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Abstract—We presented a novel method for the accurate and
efficient computation of the reflection and transmission coefficients
of waveguide discontinuitieswithin planar photonic crystals (PhCs).
This method proposes a novel kind of field source that optimally
excites the dominant waveguide mode and mimics procedures that
are typically used for the measurement of reflection coefficients.
Thistechnique may be applied to arbitrary field smulatorsworking
in the frequency domain. The presented reflection compensation
scheme is elucidated along the M ethod of Auxiliary Sources (MAS).
In order to verify the results, we compare two test cases with the
rigorous connection technique provided by the Multiple Multipole
Method (M MP).

Indexing Terms— method of auxiliary sources (MAS), multiple
multipole method (MMP), photonic crystals (PhCs), waveguide
discontinuities, boundary conditions.

I. INTRODUCTION

HOTONIC crystals (PhCs) have first been proposed as an

optical counterpart to semiconductor crystals [1], i.e, in
PhCs, the photon plays the role of the electron in semiconductors.
In nature, PhCs are rarely observed, but nanotechnology allows
one to fabricate PhCs as a novel kind of meta-materials.
Although it is nice to know that perfect PhCs may exhibit band
gaps, i.e., frequency ranges that do not alow electromagnetic
waves to penetrate the crysta, this pure meta-material aspect
does not sufficiently explain the current interest in PhCs. In fact,
doping makes semiconductors attractive and virtually the same
holds for PhCs. Despite of this analogy, doping of PhCsis pretty
different from the semiconductor doping because the atoms in
semiconductors are compared to rather large macroscopic cells
of the PhCs. Nanotechnology may alow one to modify any cell
of a PhC quite precisely. By introducing linear defects (line of
vacancies or subgtitutional defects with different size or materia)
into the lattice structure, one can easily obtain waveguide
channels in PhCs [2], [3]. One of the main drawbacks of
standard waveguides for integrated optics is the fact that the
bending radius must be large compared to the wavelength in
order to avoid bending loss. This makes standard structures of

integrated optics large compared to the wavelength. The PhC
concept alows one to obtain sharp waveguide bends virtually
without radiation loss and with zero reflection for some distinct
frequency [4]-[6] or even for a wide frequency range [7], when
some optimization procedure is subsequently added. For the
anaysis of PhC waveguide bends and PhC waveguide
discontinuities, numerical techniques are required that alow one
to accurately compute the S-parameters, i.e., the transmission
and reflection coefficients at the PhC's waveguide ports. Up to
now, a variety of numerical techniques have been proposed [5],
[8]-[10].

During the investigation of numerous models for waveguide
discontinuities fast and efficient methods are of great interest.
This especially holds when the optimization of a whole PhC
device isrequired, such as an achromatic waveguide bend with
almost zero reflection over a wide frequency range within the
photonic bandgap (PBG) [7]. It has been observed that such
optimizations may lead to very critical cellsin a PhC [7] that
require a highly accurate numerical model. Thus an efficient
but highly accurate method is required.

After a short outline of the standard PhC modeling methods and a
short introduction to the MMP-connection approach, we present
three new procedures 1) for the excitation of the fundamenta
waveguide modes, 2) for the reflections compensation a the
output ports, and 3) for the S-parameters computation. Together
with the Method of Auxiliary Sources (MAS) [11] we can apply
these procedures to the efficient computation of waveguide
discontinuities in PhCs. Comparisons with the rigorous MMP-
connection gpproach demonstrate that the results are sufficiently
accurate for being used within optimization procedures.

Il. STANDARD PHC MODELING PROCEDURES

In order to obtain a finite-size model for PhC waveguide
devices most of the standard procedures truncate the planar
PhC structure at some distance D from the discontinuity. After
this, some fictitious excitation is introduced in order to excite
an incident mode at the input port (see Fig. 1). Typically, plane
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Fig. 1: Schematic treatment of a waveguide discontinuity. The excitation,
reflection and transmission of apparent electromagnetic waves are indicated
by the corresponding arrows.

waves, monopoles, or dipoles are introduced as fictitious
excitations. The proper positioning of the fictitious excitation
is crucial because it often happens that a significant amount of
the excitation energy does not couple into the desired wave-
guide mode. Furthermore, the fictitious excitation may also
excite higher order or evanescent modes or even additional modes
in the output ports. These undesired modes in the output ports
can easily be suppressed by using appropriate excitations, i.e. a
suitably confined field a the input port. Suppressing the
influence of evanescent modes is much more delicate. The
distance D between the PhC waveguide port and the waveguide
discontinuity is limited only by the decay of the evanescent
modes produced by the discontinuity itself. Since D may extend
to large values, the truncated model may also become rather
bulky, which leads to long computation times.

