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Abstract

This article analyzes polarizability characteristics of the
five regular polyhedra (tetrahedron, cube, octahedron,
dodecahedron, and icosahedron) and sphere. In partic-
ular, the variation of the polarizabilities (polarizability
is the amplitude of the static dipole moment caused by
an incident electric field of unit amplitude) is correlated
with various geometrical parameters of these Platonic
solids: specific surface, number of edges, vertices, and
faces, and the volumes of inscribed and circumscribed
spheres. It is found that the polarizabilities of perfect
electric conductor (PEC) and perfect electric insulator
(PEI) objects are most strongly correlated with two dif-
ferent parameters: the radius ratio of circum- and in-
scribed spheres (PEC case) and the normalized radius
of the inscribed sphere (PEI case).

1 Introduction

When a dielectric inclusion is put into a homogeneous
and static electric field, there will be a perturbation in
the behavior of the field function in the vicinity of the
inclusion. The strongest component of this “scattered”
field is that due to a (static) electric dipole momentp.
This dipole field is proportional to the incident uniform
field E. The proportionality coefficient is called polar-
izability α:

p = αEe. (1)

For example, for a dielectric sphere with volumeV and
permittivity ε, the polarizability is [1, 2]

αs = 3V ε0
ε − ε0
ε + 2ε0

(2)

whereε0 is the free-space permittivity (the permittivity
of the environment in which the inclusion is embedded).
Let us define the normalized dimensionless polarizabil-
ity by

αn =
α

ε0V
(3)

whence it isαn,s = 3(εr − 1)/(εr + 2) for a sphere
with relative permittivityεr. The two extreme cases are

a PEC (perfect electric conductor,εr = ∞) and PEI
(perfect electric insulator,εr = 0) inclusions:

αn,s,PEC = 3, αn,s,PEI = −3/2. (4)

In this paper, we will focus on the polarizabilities of
inclusions with certain special basic shapes: in addi-
tion to the sphere also the five Platonic polyhedra (tetra-
hedron, hexahedron (cube), octahedron, dodecahedron,
and icosahedron) are under consideration. As reported
in [3], we have conducted an extensive study of the static
polarizabilities of these shapes, and numerical values for
these polarizabilities are now available to an accuracy of
the order of10−5. Based on the calculations of [3], the
estimates in Table 1 have been found for the normalized
polarizabilities of Platonic polyhedra of the PEC and
PEI type. The calculations were made by solving the
surface integral equation for the potential function with
Method of Moments and third-order basis functions.

The numerical values of Table 1 tell that the polariz-
ability amplitude values for the PEC and PEI cases are
correlated: a “sharper” object, like the tetrahedron, has
stronger polarizabilities (in both cases) than smoother
ones, and the smoothest shape is obviously the sphere.1

However, the amplitudes of these polarizabilities vary
slightly differently in the two cases as can be seen in
Figure 1, where they are plotted on the same PEC/PEI
graph.

The aim in the present paper is to try to find correla-
tion of the polarizability values with various geometri-
cal characteristics of the polyhedra. The normalized po-
larizabilities for the limiting cases of PEC and PEI are
correlated against several parameters which intuitively
could be anticipated to have effect on the creation of
the dipole moment. The geometrical parameters that are
treated are the number of faces, edges, and vertices of
the polyhedron, the solid angle subtended by the faces
when looked inside from a vertex, the specific surface of
the inclusion, as also various parameters connected with
the spheres inscribed and circumscribed on the polyhe-
dron. All these parameters vary from one polyhedron
to another, and they can be thought as certain measures

1In fact, sphere is an extremum shape which has the minimum polarizability, given the permittivity and volume of the inclusion. Any
deviation from this form will increase, averaged over all directions, the dipole field [4].
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of “non-sphericity” or “unsmoothness.” However, each
of the parameters measure this abstract sharpness prop-
erty in a different way. It is therefore very interesting to
see which of the geometrical characteristic figures varies
most similarly with the polarizabilities.

