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Abstract − A method to compute the higher order 
contributions to the scattered field by complex 
structures is presented in this paper. The method is 
based on a new interpolation technique to represent the 
induced current with a very low amount of sample 
points and computational cost. The amplitude and 
phase of the current are represented separately. Both 
are defined by an interpolating function, which is built 
using Bézier surfaces. These functions provide the 
amplitude and the phase at any given point of the 
scattering surface in an easy way. The higher order 
contributions to the scattered field are obtained by 
using a new iterative method based on Physical Optics 
(PO) and the Stationary Phase Method (SPM) to 
compute the integral. The proposed method takes 
advantage of the saving in computation cost offered by 
the new representation of the currents reducing the 
order of the function which is necessary to minimize, in 
order to obtain the stationary phase points required to 
evaluate the PO integral. The results obtained show that 
the method is both efficient and accurate. 
 
 

I.  INTRODUCTION 
 
 The main contributions to the scattered field by a 
simple object in presence of an electromagnetic wave 
are mainly due to the first order effects (reflections or 
diffractions). However, if the complexity of the body 
increases (for example, an airplane, a satellite or a 
ship), then higher order contributions (double-
reflections, diffraction-reflections, etc) become 
relevant, especially for certain angular margins. There 
are many other situations where higher order effects 
are relevant: the analysis of antennas onboard 
complex structures, the study of propagation in 
tunnels, the computation of the RCS of cavities, etc. 
In these cases, multiple reflections and /or diffractions 
generally, make the greatest contribution to the 
scattered field. 
 
 Traditionally, there are some approximate 
methods to tackle the problem of high order 
interactions for asymptotically high frequencies. The 
Image Method (IM) [1-3] obtains multiple reflections 
by repeatedly applying the Image Theory [4], 
calculating multiple images of the electromagnetic 

source and from these the scattered field at the 
observation point. The main problem with this 
technique is that the reflecting surfaces must be flat. 
Another method is the Shooting and Bouncing Rays 
(SBR) approach, [5-8], in which tubes of rays are shot 
from the source in all directions. When the tube 
reaches the observation point after reflecting in the 
body surface, the previously computed field intensity 
level at that point is amended with the tube’s 
contribution to the field level. The main problem with 
this method is the high number of rays that must be 
shot to obtain the scattered field accurately enough, 
making the computational cost very high. As it is 
stated in [9] an exceedingly large number of rays must 
be traced for very high frequencies (sometimes up to 
350 points per square wavelength). Another important 
problem is the treatment of the diffraction due to the 
high number of tubes of rays in the Keller´s cone 
produced when an incident tube of rays reaches an 
edge. 
 
 Other possibilities are the inverse methods based 
on the Geometrical Theory of Diffraction 
(GTD/UTD) [10,11] or the SPM [12], in which, given 
the structure, the source and the observation points, all 
the possible reflection and diffraction paths 
connecting the source with the observation points are 
obtained, taking into consideration the contribution of 
certain flash-points to the scattered field: reflection 
points in GTD/UTD or stationary phase points in 
SPM. The main problem with these methods is 
obtaining the flash-points on the surfaces involved. 
 

 
 

Fig. 1. Path to minimize for n reflections. 
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 For example, Figure 1 shows a situation where a 
source and an observation point are placed in the 
vicinity of n arbitrary surfaces. If one wants to 
compute the reflected field at the observation point 
due to an n-order reflection in the surfaces of the 
scene, the first thing to do, using inverse methods, is 
to obtain the position of the n reflection points. If the 
geometrical surfaces are represented by parametrical 
surfaces (NURBS or Bézier surfaces [13,14]) as it is 
stated in [10] and [12], the reflection points are 
obtained after the minimization of the following 
function: 
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where dn is the total distance of the ray path followed 
by the n-reflection, di the different stretches in which 
dn can be divided (Figure 1) and ui, vi the parametrical 
coordinates that define the surface i (see references 
[12-14]). As can be seen, it is necessary to minimize a 
function of 2n variables. The problem is that the cost 
of this minimization increases exponentially with n. 
 