An even more difficult problem is imposed by the residual
reflections at the output ports. Generally speaking the interface
between discrete and continuous transation symmetry (as
present in any finite PhC structure) imposes a discontinuity,
which causes a bunch of virtualy reflected waves that travel
back to the discontinuity. Such multiple reflections strongly
interfere with a proper estimation of e.g. the S-parameters. The
pedestrian way to avoid such undesired reflections at the output
ports uses absorbing boundary conditions along the truncation
lines (i.e. the fictitious boundary in the Fig. 1). Especidly for
time-domain methods like FDTD [14], truncation of the infinite
space is very straightforward. Thus, many techniques have
been developed for absorbing outgoing waves on such
boundaries, i.e., at the truncation lines of the finite numerical
model. Currently the best technique is PML [15]. Recalling
now the special nature of the interface at the PhC boundary
where spatial symmetry breaking occurs. Such discontinuity is
nearly intractable when using conventional boundary conditions.
Therefore, these absorption techniques become very sophisticated,
athough perfect absorption without any spurious waves is
practically impossible.

A laborious way to circumvent the impact of spurious
reflections in (time-domain) models relies on time gating, where
the distance D is increased accordingly to provide a tempora
separation between all emergent signal pulses. As a result, such
models are either not sufficiently accurate or very time-consuming.
A well-known alternative to the truncated models with fictitious
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Fig. 2: The supercell gpproach for a W1 (one line of vacancies) defect wave-
guide (left). The supercell is defined by its surrounding periodic boundary
conditions (right).

excitation and absorbing boundary conditions is offered by the
supercell method that approximates the structure by a periodicaly
continued one [10], [16], [17]. A smple example is given by the
W1 defect waveguide (see Fig. 2 for example, where a sequence of
point defects is forming the line-defect). The periodic
continuation of a waveguide discontinuity is only feasible for
relatively simple cases. Furthermore, it is hard to quantify the
errors introduced by the periodic continuation, and finaly, the
supercell method is not efficient at all.

I11. MMP-CONNECTION PROCEDURE

The most rigorous method for handling waveguide discontinuities
in an almost analytic way uses a fictitious separation between
the waveguide ports (see Fig.3) and the area that includes
discontinuity [10]. As outlined before aong the truncation
method, the fictitious separation lines are placed at some
distance D from the discontinuity. If D gets large enough, the
evanescent wave amplitude may vanish a the waveguide ports and
the fields therein are fully described by the corresponding
waveguide's set of guided modes. Along the fictitious separation
lines, the modal expansions in the different waveguides are
matched with the fields that are excited by the discontinuity
region. Thisis essentiadly the same procedure as carried out within
the dandard mode matching technique [18],[19] for the
computation of waveguide discontinuities in the microwave
regime.

It is worth mentioning that the description of conventional
waveguides assumes cylindrical symmetry along the z-axis.
The longitudinal dependence of the electromagnetic field is
then simply described according to

F (2 t)=Re{F (5)e" ] (2)

where a harmonic time-dependence of the form

ot

e

(2
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Fig. 3: Schematic description of the MMP-connection procedure: The eigenvalue search is performed as a first step making use of the supercell approach. All
information concerning the resulting eigenfield is contained within the set of the waveguide' s multipole expansions, which is then packed into a connection. The
connection isintroduced as a representation of theinput (i.e. excitation, E), the reflected (R) and the transmitted (T) €ectromagnetic wave into the PhC device model.

has been assumed, and the propagation constant y fully describes
the propagation in zdirection. Along the direction of
propagation, PhC defect waveguides are periodic rather than
invariant. Since thisis alower symmetry, the description of the
field becomes more complicated. When x is assumed as the
direction of the PhC waveguide and d, stands for the periodicity
of the PhC in this direction, we have for each mode

F(r+&d,)=F()e" 3

where C, is a complex number that plays the role of the
propagation constant. Note that (3) only relates the eectro-
magnetic field at one boundary of the PhC waveguide' s unit cell to
the field digtribution at the opposite boundary (which is separated
from the first one by d,). Thus C; does not describe the
propagation of the field within the unit cell. Furthermore, if the
defect waveguide is confined by two PhC layers that have a finite
thickness, in-plane radiation leskage inevitably occurs. This
renders C, to become complex valued even when no materia
losses are present. The resulting eigenmode analysis gets even
more demanding [20], [21], but it does not prevent one from
adapting the mode matching technique to PhC waveguides.

