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Abstract: In this paper a numerical approach for the 
analysis of the behaviour of micro electro mechanical 
systems (MEMS) is presented. The method is applied to 
the simulation of movable plate MEMS variable 
capacitors that are of common use in the CMOS voltage 
controlled oscillators (VCOs). An accurate study of 
MEMS devices requires a coupled electro-mechanical 
analysis. The mechanical analysis has to take into 
account the deformation of the plates of the capacitor 
and the electromagnetic one has to consider the 
distribution of charges and currents and the presence of 
dielectric materials. 
We first perform a coupled elastic-electrostatic analysis 
in order to obtain the tuning characteristic of the 
system; subsequently, once the positions of the plates 
have been determined, an electromagnetic analysis of 
the system is performed via an integral formulation 
based on an electric equivalent circuit. 
The proposed method has been validated by analysing 
two and three plate tuneable parallel-plate capacitors. 
 
Keywords: Integral Formulations, Method of Moments, 
MEMS, Finite Element Method. 
 
 
1 Introduction 
 
Micro Electro Mechanical System (MEMS) is a 
technology able to produce miniature mechanical 
structures, devices and systems by the use of the state of 
the art of integrate circuit (IC) fabrication [1] - [3]. The 
advantages inherited by IC technology are mainly the 
cost reduction (through batch fabrication) and the 
opportunity of the dimensional downscaling. As a 
consequence of the latter, the power consumption has 
been decreased with an important improvement of the 
overall performance. The mechanical property of silicon 
has given the opportunity of the fabrication of MEMS 
by compatible materials with the IC technology. This 
has led to the realization of monolithic integrated 
electromechanical systems including accelerometers, 
pressure sensors and micro switches. 
When used as radio frequency (RF) components MEMS 
devices are showing great potentialities. They 

demonstrate higher linearity and lower loss than similar 
components built by other technologies. In this 
perspective RF MEMS, such as RF switches, tuneable 
capacitors and high-Q inductors, may serve as 
fundamental building blocks and are becoming more 
and more used in several critical applications where 
increased functionality has to be conjugated with 
reduced power consumption and severe constraints of 
electromagnetic compatibility [3] - [5]. 
As an example it is sufficient to consider modern 
communication systems, such as the GSM cellular 
telephone system, where stringent requirements on the 
intermediate filters and on the VCOs are present. In 
particular the dynamic range of the filters and the noise 
level of a RF VCO depend (in opposite fashion) on the 
overall Q-factor of the resonator. 
A proper design procedure for these devices depends on 
an accurate analysis of the resonator whose tuneable 
component can be advantageously realized by a MEMS 
capacitor [6] – [8]. Unbiased base capacitance, tuning 
ratio, quality factor, associated inductance and 
consequent electric self resonance frequency are figures 
of merit of current use in association with tunable 
capacitors. Their evaluation requires a deep analysis of 
the device. The long computation times usually required 
by full wave coupled analysis result in the introduction 
of approximations with consequent inaccurate 
predictions producing an unacceptable design process 
through trial and error. 
A MEMS simulator should be able to perform a coupled 
electro-mechanical analysis [4], [5], [9]. The rigid-body 
motion hypothesis of the movable plate is no longer 
valid because of the high width to thickness ratio. The 
deformations of the moving plate may heavily affect the 
overall performance of the system as the effective 
stiffness of the system decreases and as a consequence 
the mechanic self resonant frequency and the pull-in 
voltage decrease as well. The accurate determination of 
the electrical figures of merit of MEMS tunable 
capacitors requires the evaluation of the charge and 
current distributions. Fringing effects and the presence 
of dielectric materials influence the values of the 
capacity at the various bias levels; the effective 
distribution of the currents in the device determines the 
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actual ohmic losses that, in conjunction with the 
dielectric losses, are used to evaluate the quality factor. 
A correct evaluation of the quality factor has to take 
into account the inductive effects of the currents 
influencing the overall reactance of the system at a 
given frequency. In addition the evaluation of the 
inductive effects is essential in the calculation of the 
electric self resonant frequency. 
The mechanic self resonant frequency of a MEMS 
capacitor usually lies in the range 10 100 KHz÷  while 
the RF signal is in the range 0.1 10GHz÷ . The RF 
frequencies are at least three orders of magnitude of 
mechanical bandwidth; as known this wide separation 
allows a simplified electromechanical coupling. The 
position and the deformations of the moving plate are 
unlikely to be caused by the RF signal and may be 
determined as a function of the bias voltage only. At the 
corresponding low frequencies the charge distribution 
and the electric field play a dominant role in the 
evaluation of the force distribution. The system in the 
new geometric configuration so determined is 
considered at rest under the effects of the RF signal. 
This paper discusses various aspects of a method for the 
electromagnetic analysis based on an integral 
formulation via an equivalent network. 
Conductors and dielectrics (assumed linear) are 
subdivided in elementary volumes in which uniform 
distributions of current density and electric polarization 
are assumed. Ohm’s law and continuity equation for the 
current are written for conductive materials; these are 
coupled with the constitutive equation for the dielectrics 
leading to a set of equations that can be viewed as the 
equilibrium equations of an electric network. 
The knowledge of the currents, charges and distribution 
of the polarization allows evaluating the most important 
figures of merit of the device. 
 