 The objective of the method proposed in this paper 
is to analyze electrically large bodies with multiple 
reflections and diffractions between its parts by 
computing efficiently the PO integrals using the SPM 
without the cumbersome and time-consuming 
problems of minimizing a function of n variables as 
demand the inverse ray tracing methods or the need to 
shouting a huge number of ray tubes as requires the 
SBR method. The proposed method combines the 
interpolation of the induced current by means of the 
current modes proposed in [15] with the SPM [16, 17] 
to obtain the scattered field. As stated in [15] the 
current is interpolated by means of a Bezier surface 
from the induced currents on a set of sampling points 
over the surface. Given the behavior of Bezier 
surfaces 8 x 8 sampling points are a number optimum 
for a good representation of the current. After the 
interpolation the critical points of SPM can be 
obtained minimizing the phase function of the PO 
integrand that includes the phase of the induced 
current. As it will be described below, there is no 
relationship between the SPM critical points and the 
control points. Therefore, the interpolation process is 
independent of the SPM computation. 
 

From that, an iterative method to compute 
multiple order reflections and/or diffractions has been 
developed. The method consists, basically, of 
calculating iteratively the induced current in each 
surface involved in the reflection to obtain the 
scattered field at the reflection point. In each surface 
the induced current is expressed in terms of a current 

mode. The definition of a current mode is an 
exponential function whose amplitude and phase are 
smooth functions that can be easily interpolated from 
their values in a reduced number of sampling points. 
The current in the sampling points in a surface 
(passive surface) is obtained from the fields at that 
points due the current mode defined in a surface 
(active surface) that is illuminating by reflection the 
passive surface. These fields are computed by the 
SPM and as it will be shown. To perform this 
computation it is only necessary the minimization of 
several functions of two variables, avoiding the 
minimization of functions of more than two variables 
necessary in the inverse methods and the shouting of a 
large amount of rays necessary in the SBR, reducing 
consequently the computation time as will be 
illustrated in the Results section. Once the current 
mode in the passive surface has been obtained, this 
surface is considered as the active surface and 
therefore it will illuminate a new surface (the new 
passive surface) in the next step of an iterative 
procedure to solve the multiple iteration problems 
arising in scattering and radiation problems with 
complex bodies. 
 
 The proposed method is advantageous with 
respect to the SBR because it provides the possibility 
of the computation of multiple interactions between 
large objects sampling the surface of the objects with 
a low amount of points, amount which is independent 
of the frequency. On the other hand with respect to the 
inverse methods presented in [10-12], the advantage is 
that the functions to minimize depends only on two 
variables, independently of the number of surfaces 
involved in the multiple interaction. These advantages 
are possible due to the most important technical 
combination of this paper: the combination of the 
SPM with the interpolation of the induced currents 
over a body by using Bézier surfaces.  
 
 It is important to bring out that the presented 
approach can be considered iterative in the sense that 
the PO current integrated by the SPM in the surface 
for a multiple interaction is computed iteratively for a 
surface taking into account the current of the surface 
considered in the previous iteration using in each 
surface the classical PO approach. There are other 
Iterative Physical Optics (IPO) approaches in the 
literature, which basically try to solve the Magnetic 
Field Integral Equation (MFIE) using IPO [18, 19] as 
an alternative of a matrix solution of the MFIE. The 
idea of our approach is not to solve any integral 
equation, but to provide an alternative to the classical 
ray methods used to compute higher order 
contributions in high frequency. 
 
 This paper is arranged as follows. Part 2 
summarizes the procedure to obtain by interpolation 
the phase and amplitude functions that define a 
current mode.  Part 3 shows how to compute the PO 
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integral due to a current mode for an observation point 
in the near or the far field by using the SPM. The 
iterative method considered for the computation of the 
multiple interactions between the different surfaces of 
a complex body is described in Part 4. Results for 
problems with double reflection, triple reflection and 
higher order reflection in a rectangular cavity are 
presented in Part 5 to show the performances of the 
proposed approach. Finally, in Part 6, the conclusions 
and the main features of the approach are 
summarized.  
 