The Multiple Multipole Program (MMP) [21] is a very flexible,

semi-analytic boundary method that allows one to accurately and
efficiently compute not only classical waveguide modes but also
the eigenmodes of a PhC waveguide using either the supercell
approach or a direct approach that includes radiation leakage
as well [20]. In addition the MMP implementation in MaX-1
[22] contains a so-called connection feature. Within this
description the data of previously analyzed problem solutions
(e.g. the eigenmodes of the PhC waveguide) may be packed
into connections that are then introduced as new expansions
into the subsequent model of the PhC waveguide discontinuity.

This means that the MMP-connection procedure condsts of two
different steps: 1) the computation of al relevant modesin the PhC
waveguide ports and 2) the computation of the PhC waveguide
discontinuity using the modes given by the connections. The
former requires the solution of an eigenvalue problem, whereas
the latter essentially defines a simple scattering problem.

The main advantages of the MM P-connection scheme are that
arbitrary high accuracy and reliability can be reached because
of its affinity to mode matching and to analytic procedures. It is
important to know that the eigenval ue problem associated with
PhC waveguide modes is theoretically demanding, but the
resulting matrices set up by the eigenvalue problem are small



because only the unit cdl of the waveguide must be teken into
account. The scattering model for the PhC discontinuity region is
theoretically smpler, but numerically much more demanding
because it often involves a larger PhC volume than the wave-
guide's unit cdl, leading to a relatively large matrix equation.
Referring to the eigensolutions that are provided as connections
we are now able to introduce perfect matching conditions for
PhC waveguide terminations. This allows us to significantly
reduce the size of the simulation domain, i.e., to decrease the
distance D. Thus, the resulting MMP matrix becomes relatively
small. Consequently not only high accuracy but aso short
computation times are obtained. Therefore, the procedure is
very well suited for any kind of optimization scenario such as
the successful optimization of achromatic PhC bends [7] and
PhC diplexers[23].

The main drawback of the MM P-connection procedure lays in
the fact that the computation of guided modes and its embedding
into corresponding connections may become quite demanding.
Therefore, only experienced users are able to perform such
computations. In the following, we present an dternative
technique that does not explicitly requires the PhC waveguide's
eigenmodes. For the sake of simplicity only the case of single
mode PhC defect waveguides are treated hereafter.

IV. IWGA SOURCES

The dternative technique relies on the following procedure:
Instead of solving an eigenvalue problem for the PhC
waveguide's eigenmodes, we now search for a simple, fictitious
excitation that mimics the mode profile at the fictitious boundary
which accounts for the waveguide termination. In order to
emblematize this approach one has just to envision the
reciprocal scenario as depicted in Fig. 4 where aradiation field
is excited at the termination of a W1 defect waveguide. Just by
time-reversing this radiation field one would aready get a beam-
like excitation for the corresponding PhC waveguide mode.

Even without knowing the proper radiation field as shown in

Fig. 4: The E-field at a W1 defect waveguide termination.
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Fig.4 one may expect efficient waveguide mode excitation
while introducing a fictitious but suitably parameterized beam
source. First, Gaussian beams [24] may be applied here, but the
implementation of an excitation basis that rests on Gaussian
beams is ill not very straightforward. Furthermore, using
complex-origin multipoles [25] or monopoles becomes more
natural in the framework of MMP or MAS whereas for the
latter only monopoles (i.e., zero order multipoles) are applied
(for TM polarization):

E,=Ae "HY (R)e™, @)

R:\/(x—(x0 +itcosB))’ +(y—(y, +irsinp))*, (5

Rj:\/(xo+i£cosB)2+(y0+i£sinB)2, (6)

with HeP(kR) being the zero order Hankel function of the first
kind, Age™™* ¥ js a complex normalizing factor, 4 stands for the
angle of maximal radiation direction, X,y is the observation point,
whereas X, Yo defines the source location, ¢ the source half-widths,
and for the R and R, arguments the principal ones are taken. From

Fg.5: Intengty plot of E; (Ieft) and of themodulus of E; (right) in the X-Y plane
x=[-6.0, 6.0]; y =[-20.5, 0.5]; xo = yo = 0.0;
k=2.0;1=3.0; p=270°.

