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Abstract

This work is focused on the study of Multicon-
ductor Transmission Lines (MTL) with uncer-
tain parameters; i.e. the values of r, l, c and g
can vary in an interval. The wavelet expansion
in time domain is used in order to obtain an ac-
curate and low cost representation of the line in
terms of an algebraic system. The wavelet rep-
resentation applied to the study of MTL with
variation of the electrical parameters allow us
to easily calculate a set of equivalent distributed
generators, which represent the effects of the dis-
turbance produced by the parameter variation.
This analysis allows us to directly evaluate the
response bounds related to the parameters un-
certainties without performing repeated simula-
tions (Montecarlo Method).

Keywords— Uncertain Parameters, Trans-
mission Lines, Time Domain Expansion.

1 Introduction

The study of the effect of uncertainties in the
electrical parameters of MTLs is an important
yet complex topic; its importance comes from
the fact that even the most developed indus-
trial technologies cannot guarantee 100% accu-
racy in the construction of electronic devices,
where transmission lines play a key role. Fur-
thermore, the aging process is another cause
of the parameters variation with respect to the
nominal value. The effect of uncertainties can
be studied by statistic Montecarlo techniques,
that suffer of long computational times [1], by
probabilistic approaches under some simplifying
hypotheses [2], or by calculating a time domain
sensitivity function (see for example [3]).

In this paper, the telegrapher equation is ex-
panded in the wavelet domain; more precisely a
time domain wavelet expansion is performed, as
in [4], [5]. This technique is chosen because it

allows to represent the MTL through a sparse
algebraic system, where the unknowns are the
wavelet coefficients of voltages and currents, and
the system matrix is a function of the electri-
cal parameters of the MTL. The time domain
solution is then obtained by simply solving the
algebraic system and inverse transforming the re-
sults. It is noteworthy that the technique for the
bounds definition proposed here, can be applied
to any solution technique characterized by the
expansion of the time variables on a basis func-
tions, for example as performed in [6], resulting
in a linear algebraic system.

This representation and some simple algebraic
calculations performed on the system matrix let
us calculate a set of equivalent time domain dis-
tributed generators, representing the effects of
the uncertainties on the nominal output. The
analysis of the magnitude of these equivalent dis-
tributed generators allows us to understand the
effect of each single variation, and most impor-
tant a simple procedure is defined to determine
the response bounds due to the variation of the
parameters in the given range. Insights of the
physical meaning of the procedure and some re-
sults are shown.

2 Wavelet Based Modeling of Multi-
conductor Transmission Lines

As widely addressed in [4] the use of the Wavelet
Expansion (WE) for the simulation of multicon-
ductor transmission lines is a powerful tool, al-
lowing fast and accurate simulations. The way
the wavelet based model is obtained is the fol-
lowing: starting from the quasi-TEM MTL equa-
tions, the time variation of voltages and currents
(which are variable with space and time coordi-
nates) are expanded on a wavelet basis, yielding
space variable vectors of coefficients. Time deriv-
atives are dealt with by using the differential (or
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integral, in case the MTL equations are first in-
tegrated) operator in the wavelet domain, which
are constant and sparse matrices, calculated only
once prior to the simulation.

In the so obtained equations only the space
variable appears now; for this reason the line
needs to be segmented in a number of cells, each
represented by a sparse matrix, which can be
cascade connected in order to obtain an alge-
braic system, which solved gives the value of the
wavelet coefficients. The general form of the sys-
tem is reported in equation (1)




Id Ch 0 · · · · · ·
0 Id Ch · · · · · ·
0 0 Id · · · · · ·
...

...
...

...
...
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vj

ij
...
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= E

(1)
where

E = [0, 0, 0, 0, . . . , 0, 0, . . . ,EL,E0]T (2)

and Id is the identity matrix of the proper di-
mension; vj and ij are the vectors of wavelet
coefficients of voltages and currents at each cell
(in particular vL, iL, v0, i0 are the voltages and
currents, respectively, at the two terminations
of the line); BcL and Bc0 are the matrices of
the boundary conditions (generators and termi-
nations loads). The matrix Ch, which contains
the equation of a single cell, is analytically ob-
tained and has the following expression

Ch =

[
0 (−lD− rId)

(−cD − gId) 0

]
(3)

where D is the wavelet representation of the dif-
ferential operator, as previously discussed, and
r, l, c, g are obviously the line parameters. As it
can be easily observed, system (1) is an algebraic
system characterized by a sparse matrix; hence
it can be easily solved by iterative techniques.
The known term of the system is characterized
by having all zero entries except than the last

part, where the WE of the input signals (gener-
ator) is included (vectors E0 and EL).

