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Abstract— Error estimates for the moment method have been
obtained in terms of Sobolev norms of the current solution.
Motivated by the historical origins of Sobolev spaces as energy
spaces, we show that the Sobolev norm used in these estimates
is related to the forward scattering amplitude, for the case of 2D
scattering from a PEC circular cylinder and for 3D scattering
from a PEC sphere. These results provide a physical meaning
for solution error estimates in terms of the power radiated by
the error in the current solution. We further show that bounds
on the Sobolev norm of the current error imply a bound on the
error in the computed backscattering amplitude.

Index Terms— Sobolev space, error analysis, method of mo-
ments

I. INTRODUCTION

Since the introduction of the method of moments for solv-
ing electromagnetic radiation and scattering problems, error
analysis of numerical methods has received much attention in
the mathematics literature. This effort has led to fundamental
results on the convergence of the method of moments. Typical
of this work are proofs that under various assumptions about
the algorithm and scattering problem, as the mesh is refined or
the number of degrees of freedom of the approximate solution
increases, numerical solutions converge to exact solutions.
Theorems of this kind have been obtained for 2D smooth
closed curves and screens [1], dielectric polygons [2], and have
been verified by numerical studies [3]. For smooth screens
in 3D, similar results are available for scalar fields [2], [4],
[5]. These results are of great importance because they place
the algorithms of computational electromagnetics on solid
theoretical ground.

The approach taken in this work by the numerical analysis
community is to place the integral operators of radiation and
scattering in a Sobolev space setting. This leads to asymptotic
solution error estimates of the form

‖∆u‖Hs ≤ Chr (1)

where the norm is defined on the Sobolev space Hs, with
s = −1/2 for the TM polarization and s = 1/2 for TE [6].
∆u is the difference between the exact current solution and
a numerical solution, and h is the mesh element width or
discretization length. The convergence rate r is typically 1/2

for low order basis functions. All dependence on the physical
problem and implementation details of the numerical method,
including the incident field, frequency, scatterer geometry, and
choice of basis functions, is lumped into the unknown constant
C.

While the estimate (1) shows in an abstract sense that
a numerical solution converges as the discretization length
becomes small, it cannot be used to determine the error in a
specific numerical solution because the Sobolev norm ‖ · ‖Hs

can be difficult to compute [7] and the constant C is unknown.
Furthermore, it is not obvious how the Sobolev norm may
relate to a directly measurable, physical quantity.

Motivated by the historical origin of Sobolev spaces as
energy spaces, we show in this paper that the Sobolev norm in
Eq. (1) is related to a readily computable, physical quantity:
the power supplied by a surface current to its surroundings.
Heuristically, a Sobolev space for fields in a volumetric
region consists of those functions which have finite energy,
where the energy measure is induced by a particular partial
differential equation. Sobolev spaces of surface currents are
defined slightly differently, as they consist of functions on
the surface that radiate finite energy [7]. This definition is
motivated by Poynting’s theorem,∫
S

E∗ · Js dS =
iω

2

∫
V

ε|E|2 − µ|H|2 dV −
∮

∂V

S∗ · n̂ dV

where the terms are defined as is usual in electromagnetic
theory. The Sobolev space of fields E and H is essentially
defined by requiring that the volume integral on the right-hand
side be finite. In order to obtain consistent function spaces for
fields and surface currents, at least nonrigorously, the Sobolev
space of surface currents should include all functions on S
for which the left-hand side is finite. If the surface current
is produced by an incident field illuminating a PEC scatterer,
then the left-hand side of Poynting’s theorem with a suitable
normalization becomes the forward scattering amplitude of
the scatterer. This suggests a connection between the Sobolev
norm in (1) and the forward scattering amplitude.