Although the connection between the polarizabilities of
regular polyhedra and their basic geometrical character-
istics is interesting from the general mathematical na-
ture, the electric polarizabilities are very important also
from the practical point of view in modeling of ma-
terials. In practically all models for the effective per-
mittivity of inhomogeneous media, polarizability is the
mostly determining parameter. For dilute mixtures, the
effective permittivity is linearly dependent on it and for
higher loadings of the inclusion phase, the effect of the
polarizability becomes nonlinear and more pronounced.

The objects of the present study, polyhedra, are very
natural forms. On microscopic scale, solid-state mat-
ter takes its shape in basic regular crystal forms which
makes good reason and need for the results of polar-
izabilities of polyhedra. And even if on a larger scale
matter may be disordered, polycrystal or even amor-
phous and isotropic, the microscopic objects retain the
basic structure. Then also the polarizabilities of the ba-
sic forms are essential when modelling the macroscopic
response of such matter.

Furthermore, the results for electric polarizabilities are
readily available for magnetic modeling of materials.
This is thanks to the duality between the electric and
magnetic problems; hence the exact analogy between
permittivity and permeability on one hand and the elec-
tric and magnetic polarizabilities on the other.

2 Calculation of the polarizabili-
ties with the method of moments

Let us suppose that a dielectric inclusion is put into a
uniform z-directed incident fieldEe = Eeuz. The cor-
responding electrostatic field problem can be formulated
as an integral equation for the unknown surface poten-
tial functionφ [5]:

φe(r) =
τ + 1

2
φ(r) +

τ − 1
4π

∫
S

φ(r′)
∂

∂n′

(
1

|r − r′|
)

dS′,

r onS. (5)

HereS is the surface of the inclusion,φe = −Ee z is the
incident potential,τ = εi/εe is the ratio of the permit-

tivities of the inclusion and exterior, respectively, andn′

is the outward normal vector to the surface at pointr′.

Once the potential is known on the surface, the dipole
momentp can be calculated by

p = −(τ − 1)εe

∫
S

φ(r)n(r) dS (6)

and the polarizabilityα is obtained from (1).

The potential function that is needed in the estimation
of the polarizability can be calculated by solving inte-
gral equation (5) with the method of moments (MoM)
[6]. Let us suppose that the surfaceS is divided into
planar triangular elements. Then the unknown poten-
tial φ is expressed as a linear combination of continuous
high order polynomial basis functionsu(q)

n defined on
these elements [3]

φ =
N∑

n=1

cnu(q)
n . (7)

Hereq = 1, 2, . . ., is the order of a basis function. Us-
ing Galerkin’s method equation (5) is next multiplied
by testing functionsu(q)

m , m = 1, . . . , N , and integrated
overS. The resulting set of equations can be written as
the following matrix equation

Ac = b, (8)

where c = [c1, . . . , cN ]T is the unknown coefficient
vector ofφ.

Equation (5) is a Fredholm integral equation of the sec-
ond kind with a weakly singular kernel. However, for
non-smooth surfaces, like a tetrahedron or a cube, the
order of the singularity of the kernel increases at the
edges and corners. To improve the efficiency of the
numerical algorithm, the integrals with singularities are
evaluated in closed form. This method is based on the
singularity extraction technique, originally introduced
by Wilton et. al. [7] and Graglia [8] for linear basis
functions, and more recently, generalized for high or-
der polynomial basis functions in [9]. After the sin-
gular term is integrated analytically, the outer integral
with respect tor and the other terms are regular and can
be evaluated by standard numerical methods, for exam-
ple with Gaussian quadrature. The singularity extraction
technique clearly improves the accuracy of the calcula-
tion of the near interaction terms of the system matrix,
and thus, leads to a more stable algorithm than pure nu-
merical integration. The method also improves the ac-
curacy of the near-singular terms, not only the singular
ones.
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Other factors that effect to the accuracy of the solution
are e.g. mesh density and type of the basis functions.
Since the potentialφ varies strongly near the corners of
S [10], an appropriate refinement of the mesh, which
takes into account the behavior of the potential at the
edges and corners, usually increases the accuracy. A
couple of mesh refinements were tested in [3] and it
was found that a mesh with a square root refinement
towards the edges gives the best results. Also higher
order basis function representations improve the numer-
ical accuracy. Both second and third order basis func-
tions were tested in [3], and the third order ones gave
better results.