 

II. INTERPOLATION OF THE INDUCED 
CURRENT BY BÉZIER SURFACES 

 
 As mentioned above, the interpolation of the 
induced current was outlined in [15] and consists 
basically in using, as parameter interpolating function 
for each current mode, a Bézier surface to interpolate 
each component of the amplitude vector and another 
to interpolate the phase function. To interpolate the bi-
dimensional scalar function Φ from a set of 
(m+1)·(n+1) values of the function, the control points 
of the Bézier surface are obtained by solving the 
following equation: 
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ijb  being the control points which define the surface 

which interpolates the function Φ, ijϕ  the sampling 
points of that function, and Bi the Bernstein 
polynomials in terms of which the Bézier surface is 
expressed [13,14]. 
 
 The interpolation can be performed taking 8 x 8 
samples over the surface for a good representation of 
the current, taking into account the behavior of Bezier 

surfaces as described in [13]. The samples are usually 
chosen equally spaced, although it is not a mandatory 
condition. 
 
 

III. CALCULATION OF A SIMPLE 
REFLECTION USING THE STATIONARY 
PHASE METHOD AND CURRENT MODES 

 
The use of the SPM to obtain the radiated field of 

an antenna in presence of a convex object and 
calculate the PO integral was shown in [12]. SPM is a 
mathematical approach that is especially suitable to 
calculate integrals with rapid oscillation of the 
integrand phase. This situation is given for the PO 
integral in high frequency. For this reason, SPM is 
advantageous for high frequency electromagnetic 
analysis with respect to classical numerical techniques 
such as the Gauss quadratures. The SPM requires the 
search of a set of critical points: stationary phase or 
internal points, boundary points and vertex points 
which give the first, second and third order 
contribution to the PO integral. In this section, we will 
concentrate on the application of the current modes to 
obtain the first order contribution, i.e., the 
contribution made by the stationary phase points, to 
the PO integral. The other contributions could be 
obtained in a similar way. 
 
 Consider a body in which the electric and 
magnetic currents have been defined in terms of 
current modes. The scattered field at an observation 
point r  can be obtained by computing the PO integral 
on the surface S’ of that object: 
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where )r(ES

J  and )r(ES
M  are the contributions of the 

induced electric and magnetic current mode )'r(J  and 

)'r(M  to the radiated field, λ is the wavelength, η is 

the impedance in free space and sk̂  is the direction of 
observation for far field or the unit vector which joins 
the point 'r  over the surface with the observation 

point for near field 










−
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'rr
'rr . The induced currents 

can be expressed as follows: 
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where n̂  is the unit vector normal to the surface at 
point r ′ , Γs, and Γh are the Fresnel reflection 
coefficients [4], and i

hs,
i

hs, E  and H  are the soft and 

hard components (perpendicular and parallel 
components respectively, see [4]) of the incident 
magnetic and electric fields at that point of the 
surface. 
 

The two terms )r(ES
J  and )r(ES

M  of equation (7) 
can be written as follows, expressing the current by 
means of the amplitude and phase terms: 
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where )'r(M),'r(J 00  are the amplitude values of the 
electric and magnetic current respectively at a point 

'r  on the surface, and )'r(φ  is the phase. These 
functions define the corresponding current mode and 
it is assumed they are approximated by the Bézier 
surface described in part 2.  
 
 To apply the SPM, the amplitude functions can be 
expressed as: 
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and the phase function is expressed as: 
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 Two integrals must be solved, one for the electric 
current and the other for the magnetic current. In 
parametric coordinates we have: 
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 Both integrals satisfy the conditions for the 
application of the SPM method [16,17]. The first step 
in solving the integrals is to find the critical points. As 
mentioned above, only the internal points will be 
considered here. These are the points with the 
parametric coordinates (us,vs), where function f(u,v) 
has a minimum, i.e., where the parametric derivatives 
at this point are zero: 
 









=
∂
∂

=

=
∂
∂

=

0)v,u(
v
f)v,u(f

0)v,u(
u
f)v,u(f

ssssv

ssssu
   (17) 

 
 The derivatives of the function f(u,v) are: 
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u
)'r(φ∂  and 

v
)'r(φ∂  can be easily obtained as the 

derivatives of the current mode and 
u

'r∂  and 
v

'r∂  can 

be obtained as the derivatives of the Bézier surface 
which describes the scattered object. The expressions 
for the derivatives of a Bézier surfaces can be seen in 
reference [13]. 
 