Based on this connection, we derive a direct relationship
between the forward scattering amplitude and the Sobolev
norm ‖ · ‖Hs . Proofs of the result are given for the specific
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cases of the circular cylinder and sphere, and we conjecture
that similar relationships hold for more general geometries.
This relationship between the Sobolev norm and the forward
scattering amplitude is used to provide a physical interpreta-
tion for error estimates of the form of (1). We further show that
the bound (1) implies a bound on the error in the computed
backscattering amplitude solution. These results provide a
link between abstract results of numerical analysis and the
physical quantities that are the desired results of practical CEM
simulations. Some of the results in this paper for the 2D case
were presented in [8].

II. PEC INFINITE CIRCULAR CYLINDER

For a plane wave incident in the −x direction on a PEC
circular cylinder, the induced current u may be written as
a Fourier series, u = (2π)−1/2

∑
q Uqe

iqφ, where φ is the
azimuthal angle and the Fourier coefficients are given by

Uq =

√
2
π

2
ηka

i−q

H
(1)
q (ka)

(2)

for the TM case, and the TE case is identical by replacing the
Hankel function H

(1)
q (ka) with its derivative. Here, η is the

characteristic impedance of free space, k is the wavenumber,
and a is the cylinder radius.

In general, the currents induced on 2D PEC scatterers lie
in fractional order Sobolev spaces, where the order s is −1/2
for the TM polarization and 1/2 for the TE polarization. For
closed surfaces, the Sobolev norm is computable and is given
by [9], [10] as

‖u‖2Hs =
∑

q

|Uq|2
(
1 + q2

)s
. (3)

When s is an integer, the Sobolev norm (3) reduces to the
more usual definition in terms of the L2 norm of the current
and its derivatives up to order s. For example, for s = 0,
‖u‖2 =

∑
q |Uq|2, which by Parseval’s relation is the L2 norm

of the current. The relationship between Eq. (3) for fractional
s and a physical quantity is not immediately apparent.

Extrapolating the foundational relationship between Sobolev
spaces and physical energy, we will show that the Sobolev
norm (3) is equivalent to the forward scattering amplitude,
which is given by

P (u) = −kη

4

∫
C

Es∗u dl =
kη

4

∫
C

(Lu)∗u dl, (4)

where Es is the tangential component of the scattered field and
L is the EFIE operator so that Lu = Ei. Note that P is the
left-hand side of Poynting’s theorem (2) scaled by −kη/4. If
Ei is a plane wave, P is the power scattered in the direction of
the plane wave. Otherwise, it may be viewed as a generalized
forward scattering amplitude. It will be convenient to express
the forward scattering amplitude in series form. This may be
done for an arbitrary current u by decomposing the Green’s
function in L as a sum over Bessel functions [11]:

Lu =
2

πkaη

∑
q

αq
∗
∫ 2π

0

u(φ′)eiq(φ−φ′)dφ′ (5)

where the coefficients are given by

αq =
π(kaη)2

8
×

{
Jq(ka)H(2)

q (ka) TM
J ′q(ka)H(2)′

q (ka) TE
, (6)

and Jq(ka) is the usual Bessel function. Substituting Eq. (5)
into Eq. (4) yields

P (u) =
∑

q

αq|Uq|2. (7)

To establish a rigorous relationship between the Sobolev
norm and the forward scattering amplitude, we will use the
notion of equivalent norms. If two norms are equivalent, then
if x → 0 in either norm, then it will vanish in both norms.
Formally, two norms ‖·‖ and ‖·‖′, defined for the same space
X , are said to be equivalent if there exists constants c1, c2 > 0
such that

c1‖x‖ ≤ ‖x‖′ ≤ c2‖x‖ (8)

for every x ∈ X . We will also need the definition of a
quasinorm. A quasinorm is a functional with the following
properties:

1) ‖x‖ ≥ 0 with equality iff x is everywhere 0.
2) ‖αx‖ = |α|‖x‖ for all α ∈ C.
3) ‖x1 + x2‖ ≤ K(‖x1‖ + ‖x2‖) for all x1, x2 ∈ X and

for some K ≥ 1.
A quasinorm differs from a norm in that for a norm, we have
K = 1. We will prove that the quantity ‖ · ‖P ≡

√
|P (·)| is a

quasinorm and is equivalent to the Sobolev norm (extending
the notion of equivalency to include quasinorms).