Uniform and nonuniform transmission lines
(with linear and nonlinear load) can be in this
way conveniently solved, obtaining accurate so-
lutions in lower CPU times if compared with
standard step by step techniques.

At this stage frequency dependent transmis-
sion lines could not be included in the model.
As a result of the further work performed by the
authors, also frequency dependence of the para-
meters and proximity effect between the conduc-
tors have been included. The inclusion of these
two important phenomena are presented in [5],
in which starting from the original formulation
presented in [7] and expressing the convolution
between two functions in the wavelet domain, a
convenient formulation is obtained. In particu-
lar, the algebraic system representing the MTL
is obtained in the form of (1), in which the only
difference is the presence of a constant matrix
K, function of the skin and proximity effect sen-
sitive quantities (i.e. geometrical and physical
characteristics of the line) simply included in the
matrix Ch as

Ch =

[
0 (−lD − rId −K)

(−cD− gId) 0

]
.

(4)
As a conclusion to this section we underline

that the use of WE for the solution of such prob-
lems, in our formulation allows the fast simula-
tion of uniform, nonuniform, frequency depen-
dent transmission lines; not being a frequency
domain based method also nonlinearities can be
easily included, as widely addressed in [4] and [5].
For this reason the proposed method could be
conveniently used to perform Montecarlo proce-
dures when uncertain parameters are considered,
since the CPU time consumption of each run is
lower if compared to standard techniques.

3 Response Bounds for MTL with
Uncertain Parameters

In this section we define a technique for the eval-
uation of an upper and lower bound of the time
domain response of a MTL when the per unit
length parameters are uncertain. As stated in
the introduction, this problem is of great impor-
tance, and nowadays the possibilities of dealing
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with it are somehow limited, mainly consisting
of Montecarlo procedures and statistical models
based on some simplifying approximations. The
procedure we propose here is based on the model
of the MTL obtained as recalled in the previous
section, and as it will be shown, the computa-
tional cost is reasonably low.

3.1 Definition of the Equivalent Sources
We start this section by considering the trans-
mission line represented by the algebraic system
(1), obtained by performing the WE of the MTL
equations. We underline here that the proposed
technique can be applied to any other numerical
model where the time variation of voltages and
currents is expanded on a basis of functions, as
it is for example done in [6]; for this reason we
refer to the general algebraic system (5)

Ax = b (5)

where x is the vector of unknown coefficients of
voltages and currents at the port of each cell,
in which the line is segmented and b is a vector
containing the input signal of the line.

In case of uncertainty of the line parameters,
equation (5) can be seen as the representation of
the MTL where the per unit length parameters
assume the nominal value.

When a variation is considered, the new sys-
tem can be written as

Ãx̃ = b (6)

where Ã is the new matrix resulting from var-
ied r, l, g, c; x̃ is the new solution and b remains
unchanged since the line is considered energized
by the same signal. Equation (6) can be more
conveniently written as

(A + ∆A)x̃ = (I + ∆AA−1)Ax̃ = b (7)

where the variation of the matrix A is now ev-
idenced. The solution to equation (7) can be
written as

x̃ = A−1(I + ∆AA−1)−1b. (8)

By comparing equations (5) and (8) it is easy
to see that

b̃ = (I + ∆AA−1)−1b (9)

can be seen as a new input vector for the line
with the nominal values of the parameters, and
the varied transmission line response can be cal-
culated by solving the system

Ax = b̃. (10)

This means that the effect of the parameters
variation has been moved from the system ma-
trix to the vector of the input signals, changing
it from b to b̃.

As shown in [4] (and recalled in section II) the
vector b contains the imposed voltages and cur-
rents at the ports of each cell; since the line can
be considered as excited only at the terminals,
its entries are all zeroes except than the bottom
part (representing the Wavelet Expansion of the
feeding generator). On the contrary the new vec-
tor b̃ is in general a full vector, and by inverse
transforming it we obtain the time domain be-
havior of the distributed sources that take into
account the effects of the parameters variation,
which are zero for the nominal line.