Fig.5 we see that eg. the modulus of the radiation field E,
provided by the complex origin monopole aready gives a good
approximation of the fundamenta mode at the waveguide
termination. Even the scattering field (as given in Fig. 4) iswell
reproduced by E,. Hence we call this kind of beam excitation
the Imitating WaveGuide Apperture (IWGA) source.

On one hand, finding an appropriate IWGA source is obvioudy
much easier then finding the waveguide's eigenfields by solving a
complex eigenvalue problem. On the other hand as the IWGA
source may aso excite some undesired evanescent modes, the
distance D associated to the port must be extended compared to
the MMP-connection approach where, in principle, evanescent
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modes are ill tractable. Even if the present version of the
proposed technique yet lacks in handling multimode
waveguides it is important to see that besides MAS the IWGA
source method is aso applicable to MMP and all the other
frequency domain methods. It should even be possible to
develop atime-domain version of this technique.

V. REFLECTION EXTINCTION AT THE OUTPUT PORTS

The IWGA concept essentially handles the excitation problem of
the PhC discontinuity in a pragmatic and thus more efficient way
than conventional techniques, but it does not solve the problem
of the spurious back-reflections at the output ports. This problem
is much more demanding. Note that absorbing layers can also be
introduced for MMP and MAS but such techniques are difficult
and inaccurate for large model sizes. As elucidated earlier the
connection concept of MMP removes the reflection problemin a
rather rigorous way, but it is difficult to handle. An interesting
aternative is obtained from the following consideration.

Given an incident wave, which is transmitted through the
waveguide discontinuity and propagates towards one of the output
ports. When this mode (which is assumed being fundamentd after
traveling a sufficient distance in the singlemode defect wave-
guide) hits the waveguide port (i.e., the boundary of the scattering
modd associated with the finite PhC dtructure), it is partialy
reflected and travels back to the discontinuity (where it is partidly
reflected again, and so forth). One can now tregt the reflected wave
at any output port exactly in the same way as the incident wave at
the input port. This means one may excite this reflected wave just
by setting an IWGA source a the corresponding output port.
Assuming a finite PhC structure where a waveguide discontinuity
is interconnected to N ports (one input, N-1 outputs), we consider
N models consisting of the same scattering model with N different
excitations, i.e., N IWGA sources in the N ports. This modd is
described by amatrix equation with N right hand sSides

Axe ={EX (%%, EX(xov)s BN ()} )

where the matrix A is obtained from the numerical method that
handles the discontinuity region, M(xg, ;) are the collocation
points on the interface surface [21], "E;™(x,, yq) denotes the
electric field of the n-th IWGA source (with unit amplitude)
placed at the corresponding n-th port.

As an illustrative example (that will be scrutinized later) we
analyzed the 90° PhC waveguide bend depicted in Fig. 6 using
the MAS [11] simulation code. A standard MAS matrix is
obtained 1) when approximating the electromagnetic field in
each domain by means of auxiliary sources (i.e.,, monopolar
field expansions), 2) by enforcing smple point matching on the
domain boundaries, and 3) making use of an appropriate Tikhonov
regularization [26]. The MAS matrix equation (7) is then
efficiently solved with LU decomposition techniques. Note
that the excitation (i.e. the IWGA source) is contained in the
right hand side of the MAS matrix equations. Since we have N
IWGA sources, we aso obtain N right hand sides. Using LU
decomposition the system is solved simultaneously for al N
right hand sides, i.e. for al waveguide excitations involved.
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The outcome of (7) therefore conssts of N field solutions
according to the N scattering problems (each having an identical
geometry but different excitations). Any superposition of these N
fields