To prove that ‖·‖P is a quasinorm, all three properties above
must be shown. Property (1) is satisfied by further stipulating
that there are no internal resonant modes, i.e., αq 6= 0 for all q.
This is equivalent to saying that the interior Dirichlet (TM) or
Neumann (TE) problem does not have a non-trivial solution.
Satisfaction of property (2) is seen by substituting αUq in for
Uq in the scattering amplitude expression (7). Since ‖u‖Hs is
a norm, it satisfies property (3) above with K = 1. Using this
with the equivalency statement (8) yields the inequality

‖u1 + u2‖P ≤ c2

c1
(‖u1‖P + ‖u2‖P ) . (9)

This proves property (3) and ‖ · ‖P is a quasinorm. If L were
self-adjoint, then ‖·‖P would be a norm. This is a minor point,
since this paper relies on the equivalency relationship (8) to
relate the Sobolev norm to a physical quantity, particularly in
the sense as the Sobolev norm of an error current vanishes.
The properties of norms and quasinorms are not used, except
to couch the problem in a more familiar framework.

It remains to find constants c1 and c2 that satisfy Eq. (8)
with ‖ · ‖ = ‖ · ‖P and ‖ · ‖′ = ‖ · ‖Hs . The constant c1 is
found by directly comparing the ‖ · ‖P norm with the Sobolev
norm (3) term by term. This yields

c1 =
[
max

q
|βq|

]−1/2

≈ 2.5
η

(ka)(4s−5)/6, (10)

where βq ≡ αq(1 + q2)−s. The approximation was made
analytically using results of [12] for the TM case (s = 1/2)
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and extended numerically to the TE case (s = −1/2), where
estimating maxq |βq| is more difficult.

A constant c2 satisfying Eq. (8) can be derived by first
classifying as low order modes those terms in (7) for which
|q| < q0, where q0 is a positive integer to be specified. Splitting
the sum in the scattering amplitude (7) into high and low order
modes and also into real and imaginary parts, we define

Rl ≡
∑
|q|<q0

Re(αq)|Uq|2 Il ≡
∑
|q|<q0

Im(αq)|Uq|2

Rh ≡
∑
|q|≥q0

Re(αq)|Uq|2 Ih ≡
∑
|q|≥q0

Im(αq)|Uq|2

. (11)

We then rewrite the forward scattering amplitude (7) as

P (u) = Rl + Rh + i(Il + Ih). (12)

To compare the forward scattering amplitude to the Sobolev
norm term by term, we will compare the low order terms of
the Sobolev norm (3) with Rl since it allows us to guarantee
that c2 is finite except at resonance frequencies. We obtain the
following relationship:

|Rl| ≥ rl

∑
q:|q|<q0

|Uq|2(1 + q2)s, (13)

where rl = minq:|q|<q0 Re(βq). We can compare the high
order terms of the Sobolev norm to Ih, since they both fall off
at the same rate in q. Asymptotic expansions of Im(αq) show
that the integer q0 can be chosen sufficiently large such that
the αq have the same sign for all |q| > q0. This allows us to
bring the absolute value operator inside the summation in the
definition of Ih and derive the relationship

|Ih| =
∑
|q|≥q0

|Im(αq)||Uq|2 ≥ ih
∑
|q|≥q0

|Uq|2(1 + q2)s, (14)

where ih = minq:|q|≥q0 |Im(βq)|. Since Rh and Il are ex-
traneous, we will discard them. By the definition of αq, Rl

and Rh have the same sign and Rh can be immediately
eliminated from P (u) to give the lower bound |P (u)| ≥
|Rl + i(Il + Ih)|. We can remove Il by noting that

|Il| ≤ max
q:|q|<q0

∣∣∣∣ Im(βq)
Re(βq)

∣∣∣∣ |Rl| ≤ M |Rl|, (15)

where M is a constant given by

M ≡ max
(

1, max
q:|q|<q0

∣∣∣∣ Im(βq)
Re(βq)

∣∣∣∣). (16)

