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Abstract 
 
An analytic solution to the problem of a plane 
electromagnetic wave scattering by two infinitely long 
conducting strips is presented using an iterative procedure to 
account for the multiple scattered field between the strips. 
To compute the higher order terms of the scattered fields, 
the translation addition theorem for Mathieu functions is 
implemented to express the field scattered by one strip in 
terms of the elliptic coordinate system of the other strip in 
order to impose the boundary conditions. Scattered field 
coefficients of high order fields are obtained and written in 
matrix form. Numerical results are plotted for the scattered 
in far zone for different strip widths, electrical separations 
and angles of incidence. 
  
1. Introduction 
 
The multiple scattering of a plane electromagnetic wave by 
a system of infinitely long conducting strips is important in 
a variety of practical applications. For example, the solution 
may be used to study the scattering by complex bodies 
modeled by a collection of strips, prediction of radiation 
from elliptical reflector antennas, and to check the accuracy 
of the results of numerical and approximate methods [1].  
Exact analytic solution of the problem of scattering by a 
system of N conducting strips has been formulated using the 
translation addition theorem for Mathieu functions to 
enforce the boundary condition [1]. The required computer 
time and memory to invert the resulting system of matrix 
increase rapidly with the number of strips. In addition, 
numerical results for certain strips dimensions, electrical 
separations and angles of incidence are difficult to obtain by 
this analytical method may be due to the associated ill-
condition system matrices. 
In the present paper an iterative procedure is proposed to the 
scattering by an arbitrary oriented two infinitely long 
conducting strips. This approach requires the solution of the 
scattered field by each strip, assumed to be alone in the 
incident field that acts as an incident field on the other strip.  
Therefore, the first order scattered field results from the 
excitation of each strip by the incident field only, while the 

second order scattered field results from the excitation of 
each strip by the first order scattered field. Hence, this 
iterative procedure continues until the solution convergence.  
One of the advantages of the iterative procedure is that the 
proposed solution does not require matrix inversion and 
therefore the desired scattered field coefficients are obtained 
after each iteration and used in the subsequent iteration. 
The solution of the electromagnetic scattering by a system 
of N infinitely long conducting strips has received little 
attention in the literature due to the complexity of 
computing Mathieu functions of higher orders and its 
associated translation addition theorem. Recently, there 
have been many studies on the multiple scattering by strips 
[1], circular or elliptic cylinders [2]-[6], spheres [7], and 
spheroids [8], [9] using different techniques.  
Numerical results showing the number of scattered fields 
are plotted for the normalized echo pattern width with 
various electrical separations, widths, angles of incidence, 
and also compared with published results to demonstrate the 
efficiency of the method [1].   
 
2. Formulation of the problem 

Fig. 1 shows the scattering geometry of two infinitely long 
conducting strips with different widths and arbitrary 
orientation. The center axes of the two strips are assumed to 
be parallel to the z-axes.  The first strip is located at the 
origin o1 while the second strip is located at the polar 
coordinate point (d, )γ  with respect to the global coordinate 
system (x,y,z). The width of the strips are a1 and a2 
respectively, and each strip's local coordinate system makes  
angle 1α  for the first strip and 2α for the second strip with 
its global coordinate system. Consider elliptic coordinate 
systems u, v, and z such that   

           zzvuFyvuFx === ,sinsinh,coscosh         (1) 

where F is the semifocal length, ∞<≤ u0  , 
π20 <≤ v , and ∞<≤∞− z . It is usually convenient 

to introduce  

               ucosh=ξ , vcos=η                           (2) 
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with   ∞≤≤ ξ1   and .11 ≤≤− η                                     

