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Abstract: In this paper, we construct a new scheme 
for approximating the solution to infinite dimensional 
non-separable Hamiltonian systems of Maxwell’s 
equations using the symplectic partitioned Runge-Kutta 
(PRK) method. The scheme is obtained by discretizing 
the Maxwell’s equations in the time direction based on 
symplectic PRK method, and then evaluating the 
equation in the spatial direction with a suitable finite 
difference approximation. The scheme preserves the 
symplectic structure in the time direction and shows 
substantial benefits in numerical computation for 
Hamiltonian system, especially in long-term 
simulations. Also several numerical examples are 
presented to verify the efficiency of the scheme. 

 
I. INTRODUCTION 

 
Symplectic schemes include a variety of different 

time discretization schemes designed to preserve the 
global symplectic structure of the phase space for a 
Hamiltonian system. They show substantial benefits in 
numerical computation for Hamiltonian system, 
especially in long-term simulations. Since the 
Maxwell’s equations can be written as a system of 
infinite-dimensional Hamiltonian equations, the proper 
solution should be obtained using the symplectic 
schemes, which preserve the symplectic structure in the 
time direction. The conservation of symplecticness 
must be considered for solving Maxwell’s equations. 
Recently, the symplectic schemes have been adapted in 
computational electromagnetic (CEM). The advantages 
of the symplectic schemes have been verified in [1]-[6]. 
These schemes are almost constructed under the 
assumption that the Hamiltonian system of Maxwell’s 
equations is separable [1,4,6]. In fact, when the 
scattering objects are presented the corresponding 
Hamiltonian system is non-separable [7]. Thus the 
assumption limits the application of the symplectic in 
the area of CEM.  

In this paper, we will explore the application of the 
symplectic scheme for non-separable Hamiltonian 
system of Maxwell’s equations, i.e. the scattering object 
is presented, using a symplectic PRK scheme [7−8] for 
the first time. For convenience we will discuss details 
of the scheme only for second-order explicit method, 

however, the high order explicit scheme could be 
obtained using similar symplectic PRK scheme for 
infinite dimensional non-separable Hamiltonian system 
of Maxwell’s Equations. We will also present several 
numerical examples to confirm the accuracy of our 
scheme. 

 
II. HAMILTONION SYSTEM AND 

SYMPLECTICSCHEMES 
 
Maxwell’s Equations as Hamiltonian System 

Within linear isotropic material, the basic equations 
can be written as 

t
∂

= −∇×
∂
B E                              (1) 

1 1
t µε ε

∂
= ∇× −

∂
E B J                       (2)               

Where B, E, J andµ , ε  are magnetic flux density, 
electric flux density, current density and permeability, 
permittivity, respectively. In this paper, µ and ε  are 
assumed to be constant. 

Under the Hamiltonian framework, (1) and (2) can be 
rewritten in a form of an infinite dimensional 
Hamiltonian system. By introducing two temporary 
variables Y and A such that 
= −Y E                                (3) 
= ∇×B A                                 (4) 

We now can write Maxwell’s Equations with (3) and (4) 
into the following infinite dimensional Hamiltonian 
system 

t
∂ ∂
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∂ ∂
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Y
H
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t
∂ ∂

= −
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Y

A
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                               (6) 

where H  is a Hamiltonian energy function  
given by 

2 2

( , )

1 1 1
2 2

H

dV
µε ε

=

 
+ ∇× − ⋅ 

 
∫

A Y

Y A J A
    (7)   

235

1054-4887 © 2005 ACES

ACES JOURNAL, VOL. 20, NO. 3, NOVEMBER 2005

mjinman
w



 

For simplicity we will focus our discussion on the 
Maxwell’s equations in two- dimensional (2-D) TM 
case, where A and - Y denote the z -component of the 
vector potential and the electric displacement, 
respectively [9]. Thus combined with eqn. (7), eqn. (5) 
and eqn. (6) can be rewritten as follows 

z
z

A Y
t

∂
=

∂
                                  (8)                                                            

2
z z zY A J

t µε ε
∂ ∇

= +
∂

                         (9) 

field components are derived from zA  and zY  as 
follows: 

z zE Y= −                                 (10)                                                

1 z
x

AH
yµ

∂
=

∂
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1 z
y

AH
xµ

∂
= −

∂
.                           (12)  

                           
Symplectic Schemes for Hamiltonian System 

Here we assume that all Hamiltonian systems 
considered are autonomous, i.e. they are 
time-independent. As for time-dependent the schemes 
are similar [6]. 

Often the case that zJ  acts as independent sources 

of E-field, i.e. z sourceJ J= , the corresponding 
Hamiltonian system (7) is called separable [1,7]. There 
exists little difficulty in solving eqn. (8) and eqn. (9) 
using explicit symplectic schemes [10−11]. 
When allowing for general cases where materials with 
electric losses that attenuate E-field, this yields: 

z source zJ J Eσ= +                         (13)                                               
where σ  is the electric conductivity. The 
Hamiltonian system (7) is non-separable, how to handle 
this situation, to the authors knowledge, has not given 
rise to a thoroughly answer up to now. Fortunately, in 
this case we can also obtain high order explicit 
symplectic schemes for eqn. (8) and eqn. (9) with 
composite symplectic partitioned Runge-Kutta (PRK) 
method [7−8]. 