We have defined M to guarantee that it satisfies M ≥ 1. This
allows us to apply inequality (43) from the appendix, yielding

|P (u)| ≥ 1
3M

(|Rl|+ |Ih|) . (17)

Substituting in the term by term comparisons (13) and (14)
yields

3M |P (u)| ≥ min (rl, ih)
∑

q

|Uq|2(1 + q2)s. (18)

Simplifying and taking the square root of each side, gives
‖u‖Hs ≤ c2‖u‖P , where

c2 =

√
3M

min (rl, ih)
. (19)

Note that c2 depends only on ka and not on the current
u, as required. It can be proved from the definition of the
αq that c2 is finite, except at resonance frequencies. This is
consistent with Eq. (8) where, as ka approaches a resonance,
‖u‖P vanishes if u is a resonant mode, but ‖u‖Hs does not.
Thus, if ‖u‖Hs ≤ c2‖u‖P is to be maintained, we must have
c2 →∞ at these frequencies. We have thus obtained

c1‖u‖P ≤ ‖u‖Hs ≤ c2‖u‖P (20)

which relates the Sobolev norm of a current to the forward
scattering amplitude, a physically meaningful quantity.

III. PEC SPHERE

We now derive a similar relationship between a 3D Sobolev
norm and the forward scattering amplitude for scattering
from a PEC sphere. In general, any function tangential to a
surface may be expressed in terms of its surface Helmholtz
decomposition

J = Jcf + Jdf (21)

where Jcf is curl-free (irrotational) and Jdf is divergence-free
(solenoidal). In [7], it is shown that Jcf and Jdf on a sphere
can be expanded as

Jcf = ∇t
∞∑

n=1

n∑
m=−n

d1/2
mnucf

nmP |m|
n (cos θ)eimφ (22)

and

Jdf = n̂×∇t
∞∑

n=1

n∑
m=−n

d1/2
mnudf

nmP |m|
n (cos θ)eimφ, (23)

where the normalizing factor is

dmn =
(n− |m|)! (2n + 1)

(n + |m|)! 4πn(n + 1)
. (24)

Here, the P
|m|
n (·) is the associated Legendre function of the

first kind ∇t is the surface gradient. A Sobolev space for
currents on 3D bodies is denoted by H

−1/2
div and for a sphere

the norm is given by

‖J‖2
H
−1/2
div

≡
∞∑

n=1

[
U cf

n (1 + n2)1/2 + Udf
n (1 + n2)−1/2

]
,

(25)
where

U cf
n =

n∑
m=−n

|ucf
nm|2 , Udf

n =
n∑

m=−n

|udf
nm|2. (26)

Using the orthogonality relationships in [7, Sec. VIII], it can
be shown that the forward scattering amplitude decomposes
as

P (J) = P cf (Jcf ) + P df (Jdf ), (27)

146DAVIS, WARNICK: ON THE PHYSICAL INTERPRETATION OF THE SOBOLEV NORM IN ERROR ESTIMATION



where

P cf =
∞∑

n=1

αcf
n U cf

n , P df =
∞∑

n=1

αdf
n Udf

n . (28)

Here, P cf is the forward scattering amplitude due to the curl-
free component of the current and P df is similarly defined for
the divergence-free component. Note the similarity of Eq. (28)
to the 2D expression (7). In these expressions,

αcf
n = − i(kη)2

4π
[ka jn(ka)]′[ka h(2)

n (ka)]′ (29)

αdf
n = − i(kη)2

4π
[ka jn(ka)][ka h(2)

n (ka)],

where jn(ka) and h
(2)
n (ka) are the usual spherical Bessel and

spherical Hankel functions, respectively. Performing the same
term by term comparison as was done for the circular cylinder,
we obtain

c3D
1

√
|P (J)| ≤ ‖J‖

H
1/2
div

, (30)

where c3D
1 =

[
max (cc

1, c
d
1)

]−1/2
and

cc
1 = max

n:n≥1
|αc

n(1 + n2)−1/2|. (31)