 Then, if the derivatives of the Bézier surface 
which describes the body are denoted as u'r  and v'r , 
the system of equations to solve is the following, 
corresponding the sign + to observation in far field 
and the sign – to observation in near field: 
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 The Conjugate Gradient Method [20] has been 
used to solve the system of equations in our examples. 
Once the critical point has been obtained, its 
contribution to the PO integral is expressed as follows 
[12]: 
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 In equations (27-29) the sign + corresponds to 
observation in far field and the sign – to observation 
in near field. It is important to take into account the 
possibility of not all the surface is illuminated. In this 
case, only the illuminated part of the surface is 
considered to interpolate the current. Then, it appears 
a shadow boundary which contribution should be 
considered introducing a second order critical point as 
is shown in [12]. 
 
 Equations (25) and (26) illustrate the advantage of 
the SPM with respect to other numerical integration 
techniques, because the value of the integral is 
reduced to the evaluation of a closed formula to 
evaluate the contribution of each critical point and the 
further summation of all the contributions. As it is 
stated in [12], there is, as much, only one first order 
critical point, four second order critical points and 
four third order critical points in each parametric 
surface that defines the geometry. On the other hand, 
there is necessary to evaluate the integrand for a high 
amount of points in a classical numerical integration 
technique (usually with an step of λ/10 in the PO 
application, due to the rapid variation of the 
integrand’s phase). Therefore, the number of 
operations involved in the calculation of the integral 
using the SPM is clearly inferior giving the 
computational advantage of this technique for 
integrals with rapidly variation integrand’s phase, 

. 
. 
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typical situation in the analysis of electrically large 
electromagnetic problems. 
 
 It is also important to highlight that the position of 
the critical point is independent of the sampling points 
chosen to interpolate the current, being both 
procedures (the interpolation and the SPM 
computation) completely independent. In this section, 
the objective is only to show the applicability of the 
current interpolation to the analysis of scattered field 
by means by SPM, but there is not advantage with 
respect to the SPM computation without current 
interpolation. The advantage appears, as it is stated in 
next Section, when multiple interactions between 
different parts of a complex body must be considered 
to obtain the total scattered field. 
 
 An example is presented here to show the 
accuracy of the application of the current interpolation 
to the SPM. In the example, indicated in Figure 2, a 
comparison between the results obtained with the 
proposed approach and those obtained using a 
GTD/UTD is presented. The GTD/UTD results have 
been obtained with the code FASANT whose 
accuracy has been proven in [10]. The surface in 
Figure 2 is a quarter of a sphere whose sides are 2.35λ 
x 2.35λ. The frequency is 300 MHz. The surface is a 
perfect electric conductor coated with an absorbing 
material that has both electric and magnetic losses 
with εr=2.5-j1.25, µr=1.6-j0.8 and a thickness of 
τ=0.15λ. The electromagnetic illumination is by a 
vertical dipole placed at 12λ from the center of the 
sphere. The dipole’s coordinates are (2.0,3.0,0.0) and 
it is orientated according to the Z-axis of the reference 
system (X, Y, Z) depicted in Figure 2. The 
observation points are located along a line from 
(4.0,2.0,0.0) to (4.0,2.0,4.0). The minimum distance 
from the surface is 14.9λ. The comparison of the 
results of both methods is depicted in Figure 3, in 
which a close correspondence between both results 
can be observed. 

 
Fig. 2. Spherical section illuminated by a dipole. 

Position of the observation points where the 
scattered field is computed. 
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Fig. 3. Scattered field by the spherical sector 
illuminated by a vertical dipole. 