E™(x,y)= (1Ej°a‘ + 1E;”°)+<912(2Ej°a‘ + 2E;”°) +... ®

+aN(NEfa‘ + NE;"‘:)

is again a solution of the entire problem associated with a linear
combination of the corresponding excitations. The linear
parameters a are then computed in such a way that the
amplitude of the incident mode becomes unity whereas the N-1
amplitudes of al reflected waves are forced to vanish. This sets
up an additional simple and small system of N-1 equations
with regard to the parametrized total field

N Ln+A/16
> [ (BP(L)+i B (L, +A/4))dL, =0

= 0
n=11° /16

(9)

Where m=1, 2,...,N and 2r/A = h is the propagation constant
in the waveguide arm, L, indicates the centerline of the n-th
channel, and L, is its midpoint. In fact (9) defines the matching
condition for each PhC waveguide port considering any guided
mode involved. Here we just used the spatial shift between real
an imaginary part of any traveling wave to be a quarter of a
wavelength, which is easily testable by direct substitution of
such guided modes into (9). As a result, we obtain the field
solution for the waveguide discontinuity but now without any
reflections at the output ports

EX (L,,)| = Ep = const.

The reflection coefficient at the input port and the transmission
coefficients for the output ports are computed mimicking the
Standing Wave Ratio (SWR) measurement that is well-known
from microwave techniques. Thus we define observation lines
along the waveguides of the different ports where we compute
the total field. Let E%, denote the amplitude of the transmitted
wave in each output port. The resulting error in fulfilling condition
(9) can be determined as follows

(10)

—E°

dL, =A,.

m

l tot:

ol | S ()
Lm L,

The amplitudes of the incident and the reflected waves for the

input port are determined according to the following standard
procedure (for considerable input reflections)

inc 1 al
EO :E(|EtDT I (Lin)

. 4 |Etotal ( Lin )

1

_(| E* (L, )

: . _|Etotal (L.n)

Lo [ -+ y]

where L;, stands for the input port’s centre line, and L, for its
midpoint. Later it becomes adequate to normalize the electric
field in the finite PhC according to E,™. For the output ports
where the reflection is significantly lower, it is preferable to

oo _ (1)

0




determine the transmitted and reflected wave's amplitudes
using the relation given below

1
e = [|E (1) .

Lot (12)
e = [[er - e (L) o,

m L,

It should be noted that the evanescent waves being excited at
the waveguide discontinuity and at the waveguide ports as well
may interfere with the proposed measurement procedure. The
waveguide arms must therefore become sufficiently long
resulting in a scattering model that is usually larger with respect
to the MMP connection approach (but it's still competing well
againg moded sizes required for techniques using imperfect
absorbing boundary conditions for the outgoing waves).

In order to illustrate the procedure outlined before, we now
consider two simple examples, namely a 90° PhC waveguide
bend and a filtering T-junction, which have been previously
analyzed aong the MM P-connection approach [7], [23].

VI. 90° BEND

Our firg tet mode is a 90° waveguide bend whereas the
underlying 2D-PhC congsts of dielectric rods arranged in asquare
lattice and embedded in air. The lattice data are as follows: the
radius of each dielectric rod isr/a=0.18 (with a=1um being the
|attice congtant), and the rod’ s didlectric congtant is £=11.56. The
normalized operation frequency is a/A =0.416. In Fig. 6 the gray
rectangle outlines the truncation region of the MAS modd. It
contains a finite section of 199 rods. Since we know that the
PhC structure has a complete band gap only for TM-waves, we
only consder z-component of the electric fidd, where z is the
direction of the cylinder axis. Without lack of generality this
considerably simplifies the numerical model.

The electomagnetic field inside each rod is now approximated
by a set of M auxiliary sources, i.e., monopoles located on

auxiliary lines around the rod. Since the rods are circular, it is
reasonable to use a concentric circle as auxiliary line for each
rod and to distribute the auxiliary sources uniformly on these
circles. Similarly, we introduce a circular auxiliary line inside
each rod and uniformly distribute M auxiliary sources for
modeling the field outside the rods. Since we are considering
the TM-polarization, all auxiliary sources are E-type monopoles
with unit amplitude. Furthermore, we select M = 12 being equal
for all rods because the rods have the same shape and size.
Thus, we obtain a model with 199 x 2 x 12 = 4776 unknowns.
These unknowns are then computed by a simple point matching
or collocation method on each rod’'s M =12 uniformly distributed
matching points by enforcing there two boundary conditions,
namely the continuity for the longitudinal component of the
electric field and for the tangential component of the magnetic
respectively. As in conventional scattering problems the structure
isilluminated by a well-defined incident wave. In our case the
IWGA sources are located in the center of both input and
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Fig. 6: MAS simulation of the 90° W1 defect waveguide bend. The gray
rectangle outlines the truncation boundary of the finite PhC model. The
underlying PhC consists of a square lattice with a/A = 0.416, £=11.56,
andr/a=0.18.