Consider the case of a linearly polarized electromagnetic 
plane wave incident on the two infinitely long conducting 
strips at an angle iφ  with respect to the positive x axis, as 

shown in Fig. 1, with  time dependence. The electric 
field component of the TM polarized plane wave of 
amplitude  is given by 

jwte
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ijki

zE E e ρ φ φ−=                                                   (3) 

where  is the wave number in free space. The incident 
electric field may be expressed in terms of Mathieu 
functions about the origins o

k

1 and o2 and as follows [10] 
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and , ,  and are the even 

and odd angular Mathieu functions of order m, respectively, 
 and are the even and odd radial Mathieu 

functions of the first kind, and and  are the even 
and odd normalized functions. 
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The scattered electric field from the conducting strips can be 
expressed in terms of Mathieu functions as   

                             (11) 
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where , , , and  are the unknown even 

and odd scattered field expansion coefficients, and  

and are the even and odd Mathieu functions of the 
fourth kind. 
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3. First Order Scattered Field by Strips 

The first order scattered field results from the separate 
excitation of each strip by the incident plane wave alone. 
The boundary condition at the surface of first strip requires 
the tangential components of the total electric field to be 
zero, i.e.,   
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where and  are the first order scattered field 

expansion coefficients. A similar equation may be written 
corresponds to the second strip. Using the orthogonality 
properties of the angular Mathieu function yields the first 
order scattered field coefficients, which may be written for 
each strip in matrix form as 
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 where and are the first order scattered field 

coefficients of the strip, and  
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4. Higher Order Scattered Field by Strips 

The second order field results from the excitation of each 
strip by the scattered field from the other strip due to the 
initial incident field. The boundary condition at the surface 
of first strip requires the tangential components of the total 
electric field to be zero, i.e,    
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where and  are the second order scattered field 

expansion coefficients of the first strip. To enforce the 
boundary condition, the first order scattered field from the 
second strip must be expressed in terms of the coordinate 
systems of the first strip by using the addition theorem for 
the Mathieu functions [11], i.e., 
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with 

1221 Ψ+Ψ=Ψ+ pi ,   .                         (23) 1221 Ψ−Ψ=Ψ− pi

 In the above equations, 12Ψ  and  are measured from 
the local positive x axis of each strip to the separation 
distance between the strips,  is the Hankel function 

of  the second kind with argument kd , and  and  are 
the Fourier coefficients of the Mathieu functions [10]. The 
sum is over only even or odd values of  i(p) depending 
whether m(l) is even or odd in equations (19) and (20).
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Substituting equation (18) into (17) and using the 
orthogonality properties of the angular Mathieu functions 
yields the second order scattered field coefficients, which 
may be written for each strip in matrix form as 
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expansion coefficients of the second strip, and  
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To obtain a general solution, we solve similarly for the 
higher order scattered fields which are sensitive to the 
electrical widths, separation between the strips and angles of 
incidence. This means if the strips are located very close to 
one another, then the higher order scattered fields are 
significant and therefore should be included in the solution. 
The significance of the higher order scattered fields will be 
verified numerically by comparison with published data.  
The general expression for the kth order scattered field 
coefficients may be written as  
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It should be noted that the matrices in equations (27) and 
(28) are computed once (i.e., k=2) for the electrical sizes and 
separation considered and used for the subsequent iterations 
(i.e., k=3,4,…).  
Once the  scattered field coefficients are determined, the 
total far field from the strips due to the kth order scattered 
field can be determined [1]-[5]. 
 
5. Numerical Results 

In order to solve for the unknown scattered field 
coefficients, the infinite series  are first truncated to include 
only the first N terms, where N in general, is a suitable 
truncation number proportional to the strips electrical width. 
In the computation, the value of N   has been chosen to 
impose a convergence condition that provides solution 
accuracy with at least four significant figures [14], [15]. It is 
found that increasing the electrical width of the scatterers 
will increase the total truncation number of N terms [16].   
To check the accuracy of our computer program, we 
recomputed first the results given in references [2], [12] for 
large electrical separation when it is compared with the 
electrical sizes of the scatteres  and we obtained complete 
agreement between methods by only implementing the first 
order scattered field using the iterative solution.  Fig. 2 
shows the numerical result of the normalized echo width 
pattern λσ /  versus the scattering angle φ  for two 
identical strips with electrical width ka=3.14. The electrical 
separation between the center of the strips is assumed to be 
kd=12.5 and at an angle of incidence o