 
 

IV. ITERATIVE METHOD FOR THE 
COMPUTATION OF HIGHER ORDER 

REFLECTIONS 
 

When only single reflections are to be evaluated, 
the usage of the current interpolation approach, 
presented in Section 3 is not advantageous, because it 
replaces the minimization of the function distance 
that, in this case, depends on two variables, by the 
minimization of an interpolated phase function that 
depends also on two variables. Therefore, there is no 
gain in the minimization procedure. Moreover, the 
interpolation of the phase function requires the prior 
evaluation of the current at a set of sampling points 
and the corresponding interpolation using parametric 
interpolating surfaces. Therefore, the computation 
time is higher than when using a direct ray tracing to 
compute the stationary phase points, as stated in [12]. 
However, the application of a direct ray-tracing to 
obtain multiple reflections is much more complex, 
because it requires the minimization of a function 
with 2n variables, which exponentially increases the 
computation with n, as was mentioned in the 
introduction. 
 
 The solution proposed in this paper consists of 
applying an iterative method in which the current 
induced over the surfaces involved in the multiple 
reflections is computed sequentially. Therefore, to 
obtain the current induced over a surface, it is 
necessary to know the current over the previous one. 
The interpolation method is used, as it only needs to 
store a small amount of information to accomplish 
this calculation. 
 
 Let us suppose a surface that we will call active 
surface, over which its induced current is defined by 
means of the current value at a set of control points. 
We will compute the induced current over another 
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surface (the passive surface), induced by the field 
radiated by the currents of the active surface. For that, 
a mesh of points over the passive surface is defined as 
depicted in Figure 4. In this mesh, we will compute 
the impressed field and from that the corresponding 
induced current. The mesh corresponds to the control 
points, which interpolate the current surface and the 
impressed field at each control point of the passive 
surface can be computed using the interpolated 
current of the active surface following the procedure 
described in Section 3. 

 
Fig. 4. Interpolation of the current on the passive 

surface. 
 

This procedure can be applied iteratively. 
Beginning at the source that illuminates a certain 
structure, the radiated field can be obtained in a given 
direction from the multiple reflections produced. The 
iterative method is carried out as follows: 
 

a) The surfaces illuminated by the source are 
determined. These are the passive surfaces in the first 
iteration. 
 

b) The impressed field at a set of sampling points 
is computed for each passive surface. From these 
values the equivalent currents are interpolated.  
 
 c) The next iteration starts. The passive surfaces 
become active. 
 

d) The surfaces illuminated by the active surfaces 
are determined. These become the passive surfaces. 

 
e) If it is the last iteration, it is checked. If not, the 

procedure is repeated from stage b. 
 
 An important task in the procedure is to select the 
passive surfaces for a given active surface. If there is 
not prior knowledge of which these surfaces are, all 
the surfaces of the model can be passive except the 
active. However, as it is stated in [21] the stationary 
phase points of the SPM correspond to the reflection 
points of Geometrical Optics. Therefore, the ray that 
joins the source with the stationary phase point and 

the one that joins this point with the observation point 
must satisfy the Snell´s law. From that, a previous 
selection of passive surfaces can be accomplished, 
determining the region of the space that satisfies the 
Snell´s law from any point of the active surface. Only 
the surfaces places total or partially inside of this 
region can be passive surfaces. This previous 
selection allows reducing considerably the number of 
passive surfaces selected and, as a consequence, the 
time required for the iterative procedure. A similar 
reasoning can be done for the boundary and vertex 
critical points according of the properties of such 
points, described in [21]. 
 

An example with three surfaces illuminated by a 
plane wave with a direction of incidence ik̂ , is 
depicted in Figure 5. Surface 1 is selected as the 
passive surface for the first step of the scheme, 
calculating the impressed field at each control point of 
the surface and from this the equivalent currents, 
which are denominated )1()1( M,J . Once these 
currents have been determined, surface 1 becomes the 
active surface. 

 
 

Fig. 5. First step of the iterative process. Computation 
of the induced currents by the incident plane 
wave. 

 
 The next step is to determine the radiation 
directions of the currents )1()1( M,J  and to obtain the 
new passive surface. Surface 2 is the passive surface 
in our example. The impressed field over the control 
points of this surface is computed and the equivalent 
currents )2()2( M,J  are obtained (Figure 6). 