As is already pointed out, equation (5) is a Fredholm
integral equation of the second kind. When iterative
solvers are applied to solve such equations, usually ac-
curate results are obtained within a few iterations. This
seems to be the case when the matrix equation (8) is
solved iteratively with the restarted version of the GM-
RES method [11] andτ is small. However, for high
τ > 100, the convergence dramatically slows down and
in some cases the method does not converge at all. The
reason is that equation (5) does not have a unique solu-
tion if the inclusion is PEC, i.e., ifτ = ∞. This non-
uniqueness problem can be avoided, for example, by
adding a constant value1/N to each element of the ma-
trix A [12]. Numerical experiments have demonstrated
that by this simple modification the convergence can be
essentially improved for inclusions with highτ values.

3 Polarizabilities and characteris-
tic figures

Let us next list and define several geometrical parame-
ters that could be interpreted as an abstract distance from
sphericalness. For all five polyhedra and the sphere,
these are correlated against each other in the figures
to follow. Since there are five polyhedra, there are six
points in the figures.

Table 2 gives various fundamental geometrical charac-
teristics of the regular polyhedra. These are the number
of faces, edges, and vertices. One further measure is
the “sharpness” of the vertex, defined by the solid angle
which is bounded by the faces when one looks into the
polyhedron.2 Note that on the table, sphere is also taken
to be a special case of a Platonic polyhedron, having an
infinite number of faces, edges, and vertices. Also, for

the sphere, the solid angle seen from the vertex (that is,
on any point on the surface of the sphere) is obviously
half of the total solid angle,4π/2 = 2π.

Table 3 collects some other, more indirect, geometrical
parameters of the polyhedra. The edge lengtha of each
of the polyhedra is normalized such that the volume is
unity. The parameters are

• the specific surface of the polyhedron, defined as
the area of the surface of the object when its vol-
ume is unity (e.g., for a cube, edge lengtha = 1
gives unit volume, meaning that the surface is
6a2 = 6),

• the ratio of the radii of the circumcribed sphere
Rcirc and the inscribed sphererin,

• the normalized equivalent radii of the circum-
scribed and inscribed spheres,gcirc andgin. These
two equivalent radii are defined with the volumes
of the circum- and inscribed spheres with

gcirc =
(

Vcirc

V

)1/3

, gin =
(

V

Vin

)1/3

(9)

whereV is the volume of the given polyhedron.
Note that both are defined to be larger than unity.

It is tempting to predict that the polarizabilities of the
various polyhedra follow the pattern of these charac-
teristic parameters that measure how “nonspherical” or
“sharp-formed” the polyhedra are. Let us try to make a
graphical and quantitative estimation of this correlation.

In Figures 2–5, the geometrical parameters are plotted
against the PEC and PEI polarizabilities of the objects.

A numerical measure for the correlation between two
sets of parameter variables is the correlation coefficient
ρ, defined by the following [13]:

ρ =

1
6

6∑
i=1

(xi − mx)(yi − my)√
1
6

6∑
i=1

(xi − mx)2 · 1
6

6∑
i=1

(yi − my)2
(10)

where the six cases (five polyhedra and the sphere) are
all included in the summation. The two variables,x and

2There are different ways to calculate the vertex solid angle. Perhaps the most elegant is the following (Girard’s theorem): given the dihedral
angles between the faces, the solid angle is the excess angle of the sum of the dihedral angles over the corresponding planar polygon angle-sum.
This property is used in Table 2.
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y (with arithmetic meansmx andmy) represent any pair
of the polarizabilities and the characteristic geometrical
parameters listed above.