The constant cd
1 is defined similarly, replacing αc

n with αd
n

and −1/2 with 1/2 in the exponent. Numerically, c3D
1 ≈

4.5/(kη) (ka)−2/3. As in the two-dimensional problem, Eq.
(30) implies that if the current J vanishes in the Sobolev norm,
then the forward scattering amplitude must also vanish. For
scattering from a circular cylinder, we proved a stronger equiv-
alency relationship. Because of possible cancellation between
radiation from curl-free and divergence-free modes, a constant
analogous to c2 cannot be obtained for the sphere. Fortunately,
this stronger equivalency is not essential to provide a physical
interpretation of the Sobolev norm in error estimates, as will
be seen.

IV. NUMERICAL EXAMPLES

To illustrate the relationship between current measures in
2D, we consider two example TM currents. The current u(1)

is induced by an incident plane wave and u(2) is a single mode
eiq′φ that is nearest to resonance (|αq′ | ≤ |αq|, |q| ≤ q0) for a
given value of ka. The corresponding Fourier coefficients are
given by Eq. (2) for u(1) and by U

(2)
q =

√
2πδqq′ , where δqq′

is the Kronecker delta. Figure 1 shows the ratio ‖ · ‖Hs/‖ · ‖P

for u(1) and u(2) as a function of electrical size ka. We plot on
the same axes c1 and c2. The ratio of norms is always bounded
below by c1 and above by c2, as proved. Near resonances, the
bound c2 becomes large, but away from resonances it is on
the order of 0.01.

Similarly, define a current J on a sphere that is induced
by a plane wave of unit amplitude, x̂ polarized and traveling
in the negative z direction. In this circumstance, the current
coefficients can be obtained using results of [13] and are given
by

ucf
nm =

√
π

kη
i−n−1

√
2n + 1

ka h
(1)
n (ka)

(δm,−1 − δm,1) (32)

10
0

10
1

10
−4

10
−3

10
−2

10
−1

10
0

Electrical size ka

c
1

c
2

||u(1)||
Hs ||u

(1)||−1
P

||u(2)||
Hs ||u

(2)||−1
P

Fig. 1. Illustration of norm equivalence for two different test currents (TM
polarization). The constants c1 and c2 always bound the ratio ‖ ·‖Hs/‖ ·‖P ,
which ratio is shown for the current induced by a plane wave (u(1)) and a
nearest-to-resonance, single-mode current u(2). Similar results are obtained
for the TE polarization.

and

udf
nm =

√
π

kη
i−n−1

√
2n + 1

[ka h
(1)
n (ka)]′

(δm,−1 + δm,1). (33)

Figure 2 verifies the bound (30) for this surface current. Note
that the ratio ‖J‖

H
1/2
div

|P (J)|−1/2 is always greater than c3D
1 ,

as predicted by Eq. (30). We also see from Figs. (1) and (2)
that away from resonances

‖u‖P ≈ 1
c1
‖u‖Hs ,

√
|P (J)| ≈ 1

c3D
1

‖J‖
H

1/2
div

. (34)

10
0

10
1

10
−4

10
−3

10
−2

10
−1

Electrical size ka

||J||
H

div
1/2 |P(J)|−1/2

c
1
3D

Fig. 2. Ratio of the Sobolev norm to the square root of the magnitude of
the forward scattering amplitude for a plane wave induced current on a PEC
sphere. The ratio is always bounded below by c3D

1 , as proved.

V. APPLICATION TO ERROR ANALYSIS
The equivalency statement (8) provides a physical inter-

pretation for the Sobolev norm of the current solution error
in the estimate (1). Suppose a moment method solution û to
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Lu = Ei on a PEC circular cylinder is generated, with current
error defined by ∆u = u− û. The Sobolev norm of the error
is approximately proportional within a range specified by the
constants c1 and c2 to the total power radiated by the error
current ∆u if it were impressed on the scatterer contour C.
This transforms (1) into an error estimate for a physically
meaningful quantity:

|P (∆u)| ≤ c−2
1 ‖∆u‖2Hs ≤ (C/c1)2 h2r, (35)

which implies that the forward scattering amplitude or total
supplied power associated with the current error ∆u must
decay at least as quickly as h2r.