(i) MASsmulétion; relative error of E and H: 0.3%;
Transmission T1 = 91.15%; Reflection Ri, = 8.58%.

(i)  MMP simulation; relative error of E and H: 0.45%;
Transmission Ty = 91.26%; Reflection Rip = = 8.56%.
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Fig. 7: Electric field E; along the line L;. At the low SWR value in the
waveguide arm the Lg-value (i.e. the phase-shift between Re{E;} and
Im{ EZ}) determine the propagation coefficient: h = 2z /(4Lsn).

output ports as shown in Fig. 6. Thus, we obtain alinear system
of 4776 equations with 4776 unknowns and two right hand
sides. The computation time for this problem on an Athlon
1200 PC is approximately 180 seconds when using the LAPACK
L U-decomposition routine for the matrix solution.
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Fig. 8: Electric field aong the line Liy in input port. The propagation
constant is h= 2z/1 = 2.068 and the amplitude of the reflected wave
Eo'®"* = 4| E; | max—| Ez| min) = 0.2928; thus, power reflection becomes
Rin = (Eo™*)2100% = 8.58%.

As s00n as the linear system for the two right hand sides is
solved the superposition of the corresponding two solutions is
computed in such away that the reflected wave at e.g. the output
port (or the reflected field in the horizontal arm) vanishes.

Fig. 7 shows the resulting dependence of the dectric field aong
the observation line L, in the center of the horizontal arm (as
defined in Fig. 6). It is clearly visble, that this function shows
some oscillatory behavior (instead of being congtant) due to
inaccuracies in the matching procedure a the output port. It is
reasonable to assume that the amplitude of the transmitted wave
lays somewhere between the maximum and minimum of the
oscillating envelope. We therefore define power transmission
according to the mean | E,| valuealong L;:

Err = ij

01

total

)| di, =0.9547;

; (13)

m

T, =(ES™™) 100% = 91.15%,
Furthermore, the mean | E,| deviation form the average value

(i.e. the difference between the maximum and minimum value)

A= i f E* (L1)|| dL, =0.01 (14)

L

m

transmit
E01

gives us some information about the accuracy of reflection
suppression in the output ports with regard to our MAS
simulation scenario. Fig. 8 shows the behavior of the electric
field in the vertical arm, i.e. near the input port. As one can see
this mimics a nice standing wave pattern from which one can not
only obtain the reflection coefficient but also an approximation of
the propagation constant, or more precisely of the guided mode's
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Fig. 9: Poynting vector field distribution within the 90° W1 defect wave-
guide bend achieved with MMP. The model data are the same asin Fig. 6.

characteristic constant C as given e.g. in equation (3). It is easy
to understand that C is complex valued due to the inplane
radiation leakage [20] of the waveguide but since these |osses
are usually extremely small C becomes aimost real.
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Fig. 10: Comparison of the MAS (circles) and MMP (dashed lines) model
for a 90° W1 defect wave-guide bend as a function of the normalized
frequency a/A. The discrepancy is less than 1%.

In addition to the error estimated for the reflection suppression,
we can aso consider energy conservation. Neglecting radiation
leakage we obtain T; + R, = 91.15% + 8.58% = 99.73%. These
internal error checks aready show an acceptable accuracy of
the proposed MAS model. In order to obtain even more
information on the quality, we compare these results with those
of a model based on MMP-connections. The comparison is



visualized in Fig. 10.

