converges to u  at the rate 

2 (0 2 [0 ])( )
inf p

q
n N

n L L Lv S
u v πτ , , ,∈

−  which is the best possible for 

elements in ( )q
NS τ .  It is possible to show that the 

optimality holds for a more familiar weighted Sobolev 
space, 2 ([0 ])L Lα , , whose norm is defined as  

( )2

1 2
2

([0 ]) 0

L

L L
u x u dx

α

α
/

,
= | |∫ . 

Hence, if t nJ ,  and nJφ ,  are the approximate solutions of 

tJ  and Jφ , respectively, then the following error estimates 

also hold  

2 2(0 2 [0 ])t t n L L L
J J C n

απ, , , ,
− ≤ / ,  

2 2(0 2 [0 ])n L L L
J J C n

α
φ φ π, , , ,

− ≤ / ,  

where α  is the order of singularity. 

IV. NUMERICAL RESULTS 

In this section, we illustrate the benefits of using properly 
graded meshes with Cicero code in computing RCS of a 10-
foot ogive and a 10-inch ogive with gap.  Cicero is a MoM 
code with pulse basis and testing functions. In each of the 
following figures, the numbers in the legend are the number 
of sampling points per wavelength (ppw) used. For graded 
meshes, the “ppw” means that the total number of grid 
points are the same as that of the uniform mesh with the 
“ppw”. All results are computed using CFIE.   

A. The 10-foot ogive 

The 10-foot ogive is 10-foot long from tip to tip and 1-foot 
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wide at the waist.  The tips of the ogive are at 1.524z = ±  

meters. The meshes are either uniform ( 1q = ) or graded 

with the grading exponents 2q = . We first compute the 

electric current components tJ  and Jφ  at 0.5 GHz.  In 

Figure 1and Figure 2, we plot tJ| | , Jφ| |  for θ -polarized 

incident field at 0iθ = o and 20iθ = o , respectively.   
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Figure 1: Magnitude tJ  and Jφ  for θ -polarized incidence field at 

0oθ = .  Tips of the 10-foot ogive are at z=1.524 m and z=-1.524 m. 

 
Due to numerical limitations in Cicero such as piecewise 
approximations to the roof-top basis functions, we can only 

observe that tJ  and Jφ  and their derivatives tend to 

infinity at the tips instead of become infinity as expected in 
[2].  In any case, these singularities cause slow convergence 
in MoM using uniform meshes.  
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Figure 2: Magnitude tJ  and Jφ  for θ -polarized incidence field at 

20oθ = . 

 
We assume that the electric currents computed with 640 
points per wavelength are “exact” and plot the relative 

errors 
nhe in Figure 3 and Figure 4 

1 2

1 2

(0 )

(0 )

1 2 5
n min

n n

h h

L L
h h

L L

J J
e n …

J

ν ν

ν

/

/

,

,

−
= , = , , ,            

where ν  is either t  or φ , nh  is the mesh size 

corresponding to the number of points per wavelength pww 

= 2 10n × , and minh  is the mesh size for 6n =  (or 640 

points per wavelength). It is observed that the errors in 
graded meshes are smaller than their uniform counterparts 
for sufficiently large ppw and decrease at a faster rate.  
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Figure 3: Logarithmic relative error for ( ),tJ Jφ at  
00θ =  in 

graded meshes are smaller and decrease faster than those in uniform 
meshes. 
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Figure 4: Logarithmic relative error for ( ),tJ Jφ at  
020θ =  in 

graded meshes are smaller and decrease faster than those in uniform 
meshes. 

Next we compare the RCS results for different meshes. It 
can be seen from the below figures that the graded mesh 
performs better than the uniform one with the same number 
of unknowns, that is, RCS results of the graded meshes 
converge at a faster rate. In Figure 5, RCS at 0.5 GHz for 
θθ polarization computed with the 640 ppw-uniform mesh 
is viewed as the “exact” result. The zero-degree angle 
corresponds to the tip scattering direction while the 90-
degree angle corresponds to the broadside scattering. We 
observe that the result computed with the graded mesh at 60 
ppw already overlaps with the “exact” solution while the 
RCS curve computed with the uniform mesh at 60 ppw has 

not converged, especially near 20oθ = . In fact, it requires 
at least 160 ppw in a uniform mesh to yield the same 
accuracy as the 60 ppw in a graded mesh. 