The quantity ‖∆u‖2P = |P (∆u)| in Eq. (35) is the forward
scattering amplitude of the error current, which is not the
error in the forward scattering amplitude as computed from the
numerical current solution û. In terms of the EFIE operator
L, we have for the forward scattering amplitude of the error
current

‖∆u‖2P = |P (∆u)| = kη

4

∣∣∣∣∫
S

(L∆u)∗∆u ds

∣∣∣∣ , (36)

whereas the error in the computed scattering amplitude is

|∆S(φi, φs)| = |S − Ŝ| = kη

4

∣∣∣∣∫
S

Es∗∆u ds

∣∣∣∣ . (37)

To relate the Sobolev norm to a direct error quantity requires
the scattering error to be put in a form containing two ∆u
terms. This may be done by defining an adjoint equation,
Laua = Es, where La is the adjoint of L. Assuming that
the adjoint equation is solved using the same procedure as the
EFIE, but exchanging the roles of testing and basis functions,
the following result is obtained [14]–[18]

|∆S(φi, φs)| = kη

4

∣∣∣∣∫
S

(L∆u) (∆ua)∗ ds

∣∣∣∣ (38)

where ∆ua = ua − ûa. Because L is not self-adjoint, ∆u
is not simply related to ∆ua for an arbitrary scattered field
and Eq. (38) does not behave like an induced norm for ∆u.
However, in the backscatter direction Es = Ei∗, ua = u∗,
and assuming that ûa and û are expanded in the same basis
(Galerkin testing), we also have ûa = û∗. This yields

|∆S(φi, φi)| = kη

4

∣∣∣∣∫
S

(L∆u)∆u ds

∣∣∣∣ . (39)

Note that |∆S(φi, φi)| (39) differs from ‖∆u‖2P (36) only by
a conjugate on the L∆u term. For a circular cylinder, ∆S in
the backscattering direction is therefore similar to Eq. (7) and
is given by

∆S(φi, φi) = −
∑

q

α∗q(∆Uq)2 (40)

where we have used the fact that ∆U−q = ∆Uq. The
derivation of the lower constant c1 applies equally well to the
series (40) as it does to the series (7), therefore the inequality
(35) is valid replacing |P (∆u)| with |∆S(φi, φi)|, giving
finally

|∆S(φi, φi)| ≤ c−2
1 ‖∆u‖2Hs ≤ (C/c1)2 h2r. (41)

This is a new bound on the backscattering error, subject to
the Galerkin testing condition. It shows that the error in the
backscattering amplitude must decay at least as quickly as h2r.

The curves in Fig. 3 were computed by generating a moment
method solution for the EFIE and computing the coefficients
∆Uq numerically. A triangle (piecewise linear) expansion was
chosen to avoid the Gibbs phenomenon associated with the
Fourier coefficients of discontinuous functions. We see that
the inequalities (35) and (41) are evident in the figure because
both |∆S(φi, φi)| and ‖u‖2P are both less than 1/c2

1 ‖∆u‖2Hs .
Further, we see that the error measures ‖∆u‖2Hs , ‖u‖2P , and
|∆S| converge asymptotically at the same rate as the mesh is
refined. While this is required of the first two error measures
by the equivalency statement (8), |∆S(φi, φi)| may actually
converge faster than the Sobolev measure ‖∆u‖2Hs without
violating any inequality derived in this paper. We also note
that all three error measures converge as h5, which rate is
proved for |∆S| analytically in [12]. This is much faster than
the 2r = 1 rate predicted by the Sobolev bound (1), implying
that these bounds are not tight. To achieve this convergence
rate required a quadrature rule that combined lin-log Gaussian
quadrature [19] with a Gauss-Legendre rule.