The correlation coefficients between the parameters are
collected in Tables 4 and 5.

4 Conclusions

The trivial hypothesis that both polarizabilities (PEC
and PEI) correlate with the geometrical “sharpness” pa-
rameters of the polyhedra is obviously confirmed by the
constellation of points in Figures 2–5 and even more by
the correlation numbers.3 But certainly also more non-
trivial conclusions can be drawn from the above results.

Firstly, it is conspicuous that the PEC and PEI po-
larizabilities behave differently (although the correla-
tion coefficient between them is numerically quite high,
0.9901, as shown in Figure 1). The difference reflects
the fact that there are various mechanisms that are caus-
ing the dipole moment creation, and therefore also the
geometry and its parameters stand in different relation
to the polarizabilities in the two cases.

It seems that the polarizability of the PEI sphere cor-
relates more strongly with some of the geometrical pa-
rameters than the polarizability of the PEC sphere (in
average, the correlation coefficients are higher for the
PEI plots). We can observe that the strongest corre-
lation exists between the normalized inradiusgin and
the PEI polarizability of the objects (ρ = 0.9977), and
also the PEI polarizability correlates quite well with the
specific surface of the object (ρ = 0.9957). On the
other hand, the best correlation of PEC polarizability
is with the circumscribed–inscribed sphere radius ratio
(ρ = 0.9953), the other good correlation being with the
inverse of the solid angle seen from the vertex of the
object (ρ = 0.9937).

It may be difficult to find hard physics from statistical
numbers. However, some qualitative, yet significant,
observations can be made. First, it is perhaps not totally
foolish to connect the solid angle of the vertex of a poly-
hedron with the polarizability of a perfectly conducting
object. In terms of a dielectric polarizability, the con-
trast between the object and the environment is extreme
in such case. On a sharp vertex, charge is concentrated.4

Hence the polarizability increases in the PEC case as the
vertex solid angle decreases. On the other hand, in the
PEI case the situation is the opposite: the external side
of the polyhedron is “more conducting” and again the
contrast is infinite. But the convex form of the polyhe-
dra does not allow any sharp corners into the object. In
the PEI case, then the properties of the inscribed sphere,
rather than the sharpness of the vertices, are more essen-
tial parameters witht respect to the polarizability.
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Sihvola: Polarizability analysis of cubical and
square-shaped dielectric scatterers:IEEE Transac-
tions on Antennas and Propagation, Vol. 49, No. 3,
pp. 451-457, March 2001.

[11] Y. Saad and M. H. Schultz: GMRES: a general-
ized minimal residual algorithm for solving non-
symmetric linear systems,SIAM Journal of Sci-
entific and Statistical Computing, Vol. 7, pp. 856-
869, 1986.
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Table 1: Limiting values (εr → ∞, PEC; andεr → 0, PEI) for the normalized polarizabilitiesαn = α/(εeV ) of
regular polyhedra. Best numerical results according to [3]. The accuracy is such that the last number in the results
for polyhedra should be correct to±1, except for tetrahedron in which case it is±5.

polyhedron αn(εr = ∞), PEC αn(εr = 0), PEI

tetrahedron 5.0285 −1.8063

hexahedron 3.6442 −1.6383

octahedron 3.5507 −1.5871

dodecahedron 3.1779 −1.5422

icosahedron 3.1304 −1.5236

sphere 3 −3/2
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Figure 1: The polarizabilities of PEC and PEI inclusions against each other. The correlation coefficient of these
two variables is 0.9901, meaning that the polarizabilities behave slightly differently for different polyhedra.