 

Figure 5: RCS of the 10-foot ogive at 0.5 GHz (θθ  polarization). The 
“exact” solution is represented by the 640 ppw-uniform mesh (solid line). 
At 60 ppw, the uniform-mesh solution has not converged (dotted line) 
while the graded-mesh solution (dash-dotted line) overlaps with the 
“exact” solution. 
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At higher frequencies, tip singularity becomes more 
problematic.  In Figure 6, RCS at 5 GHz for the 10-foot 
ogive is computed near the nose-on (grazing) angular region 
by using uniform meshes of different grid densities.  The 
curves oscillate near -69.5 dBsm.   
 

 
Figure 6: Uniform mesh - RCS of the 10-foot ogive at 5 GHz near the 

grazing angle (φφ polarization). 

However, RCS at 5 GHz for the 10-foot ogive computed 
with graded meshes approaches monotonically to a 
converged solution as seen in Figure 7. 

 
Figure 7: Graded mesh - RCS of the 10-foot ogive at 5 GHz near the 

grazing angle (φφ polarization). 

 

B. The 10-inch ogive with gap 

To examine further the advantage of graded meshes, we 
also consider the ogive with gap (see Figure 8), one of the 
test targets proposed by Electromagnetic Code Consortium 
[10], [11]. The ogive is 10 inches long, subtending a half 

angle of 22.62 degree, and with a maximum radius of 1 inch 
at the middle. The generating curve for this ogive is part of 
a circular arc with a 13 inch radius. A small rectangular 
groove cut out around the middle of the ogive. The 
circumferential groove is 0.25 inches wide by 0.25 inches 
deep. The bottom of the groove forms a ring 0.75 inches in 
radius.  

 
Figure 8: Ogive with gap. 

 
Here, the solutions to the integral equations have both edge 
and tip singularities due to the groove and the ogive tips. As 
in the case of the 10-foot ogive, we design appropriate 
graded meshes to improve the convergence rate in MoM 
solutions. There are three corners in the generating arc and 
each has different angles. Thus, we construct a graded mesh 

with three grading exponents ( )1 2 3, ,q q q .  For example, 

the distribution of points in a graded mesh with 

( ) ( )1 2 3, , 2, 2, 2q q q = is plotted in Figure 9.  

 
Figure 9: Point distribution of a graded mesh on the generating arc of 
ogive with gap. 

 
In Figure 10 and Figure 11, RCS curves at 2 GHz are 
plotted.  Uniform-mesh solutions converge much slower 
than graded-mesh solutions, especially near the grazing 
angular region.  We see that at 80 ppw, RCS of the graded 
mesh already converges while that of uniform mesh does 
not.  
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Figure 10: Uniform mesh - RCS of ogive with gap at 2 GHz 

(φφ polarization). 

 

 

Figure 11: Graded mesh - RCS of ogive with gap at 2 GHz 

(φφ polarization).  

Furthermore, the RCS differences at 0oφ =  (the grazing 

angle) decrease for graded meshes while oscillate for the 
uniform meshes as seen in Figure 12 and Figure 13.   

V. CONCLUSIONS 

In this paper, we present a construction of graded meshes 
that enable a faster convergence using MoM for BOR 
targets with tip singularities. Numerical results are given for 
the PEC ogive with and without gap using CFIE. These 
preliminary results show that faster convergence can be 
achieved if one chooses a graded mesh using the technique 
outlined in this paper. We have also observed the similar 
improvement in convergence for other types of integral 
equations. The technique can be easily generalized to non-
BOR targets which have tip and edge singularities. This will 
be reported in the future.  
 

 
Figure 12: Uniform mesh at 2 GHz – RCS errors in ogive with gap at 

0oθ = . 

 

Figure 13: Graded mesh at 2 GHz – RCS errors in ogive with gap at 

0oθ = . 
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