10
0

10
1

10
2

10
3

10
4

10
−8

10
−6

10
−4

10
−2

10
0

Unknowns per wavelength

E
rr

or
|∆S|

|∆u|2
P

1/c
1
2|∆u|2

H
s

Fig. 3. Three different error measures for a moment method, TM polarized
current solution, ka = π/4. The horizontal axis is λ/h. The backscattering
amplitude error |∆S| (circles) is computed from an MoM solution for
Lu = Ei with triangle expansion functions and Galerkin testing. The forward
scattering amplitude of the current error, ‖∆u‖P (dots) is equivalent in
the rigorous sense to the Sobolev measure ‖∆u‖Hs (pluses). These error
measures are related by Eqs. (35) and (41). For this particular value of ka,
we have c1 ≈ 0.006.

We have given numerical examples of moment method error
measures for scattering from a circular cylinder. Since the
variational expression (38) applies also in three dimensions,
we have

|∆S| ≤ (c3D
1 )−2‖∆J‖2

H
1/2
div

. (42)

Here, ∆S is the error in the backscattering amplitude for mo-
ment method solutions to scattering from a sphere. (To the au-
thors’ knowledge, there are no bounds analogous to Eq. (1) for
3D PEC scattering problems, although [2], [4] give Sobolev-
type bounds for 3D scalar problems.) To give a numerical
example similar to Fig. 3, computing the Sobolev measure
‖∆J‖2

H
1/2
div

would require computing the inner products of ∆J
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with Legendre polynomials and complex exponentials. Since
this is tedious, we omit it. The impracticality of computing
the Sobolev norm of error currents is one reason a physically
meaningful alternative to the Sobolev norm is desirable.

VI. CONCLUSIONS

We have related the abstract Sobolev norm of an arbitrary
current on an infinite, PEC circular cylinder to the forward
scattering amplitude associated with that current. A slightly
weaker result was derived for 3D currents on a PEC sphere.
This equivalency was used to show that a small error current
measured in the Sobolev norm implies that the error current
radiates little energy. Therefore, Sobolev error estimates prove
that moment method solutions converge in the sense that the
energy radiated by the current error vanishes as the mesh is
refined.

Further, a direct relationship was derived between the
Sobolev norm of the current error to the error in the com-
puted backscattering amplitude solution. This provides a link
between error estimates in the Sobolev literature to physical
quantities in practical CEM simulations. We conjecture that
these observations hold for more general scatterers.

APPENDIX
INEQUALITY FOR COMPUTING c2

Let a, b, c be real numbers with |b| ≤ M |a| and M ≥ 1.
Then we have the inequality

|a + i(b + c)| ≥ |a|+ |c|
3M

. (43)

Proof: Assume that |b| > |c|. Then we have

|a + i(b + c)| ≥ |a| = |a|
2

+
|a|
2

(44a)

≥ |a|
2

+
|b|
2M

(44b)

≥ |a|
2

+
|c|
2M

(44c)

≥ |a|+ |c|
3M

. (44d)

The second step (44b) follows from the given |b| ≤ M |a|
and (44c) from the case statement |b| > |c|. The fourth line
(44d) follows from the given M ≥ 1. Now assume instead
that |b| ≤ |c|. It can be shown that

√
2|a + i(b + c)| ≥ |a|+ |b + c| ≥ |a|+ |c| − |b|, (45)

where we have used the triangle inequality and |b| ≤ |c|.
Claiming that

|a|+ |c| − |b| ≥ |a|+ |c|
2M

, (46)

inequality (43) immediately follows. We can prove claim (46)
by contradiction. Suppose that

|a|+ |c| − |b| < |a|+ |c|
2M

(47)

is true. Then the following inequalities are implied

(2M − 1)(|a|+ |c|) < 2M |b| (48a)

(2M − 1)(|b|/M + |c|) < 2M |b| (48b)

|c| <
(

2M

2M − 1
− 1

M

)
|b|. (48c)

For M ≥ 1, the expression 2M/(2M − 1)− 1/M is less than
one. This implies that |c| < |b|, a contradiction to the case
statement |b| ≤ |c|. Thus, the assumption (47) must be false
and Eq. (46) must hold, completing the proof.
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