i 90=φ  (broadside 
incidence). It can be seen that the results of the first 
scattered order (k=1) presented by solid line is satisfactory 
at all backscattering angles because the electrical separation 
between the strips is large compared to their width. To set a 
criterion for terminating the iteration process, the scattered 
field after each iteration is calculated and divided by the 
total field scattered from the pervious iterations, and the 
process is terminated when the ratio is smaller than 10-4 [7]. 
Fig. 3 has the same electrical parameters except the 
electrical separation is reduced to 7. It can be seen that the 
numerical results of the first order scattered field is 
satisfactory except at resonance scattering angles. This is 
because the first order scattered field does not take into 
account the interaction between the strips and hence k=1 
represents the sum of the scattered field due to the incident 
field only. The significance of the multiple scattered fields 
can be seen in the second scattered order term (k=2) which 
includes the scattered fields due to the plane wave incidence 
plus the scattered fields due to the first order scattered field 
due to the incident field on each strip. However, the results 
show that four scattered field orders are needed to obtain 

convergent solution at the resonance scattering angles. Fig. 
4 is similar to Fig. 2 except the width of the second strip is 
reduced from 3.14 to 2.0 and kd=5.5. We can see that the 
number of scattered fields needed is four to obtain 
convergent solution. Fig. 5 shows  the normalized echo 
width pattern for two identical strips of width ka=5.0, 
kd=13, and at angle of incidence of zero degree (endfire). 
Three iterations are needed to obtain convergent solution. 
Fig. 6 is similar to Fig. 5 except that the incident angle is 90 
degrees and kd=11. 
Fig. 7 shows the numerical results of the normalized 
backscattering echo width pattern versus the electrical 
separation (kd) for two identical strips of width ka=5.0 and 
at angle of incidence of zero degree. The electrical 
separation is taken between 11 and 23. The results show that 
the behavior of the backscattering cross section is 
sinusoidally and with k=4 a convergent solution is obtained 
at all electrical separations. Fig. 8 is similar to Fig. 7 except 
the incident angle is 90 degrees. Again, the backscattering 
cross section is behaving sinusoidally and four scattered 
field orders is needed to obtain convergent solution.    
 
6. Conclusions  

We have investigated the problem of multiply field scattered 
due to a plane electromagnetic wave incident on arbitrary 
oriented two perfectly conducting strips. The boundary 
conditions were implemented using the translation addition 
theorem. The numerical results indicated that the number of 
multiple scattered fields depends on the electrical width of 
the strips, electrical separations and incident angles. We 
have seen that the iterative solution gives insight to the 
nature of the multiple scattered fields where it is sometime 
strong (more terms needed, Fig. 3 at φ  88o) or weak (less 
terms needed, Fig. 3 at φ  200o) at some specific scattering 
angles.  A potential advantage of using the iterative solution 
is that of saving computer time and memory by avoiding the 
inversion of system matrix. 
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Figure 1: Scattering geometry of two conducting     

strips. 
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Figure 2: Normalized echo pattern width versus the 
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Figure 3: Normalized echo pattern width versus the 
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Figure 4: Normalized echo pattern width versus the 

scattering angle φ  for two conducting 
strips with ka1=3.14 , ka2=2.0, kd=5.5, 
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Figure 5: Normalized echo pattern width versus the 
scattering angle φ  for two conducting strips 

with ka1=ka2=5.0, kd=13, , 
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Figure 6: Normalized echo pattern width versus the 
scattering angle φ  for two conducting 
strips with ka1=ka2=5.0, kd=11, 
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Figure 7:  Normalized backscattering cross section versus 

the electrical separation  kd for conducting strips 
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