As one can see from e.g. Fig. 6 and Fig. 9, the MMP modd is
considerably smaller and consists of only 89 rods. Here, the
field inside each rod is gpproximated by a Bessdl-type expansion
wheress the field outside is represented by a multipole expansion.
The total number of unknowns per rod is 22, that is dmos the
same as in the MAS model. Thus, we only have 22 x 89 =1958
unknowns, i.e., lessthen half of what we have for the MAS moddl.
But now, the handling of the output ports with connections
requires the introduction of a fictitious boundary that separates the
region of the PhC discontinuity from the PhC waveguide problem.
Along these fictitious boundaries, additional multipoles must be
placed together with the connections that describe the waveguide
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Fig. 11: Geometry of the filtering T-Junction (diplexer).The radii of the rods
are given in units of lattice the period a. For al of rods: p = 1.0; ¢ = 11.56.

modes. Finding an appropriate set of matching points for the
resulting model is rather difficult. In order to overcome these
problems, MMP works with a generalized point matching
technique that leads to an overdetermined system of equations
which is then solved in the least squares sense. In our example,
we obtain 2181 unknowns for 8964 matching conditions. The
solution of this system involves the QR decomposition routine
of LAPACK and takes 177 seconds, i.e., amost the same
computation time as the MAS solution. Note that the MMP
system of equations is more than four times overdetermined.
Usualy two times overdetermined systems are still sufficient
and in our specia case, we could use even no overdetermination
for the PhC lattice (i.e. the rods) and an overdetermination
factor two for the fictitious boundaries. This would allow us to
reduce the computation time of the MM P-connection model by
a factor of three. Since this model serves only for comparison
purposes and because the minimization of the computation
time in the framework of MMP could become quite tricky, we
did not optimized the model with regard to speed-up.

Fig. 10 shows the comparison of MAS and MMP results where
we can see an excellent agreement between these two results.
Furthermore, we observe our error estimation to be quite
reliable. In conclusion, the smulation of complicated PhC
waveguide discontinuities is now reduced to the solution of a
standard scattering problem.
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VII. FILTERING T-JUNCTION

The analysis of filtering T-junction as depicted in Fig. 11 is
more demanding than the 90° PhC waveguide bend for several
reasons. Firg of dl, it has two output ports where the incoming
wave is guided to the left output port at an operating frequency of
f=1.038-10"Hz and to the right output port for f=1.23-10"Hz.
Within our analysis we must evaluate this model at least for two
different frequencies, i.e., the computation time is doubled.

Furthermore, wavelength selective power splitting is enabled,
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Fig. 14: MASandysis E-field of thefiltering T-junction a f = 1.038-10™ Hz.
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Fig. 16: MMP analysis: Poynting vector field distribution within the filtering
T-junction at f = 1.038-10' Hz (left diplexer channel).

by introducing corresponding dispersive elements (like e.g.
substitutional defects) into the two output waveguides of the T-
junction. Such substitutional defects may consist of rods with
different sizes compared to those of the underlying PhC lattice

=018 . =035 r_ =025

large

The numbers of auxiliary sources and matching points for these
rods are dightly higher (we use M = 14 for the rods that condtitute
the PhC lattice and M; = 16 for the subgtituitional defects).

The MAS model is described here by a matrix equation, which
contains 6576 equations with 6576 unknowns and three right
hand sides due to the existence of one auxiliary IWGA source
per port (see Table1).

Tablel
Source Xo Yo S |
Input 0.0 8.5a 270° 3.5a
Left -12.5a 0.0 0° 3.5a
Right 12.5a 0.0 180° 3.5a

The unknown amplitudes of the IWGA sources are determined
according to condition (9), i.e. the reflections suppresson
condition at the cutoff dice xp = + (12-a+ rp.). We shal not care
about the matching condition at the input port yo=8a+ e
because there is dways a reflected wave present coming from the
discontinuity (i.e. branching region) itsalf.
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Fig. 17: MMP analysis: Poynting vector field distribution within the filtering
T-junction at f = 1.23-10* Hz (right diplexer channdl).

Table2
£=1.038.10" Hz £=1.23.10% Hz
Source [Aol Phase 1Al Phase
Input 1.0 0 1.0 0
Left 0.2774 -35.4° 0.0058’ -75.0°
Right 0.0232 2.1 0.1370° -20.7

This wave will impact the incoming field accordingly but its
influence is minimized when using the input field amplitude as
normalization for dl other wave amplitudes involved. In dl other
respects the procedure is the same as for the 90° PhC waveguide
bend. The solution of the excitation problem (7) and the reflection
suppression condition (9) for the given T-junction (Fig.11)
provide one with the values for the complex IWGA sources
amplitudes (Table2). Since we now dispose of the IWGA source
amplitudes (and phase vaues) providing efficient wave matching
at the output ports, we obtain amost congtant field distributions
aong the two observetion lines in the output arms of the T-
Junction for the two different frequencies (see Fig. 12 and 13).