Table 2: Geometrical characteristics of polyhedra, with the corresponding parameters for a sphere.

polyhedron faces edges vertices solid angle seen
from the vertex

tetrahedron 4 6 4 3 arccos(1/3) − π ≈ 0.55129
hexahedron 6 12 8 3π/2 − π ≈ 1.5708
octahedron 8 12 6 4 arccos(−1/3) − 2π ≈ 1.3593

dodecahedron 12 30 20 3 arccos(−1/
√

5) − π ≈ 2.9617
icosahedron 20 30 12 5 arccos(−√

5/3) − 3π ≈ 2.6345
sphere ∞ ∞ ∞ 2π ≈ 6.2832
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Table 3: Additional geometric characteristics of polyhedra and the sphere. Note that the parametera is the edge
length (for the polyhedra) and radius (for the sphere) chosen with the requirement that the volume of the object be
unity.

polyhedron a(V = 1) specific surface Rcirc/rin gcirc gin

tetrahedron 2.039 7.20562 3 1.9359 1.5497
hexahedron 1 6.000 1.7321 1.3960 1.2407
octahedron 1.2849 5.71911 1.7321 1.4646 1.1826

dodecahedron 0.50722 5.31161 1.2584 1.1457 1.0984
icosahedron 0.771025 5.14835 1.2584 1.1821 1.0646

sphere 0.62035 4.83598 1 1 1
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1 / face#
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ρ=0.9248 ρ=0.9671

ρ=0.9083 ρ=0.9937

Figure 2: The polarizability of PEC inclusions and the geometrical parameters of Table 2.
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Figure 3: The polarizability of PEI inclusions and the geometrical parameters of Table 2.

Table 4: The correlation coefficients between the PEC and PEI polarizabilities with the geometrical parameters in
Table 2.

α(ε = ∞) -α(ε = 0) 1/face# 1/edge# 1/vertex# 1/solid angle

α(ε = ∞) 1.0000 0.9901 0.9248 0.9671 0.9083 0.9937
-α(ε = 0) 0.9901 1.0000 0.9603 0.9745 0.9052 0.9746
1/face# 0.9248 0.9603 1.0000 0.9756 0.9278 0.9150
1/edge# 0.9671 0.9745 0.9756 1.0000 0.9756 0.9724

1/vertex# 0.9083 0.9052 0.9278 0.9756 1.0000 0.9359
1/solid angle 0.9937 0.9746 0.9150 0.9724 0.9359 1.0000

164 ACES JOURNAL, VOL. 19, NO. 1b, MARCH 2004



4 5 6 7 8
3

3.5

4

4.5

5

5.5

surface

α(ε=∞)

1 1.5 2 2.5 3
3

3.5

4

4.5

5

5.5

circ/in

1 1.2 1.4 1.6 1.8 2
3

3.5

4

4.5

5

5.5

g
circ

1 1.2 1.4 1.6 1.8
3

3.5

4

4.5

5

5.5

g
in

ρ=0.9830 ρ=0.9953

ρ=0.9727 ρ=0.9917

Figure 4: The polarizability of PEC inclusions and the geometrical parameters of Table 3.

Table 5: The correlation coefficients between the PEC and PEI polarizabilities with the geometrical parameters in
Table 3.

α(ε = ∞) -α(ε = 0) surface Rcirc/rin gcirc gin

α(ε = ∞) 1.0000 0.9901 0.9830 0.9953 0.9727 0.9917
-α(ε = 0) 0.9901 1.0000 0.9957 0.9878 0.9677 0.9977

surface 0.9830 0.9957 1.0000 0.9892 0.9802 0.9982
Rcirc/rin 0.9953 0.9878 0.9892 1.0000 0.9904 0.9938

gcirc 0.9727 0.9677 0.9802 0.9904 1.0000 0.9789
gin 0.9917 0.9977 0.9982 0.9938 0.9789 1.0000
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Figure 5: The polarizability of PEI inclusions and the geometrical parameters of Table 3.
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