It can be easily seen that the way the time do-
main equivalent generators are obtained is easy
and straightforward, and requires low CPU time
(due to the wavelet properties): the total cost is
an inversion of a sparse matrix (the “nominal”
matrix, hence to be performed only once, even if
several evaluations need to be performed) and a
linear system solution. An analysis of the wave-
form and the magnitude of the generators allows
us to obtain an insight in the effect of the para-
meters variation, and how it affects the output
variation with respect to the nominal value.

Let us suppose that the parameters vary in
a range expressed by r = rn ± ∆xr%, l =
ln ± ∆xl%, g = gn ± ∆xg%, and c = cn ± xc%,
where the subscript n is related to the nomi-
nal value. It is possible to evaluate the distrib-
uted sources for the worst case condition, i.e. for
r = rn(1 + ∆xr/100) and rn = rn(1−∆xr/100),
and so on. Performing (for a single conductor
line) this operation for the whole set of parame-
ters we have to perform a matrix inversion and
solve eight linear systems. The result is the set of
vectors b̃r−, b̃r+ b̃l−, b̃l+, b̃g−, b̃g+, b̃c−, b̃c+.
For each of them it is possible to calculate the
vector b′ = b̃ − b, isolating the effects of the
variation from the input generator.
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3.2 Bounds Definition

The most common way to define the bounds
of the response in presence of parameter’s un-
certainty is to perform a Montecarlo procedure,
by repeating several simulations with a random
variation of the parameters. An alternative ap-
proach has been studied by the authors in [8],
where the bounds have been calculated by a first
order approximation of the sensitivity with re-
spect to the variables. Here we propose a differ-
ent approach, based on the previous definition of
the vectors b̃ defined as follows.

Given a parameters’ variation as expressed at
the end of the previous section, we define the
upper bound as related to a set of distributed
sources constructed by adding up together the
absolute values of the previously calculated vec-
tors b′, i.e.

bupper = |b′
r+| + |b′

l+| + |b′
g+| + |b′

c+|+
+|b′

r−| + |b′
l−| + |b′

g−| + |b′
c−| + b.

(11)
In this way it is possible to obtain the upper

bound of the response straightforwardly resolv-
ing system (5) with the known term previously
calculated, i.e.

xupper = A−1bupper (12)

which can also be written as

xupper = ∆x + x. (13)

The lower bound of the response can now be
calculated with no need of a further simulation,
i.e.

xlower = ∆x− x. (14)

The two vectors xupper and xlower must be
inverse transformed giving the time domain
bounds.

At this point it is important once again to un-
derline the computational cost of the whole pro-
cedure: with a line with N conductors, there are
NP = 4 ∗ (N − 1) line parameters which are
supposed to vary. By the use of the proposed
method the computational cost is the following:

• a simulation with the nominal values, at the
cost of an algebraic system solution;

• a matrix inversion;

• 2NP matrix-vector products, as in (9), ob-
taining the the new known vectors;

• absolute value operation and a sum, as in
(11);

• a simulation from which we determine the
response bounds.

It is hence evident the very low computational
cost of the method if compared with a standard
Montecarlo procedure. It can be interesting to
analyze how wide can be the range of variation
of the parameters that still permits a reasonable
evaluation of the bounds. Some qualitative con-
siderations can be made: the proposed procedure
allows us to obtain an estimate of the response
bounds in the presence of uncertainties; the sim-
ple evaluation reported in (11) is of course valid
in a certain range of variation. In particular, we
implicitly infere that the variation of the vectors
b̃ is monotonic in the range of variation of the
parameters. Based on our experience the ranges
of uncertainty in the parameters (due to aging
or industrial tolerances) always satisfy the above
mentioned requirement. It is noteworthy that a
deeper analysis related to the wideness on the
interval of uncertainty could be performed ob-
serving the magnitudes of the entries of matrix
∆A.

4 Numerical Results

In this section the results related to two differ-
ent test cases are reported: first a simple bifilar
line is considered, and a qualitative analysis of
the equivalent sources, together with a compari-
son of the bounds obtained by the technique pre-
sented in [8] and by a Montecarlo procedure is
shown. As a second test case a more complex 4
conductors line is chosen, showing the calculated
bounds compared with a simulation technique.

4.1 Bifilar Line
The 2 conductors line is characterized by the fol-
lowing parameters:

r = 200Ω/m, l = 2.8µH/m,
c = 1.2nF/m, g = 0S/m

(15)

the line is characterized by a length of L = 0.03
m and is terminated at both ends on 50-Ω re-
sistors. The feeding generator is a trapezoidal
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Figure 1: Distributed voltage sources related to
the +10 % variation of r.
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Figure 2: Distributed voltage sources related to
the +10 % variation of l.

pulse characterized by an amplitude of 5 V and
a rise time of 0.5 ns. A variation of ±10% has
been taken into account for all the parameters.