Table3

£=1.038:10" Hz, h= 2z/i = 1.156
Port E™™ | T(%) | [E® | R@) | SWR
Input 1.0 100 0. 6031 36.38 | 2144
Left 0.7982 | 63.71 0.0024 0.001 | 1.000
Right 0.0652 0.42 0.0002 0.000 | 1.000
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Table4
Case MMP solution MAS solutions
RO [T [T [ 5% | RO | T [ T.(W [ %)
Left 35.37 | 63.38 0.41 99.16 36.38 63.71 0.42 100.51
Right | 36.51 0.11 63.24 99.86 36.02 0.11 63.76 99.89

Knowing the field distribution in the two output channels the
transmission/reflection coefficients, the propagation congtants and
a firg estimate of the error can be obtained using equations (9)-
(12):

a) Propagation constant: h= 2z/. = 2.00

b) Amplitude of the reflected wave in the output port
Eirneﬂect = %( Ez (Lin) - Ez (Lin) min) = 06002’
the corresponding power reflection coefficient and the SWR

R, =(E=")"-100%=36.02%

max

n

reflect \ 2
SAR= tgz—ﬂ; 2125, E™™ =10,

¢) Amplitude of the transmitted wave in the right arm

transmit 1 tot:
Eright =L_ I Ez al (Lright)

right Lgy

dL . =0.7985,

right

and the corresponding transmission coefficient
T g = (E™ ) 100% = 63.76% ;

right right
d) Amplitude of the reflected wave from the end of the right arm
1 transmit
Lo
L

E reflected
right

Etota] ( LrighI )

z

dL__ =0.0075,

right right

right L,
and the corresponding standing wave ratio SWR = 1.002;
€) Amplitude of the transmitted wave in the left arm

transmit 1 tot:
E =L—I E* (L)

e ; dL,, =0.0335,
Teft Ly,

and the corresponding transmission coefficient
T = (ES™ ) 100% = 0.11%;

left Oleft

f) Amplitude of the reflected wave from the end of the left arm
E/s'=** =0.0003,

and corresponding standing wave ratio is SWR = 1.002.
0) Energy balance: AW= T, — (Rn+ Tt + Trign) = 0.1%

The solution of the initial boundary problem provides the
continuity of the E- and H-field components adong the boundary
with the error of less than 0.1% Having such high precision of the
caculation alows detailed investigation of the wave propagetion
characteristics in complicated finite PhC. For example Fig. 14 and
Fig. 15 show the contour plot of the eectromagnetic field com-
ponent E, for the given diplexer geometry. The calculated
amplitude of the dectric fidld dong the each waveguide channel
for afrequency of f = 1.038-10" Hz is depicted in Fig. 13 whereas

the transmission/reflection coefficients arelisted in Table 3.

The overdl smulation procedure and the degree of accuracy is
comparable to the andlyis of the 90° PhC waveguide bend. As
shown in Fig.14 and Fig. 15 accurate caculations alow a very
detailed description of the complicated fieldsin finite PhC devices.
In order to compare the results with MMP, we use a MMP-
connection model (see Fig16 and 17) that sets up an over-
determined 2974 x 9126 matrix and requires amost the same
computation time as the corresponding MAS-model. Comparable
figures that result from the two methods are listed in Table4.
As one can see, there is an excellent agreement between both
methods.

VIIl. CONCLUSIONS

We have presented a new powerful method for the accurate and
efficient computation of PhC waveguide discontinuities. The
method essentially proposes (i) the introduction of specia IWGA
sources that excite the guided modes in the PhC waveguides and
(i) it provides dso a very draightforward technique for sup-
pressing reflected waves at the waveguide ports. Together with
such excitation and matching conditions the method delivers an
additional technique for the computation of the S-parameters in
PhC devices. This rather intuitive way (i.e. when relying on the
minimization of the SWR) will gain recognition especialy when
complicated waveguide dructures in eg. planar 3D-PhCs are
involved and thus proper eigenmode caculation becomes too
cumbersome. Even if the proposed technique was developed for
the method of auxiliary sources (MAYS) it will easily apply for any
other frequency domain method.
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