 
Fig. 6. Computation of the equivalent currents over 

surface 2 in the second step of the iterative 
process. 
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 In the next step, surface 2 becomes the active 
surface and surface 3 the passive. The same procedure 
described above is applied and the equivalent currents 
on the surface 3 ( )3()3( M,J ) are obtained. From these 
currents, the radiated field can be obtained (Figure 7). 
 

 
 

Fig. 7. Scattered field in the direction sk̂  from the 
current calculated in the last step of the 
iterative process. 

 
 It is important to remark that to obtain the induced 
currents over the passive surfaces in each iteration, it 
is only necessary to calculate the radiated field by the 
previous surface (the active surface) from its induced 
currents. As these currents are represented by means 
of interpolated functions which depend only on the 
parametric coordinates of the active surface, each 
iteration requires several minimizations of functions 
of two variables, so many as sampling points are 
considered. Then, the minimization of a function of n 
variables mentioned in the introduction is being 
replaced by an iterative procedure consisting in the 
minimization of functions of two variables. As the 
number of sampling points in each surface is not 
necessary to be big as was proved in [15] the number 
of this functions to minimize is small and the 
computation time is reduced drastically as will be 
shown in the Results section. 
 
 

V.  RESULTS 
 

In this section, the proposed method is validated 
comparing with the results obtained by the SPM 
without interpolation and by GTD/UTD for some 
simple cases. The comparison between the features 
both techniques (SPM and GTD/UTD) can be seen in 
[20]. These cases also illustrate the reduction in CPU 
time achieved with this method. After that, the 
application of the interpolation to a practical case is 
shown. The application considered is the computation 
of the RCS of a cavity. In this case, the proposed 
method is compared with the SBR, obtaining a 
considerable reduction in the CPU-time as it will be 
seen below. 
 

The first case analyzed consists of the two 
surfaces indicated in Figure 8: one flat and other 
curved, with a curvature such that the normal vector at 
the surface turns at a maximum angle of 26º when it 
moves along the surface. We will call this angle the 
“maximum turning angle” of the surface. Both 
surfaces in Figure 8 have sides of 4 m, which is 
equivalent to 13.33λ and they are considered to be 
perfect electric conductors (PEC) coated with a 
material with electric and magnetic losses, 
characterized by a dielectric constant of εr=2.5-j1.25, 
a magnetic constant of µr=1.6-j0.8 and a thickness of 
0.15λ. The geometry is illuminated by a vertical 
dipole placed at point (0.0,-6.0,0.0) as shown in 
Figure 8. The observation points were situated along a 
line from (0.0,0.0,6.0) to (0.0,4.0,4.0). Figure 9 shows 
a clear agreement between results obtained with the 
proposed method and those obtained with GTD/UTD. 
 

 
 

Fig. 8. Planar surface with 4 meters per side and 
convex surface with 4 meters per side and 
maximum turning angle of 26º. 
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Fig. 9. Amplitude of the scattered field due to the 
double reflection between a planar surface 
and a convex surface coated with a material 
with losses. 

 
The next geometry analyzed is depicted in Figure 

10 and consists of three flat surfaces. The first is a 
PEC and the others are PECs coated with a material 
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with the same constants as the previous case. The 
plates have sides of 4 m (13.33λ). A vertical dipole 
was placed at (0.0,6.0,0.0) and the radiated field is 
obtained after the third reflection along a line from 
(0.0,-5.0,0.0) to (0.0,-9.0) consisting of 90 points. The 
comparison between the predicted values using our 
approach and those obtained with GTD/UTD is 
presented in Figure 11. 
 

 

 
 

Fig. 10. Three planar surfaces. 
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Fig. 11. Amplitude of the scattered field due to the 

triple reflection produced by three planar 
surfaces, the first a PEC and the others PECs 
coated with a material with losses. 