Figures 1 and 2 shows the time behavior of the
distributed sources obtained considering a varia-
tion of resistance and inductance; analyzing the
figure it is easy to verify the consistency of the
obtained results and at the same time some con-
clusions can be drawn. In particular, we can see
that the resistance variation mainly affects the
steady state value of the voltages, while a varia-
tion of the inductance mainly influences the rise
and fall time of the signal.

In a wider extent by performing a simple qual-
itative analysis on all the distributed sources re-

0 0.2 0.4 0.6 0.8 1

x 10
−8

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Time (s)

O
ut

pu
t V

ol
ta

ge
 (

V
)

Lower Bound
Upper Bound
Nominal Output

Figure 3: Calculated bounds and nominal
output.
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Figure 4: Calculated bounds and Montecarlo
cloud.

lated to all the parameters of a MTL it is possible
to identify the most sensitive parameters.

Figure 3 shows the calculated bounds with re-
spect to the result obtained by the nominal val-
ues of the parameters, while Fig. 4 shows a com-
parison between the bounds calculated by the
proposed technique, with the bounds calculated
as in [8] and with the Montecarlo cloud obtained
performing 1000 random simulations.

Figures 3 and 4 show the accuracy of the
method with respect to Montecarlo simulations.

4.2 Multiconductor Transmission Line

This second test case regards a 4 conductor
transmission line, reported in Fig. 5
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Figure 5: Multiconductor transmission line.

with the following parameters:

R =

∣∣∣∣∣∣∣
6 0 0
0 6 0
0 0 6

∣∣∣∣∣∣∣
Ω
m L =

∣∣∣∣∣∣∣
231 95 0
95 231 95
0 95 231

∣∣∣∣∣∣∣
nH
m

G =

∣∣∣∣∣∣∣
15.6 0 0
0 15.6 0
0 0 15.6

∣∣∣∣∣∣∣
µS

m

C =

∣∣∣∣∣∣∣
109 −48 0
−48 157 −48
0 −48 109

∣∣∣∣∣∣∣
pF

m

the line is characterized by a length of L =
0.0156 m while the values of the input and out-
put resistances are: R1 = 30 Ω, R2 = 10 MΩ,
R3 = 30 Ω, R4 = 200 kΩ, R5 = 60 Ω, R6 = 50
kΩ.

Figures 6, 7, and 8 show the calculated bounds
at the far end of the line (i.e. the voltages at the
resistances R4, R5, and R6 and the respective
Montecarlo cloud calculated with 5000 random
variation. The accuracy of the calculated bound
can be easily seen in the figures.

A general comment can be made on the CPU
time cost of the proposed method: as clearly
adressed in section 3 the most relevant time con-
suming the activity is the inversion of the ma-
trix A, clearly depending on its dimension. The
dimension of the above mentioned matrix de-
pends on the frequency content of the input sig-
nal and the number of cells in which the line
must be divided (more details can be found in
[4]); these two parameters are related to the ve-
locity of propagation of the signal along the line
and the line length itself. The examples chosen
contain typical signals and line length charac-
teristics of high speed interconnects. In order

Figure 6: Calculated bounds and Montecarlo
cloud for conductor 1.

Figure 7: Calculated bounds and Montecarlo
cloud for conductor 2.

Figure 8: Calculated bounds and Montecarlo
cloud for conductor 3.
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to compare the proposed method and a Mon-
tecarlo procedure, it is necessary to remind an
important difference: by the use of the proposed
method the number of calculations (henceforth
the CPU time) is determined, and allows us to
find directly the bounds. As a matter of fact
there is no apriori knowledge on the number of
Montecarlo runs necessary to obtain a reason-
able upper and lower limit, therefore the total
number is chosen based on qualitative consider-
ations. The comparison we have performed re-
gard a number of Montecarlo simulations cre-
ating a cloud which is almost unchanged if we
add another set of simulations. Under this as-
sumption the proposed method is characterized
by lowering the necessary CPU time of an order
of magnitude and more.

5 Conclusion

In this paper a method for the analysis and eval-
uation of the response bounds of a Transmission
Line characterized by uncertain parameters is
shown. The bounds so obtained are compared
with a Montecarlo simulation, showing the sig-
nificance of the result.
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