In this paper particular, we only consider the 2-stag 
symplectic PRK Lobatto Ⅲ A- Ⅲ B method of 

second-order with the temporal error of 3( )O dt (see 
[7]). When applied in eqn. (8) and eqn. (9) 
with z zJ Eσ= , the scheme has the following forms, 

1( , ) ( , ) ( , )
2

n n
z z z

dtA i j A i j Y i j= +             (14) 

1

1

2( , ) ( , )
2

2 [ ( , )]
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dt
dt L A i j

dt

ε σ
ε σ
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+ −
= +

+
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1 1 1( , ) ( , ) ( , )
2

n n
z z z

dtA i j A i j Y i j+ += +          (16)               

where ( , )n
zA i j and ( , )n

zY i j  are respectively for the 

discrete value of zA and zY  at mesh point ( , )i j  

and the n -th time step, 1( , )zA i j  are the intermediate 

value, dt  is the time increment, L  is a difference 
operator approximating the 2∇  operator and it allows 
flexibility during the selection of the spatial 
discretizations. Here we select the most commonly used 
central discretizations to approximate 2∇  operator in 
our examples. Given appropriate absorbing boundary 
conditions (ABC) in computation domain, we can solve 
Maxwell’s equations using the symplectic PRK 
scheme. 
 

III. NUMERICAL RESULTS 
 
A TEM wave propagation in one dimension 

We first consider a one-dimensional TEM wave 
propagation problem within a finite domain [0, 2π] 
along the x -axis. We discretize the problem using a 
uniform grid with N = 200 subintervals and choose the 
time step 0.1dt dx= . We set both µ  and ε  be one 
and take EY (x,0) =cosx, Hz (x,0) =cosx as the initial 
conditions. In addition, the boundary conditions are the 
periodic boundary conditions. Compared with exact 
solution and the second-order symplectic PRK scheme 
(S-PRK2o), the x -axis variation of the electric flux 
density Ey at 10,000 and 15,000 time steps is displayed 
in figure 1. The electric flux density profile propagates 
without any changes in the profile. The results clearly 
show that the present scheme is pretty good for 
long-term simulations. 

 
Wave propagation in two dimensions 

Next we consider a two-dimensional TM case 
involving a sinusoidal source of frequency 30GHz. The 
source is generated in the middle of the problem 
domain. We use Mur's ABC [12] to truncate the 
computational domain [0,1] × [0,1]. We also discretized 
the problem on the domain with Nx = Ny = 100 grid 

points in each direction and with 
2

dxdt
µε

= . Figure 

2 demonstrates a simulation for the electric flux density 
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Ez after the 5,000 time steps. As comparison, we 
simulate the problem using standard FDTD under the 
same conditions. The results show the efficiency of the 
present scheme. 

 

 
 
Fig. 1. Comparison of Ey calculated by S-PRK2o and 
exact solution after 10,000 and 15,000 time steps. 
 

 
 

(a) Symplectic PRK scheme (S-PRK2o) 
 

 
 

(b) Standard FDTD  

 
                                  

(c) The electric flux density Ez at grid j = 50 
 

Fig. 2. The drawings of electric flux density zE  after 
5,000 time steps. The source is sinusoidal source and 
generated in the middle of the problem domain. The 
absorbing boundary conditions are the Mur's ABC. (a), 
(b) The phase of Ez in the x-y plane. (c) The amplitude 
of Ez at y-grid j = 50. 
 
Plane wave impinging on a infinite square 
cylinder 

In this example, we consider the scattering of a plane 
wave impinging on a infinite square cylinder with side 
length a = 2λ (λ = 1×10-2 m), where λ is wavelength. 
The incident plane wave is a TM case and propagates 
from the left. We discretize the problem on the domain 
with Nx = Ny = 100 grid points in each direction and 
with dx = dy = λ/40, dt = dx/2(µε)1/2 independently. 
Here we also use Mur's ABC to truncate the 
computational domain. The numerical solution after 
1,000 time steps using present scheme and the standard 
FDTD method under the same conditions are presented 
in Fig. 3. Figure 3 (a) and (b) demonstrate the 
distributions of the electric flux density Ez after the  

 

 
(a) Symplectic PRK scheme (S-PRK2o) 
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(b) Standard FDTD (FDTD) 
 

 
 

(c)  The electric flux density Ez at grid j = 100 
 
Fig. 3. The distributions of the electric flux density Ez 
after the 1,000 time steps. The incident plane wave is a 
TM case and propagates from the left. The absorbing 
boundary conditions are the Mur's ABC. (a), (b) The 
amplitude of the Ez in the x - y plane. (c) The amplitude 
of Ez at y- grid j = 100. 
 
1,000 time steps. Figure 3 (c) shows the electric flux 
density Ez at point j = 100 grid. The results indicate 
that the performance of symplectic PRK scheme 
(S-PRK2o) are as at least efficient as the standard 
FDTD. 
 
 

IV.  CONCLUSION 
 

We construct and present a symplectic PRK scheme 
(S-PRK2o) for the non-separable Hamiltonian system 
of Maxwell’s Equations. The scheme is second-order 
explicit and has the temporal error of 3( )O dt . Our 
numerical examples demonstrate that the scheme is 
very effective in computing different types of wave 

propagations and scattering for the Maxwell’s 
Equations. 

Although the scheme is second-order explicit 
method, the high order explicit scheme could be 
obtained using similar symplectic PRK scheme for 
non-separable Hamiltonian system of Maxwell’s 
Equations. Our numerical tests are running on the 
regular domain using square mesh, but the scheme 
could be adopted to compute the problem on any 
irregular domain. 
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