 
To demonstrate the efficiency of the proposed 

approach, we can compare the difference in CPU-time 
needed to analyze both a flat and a convex surface. 
Traditional SPM takes 33 seconds whilst the 
interpolation method takes just 5 seconds. Both results 
were obtained on a Pentium III with 1 GB of RAM. 
Taking into account that the CPU time for the field 
computation is practically the same, the difference is 
due to the advantage of the current interpolation. 
Traditional SPM has to minimize a function of four 
variables for each observation point (90 points in the 
example) in order to find the stationary phase points 
corresponding to each observation point. On the other 
hand, the interpolation method has to minimize a 
function of two variables to obtain the induced current 
in each sampling point of the second surface (64 
points were used, 8 in each parametric direction) and 
another function of two variables to find the stationary 
phase point corresponding to each observation point. 
As the induced current only has to be computed once, 

90 minimizations of a function of four variables are 
being replaced by 154 minimizations of functions of 
two variables. This fact allows for the time reduction 
mentioned above. Therefore, the method is efficient 
due to the reduction of the order of minimization. 
 

Similar conclusions can be obtained with three flat 
surfaces where we replace 90 six-variables sets of 
minimizations by 218 two-variables sets of 
minimizations (64 for the induced current in the 
second surface, 64 for the induced current in the third 
surface and 90 to obtain the stationary phase point 
corresponding to each observation point). In this case, 
the GTD/UTD code FASANT used for the validation 
is unable to treat triple-reflections on curved surfaces, 
requires 15 minutes and 2 seconds to perform the 
analysis, while the interpolation method only needs 1 
minute and 23 seconds. 

 
Finally, as mentioned above, the result of the 

application of the proposed method to the analysis of 
the RCS of a cavity is shown. The case consists in a 
rectangular cavity whose dimensions are 30λ x 10λ x 
10λ (see Figure 12). The monostatic RCS was 
obtained varying the incidence angle for directions 
contained in a symmetry plane of the cavity, which 
contain the axis of the aperture. Figure 13 illustrates 
the comparison of the interpolation method with the 
SBR for the theta polarization. As can be seen there is 
a good agreement between both results. However, the 
SBR takes 12 hours, 12 minutes and 18 seconds, 
considering 10.000 ray tubes launched from the 
aperture (with a separation between points of a tenth 
of wavelength, that is to say, 100 points per square 
wavelength), while the interpolation method only 
requires 58 minutes and 47 seconds, because only 64 
points are considered in the interpolation. It is 
important to notice that in this case the authors only 
try to prove that the computational cost is importantly 
reduced with the proposed method with respect to the 
SBR to obtain the same results. Logically, the 
diffraction should be included in both approaches to 
improve the results. The diffraction could be easily 
introduced in our approach considering the 
contribution of the second and third order critical 
points in the SPM formulation. The procedure would 
be identical to the one described in Section 2. 
 

30λ 

10λ 

10λ 

 
Fig. 12. Geometry of the rectangular cavity analyzed. 
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Fig. 13. Comparison between the results obtained by 

the interpolation method and the SBR for the 
monostatic RCS of the rectangular cavity. 

 
 

VI. CONCLUSIONS 
 
 A method for obtaining higher order contributions 
to the electromagnetic scattered field by complex 
bodies has been developed. The method is based on 
the interpolation of the induced currents, by means of 
Bézier surfaces. For each current mode, it uses one 
Bézier surface to interpolate each component of the 
amplitude and another one to interpolate the phase. 
Once it has interpolated these induced currents, the 
scattered field is obtained by solving the PO integral 
using the SPM. 
 
 The method has several advantages over others 
currently being used to obtain these higher order 
contributions. The method can be used with all 
surfaces not only flat ones like the Image Method. 
The number of sampling points required to interpolate 
the current on a surface is very low compared to the 
number of rays the SBR uses to solve these kinds of 
problems. Finally, the advantage the proposed 
approach over ray-tracing inverse methods is that it 
only needs to minimize functions of two variables to 
find the ray-path, irrespectively of the order of the 
contribution. Whilst inverse methods need minimize 
functions of 2n variables, n being the order of the 
contribution, which means that the CPU-time needed 
for each minimization, increases exponentially with n. 
 
 The method developed is especially suitable for 
the analysis of problems where higher order 
contributions are of importance such as the 
propagation of tunnels or the computation of the RCS 
of cavities. An example of the last application has 
been shown in the Results section. 
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