 
2 Formulation 
 
As stated in the introduction two analyses have to be 
performed on a MEMS device: first a coupled 
electromechanical analysis and subsequently an 
electromagnetic one. 
The first one is a fully three-dimensional analysis that 
iterates between a mechanical Finite Element Method 
(FEM) solution and an electrostatic Method Of Moment 
(MOM) solution.  
The second one is purely electromagnetic and uses 
results and parameters obtained by the former. 
The electromechanical analysis is explained in detail in 
the literature and it will be summarized with the 
objective to define the parameters that will be exported 
to the electromagnetic analysis. 

Let us consider a system constituted by a conductor and 
by a linear dielectric body. The system is discretized in 
elementary volumes (slabs, cylindrical sectors of 
rectangular cross section).  
Let dN  be the number of the elementary volumes 
resulting by the discretization of the dielectric bodies, 
and cN  the number of the elementary conductive 
volumes. A uniform distribution of the polarization is 
assumed in each dielectric elementary volume. 
 
2.1 Electro-mechanical Analysis 
The discretization of the conductive body produces a 
discretization of the surface of the body itself in sN  
elementary surface elements. Let us assume a uniform 
distribution of the charges on these surface elements. 
The deformable regions (i.e. the moving plate), where a 
mechanical FEM is used, are further meshed according 
with the used structural analysis software [10].  
Two meshes are defined on the same region: the first 
one is used to evaluate the force, the second one to 
calculate the displacements and the deformations. 
The force distribution on the moving plate can be 
evaluated once the charge and polarization distribution 
are known. 
Because of the assumed uniform distribution of the 
electrical quantities we can write the following 
expression for the electric scalar potential: 
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In the above expression ,P jα  represents the potential in 
P due to a charge uniformly distributed with unit 
density on the thj  elementary surface of a conductor; 
the vector ,P jβ  relates the electric potential in P to the 

thj  elementary volume where a uniform polarization is 
assumed. In the second integral in (1) ,j polS  represents 

the entire surface of the thj  elementary volume 
resulting by the discretization of the dielectric regions. 
A similar expression can be derived for the electric field 
at P: 
 

( ) ( ) , ,
1 1

S dN N

P j j P j j
j j
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= =

= − = +∑ ∑E Pδ Θ∇ . (2) 

 

The meaning of the symbols in (2) is easily understood: 
,P jδ  is a vector column and ,P jΘ  is a second order 

tensor represented by a square matrix. The coefficients 
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,P jα , ,P jβ , ,P jδ , and ,P jΘ  can be quickly and 
accurately evaluated by means of analytical 
expressions. 
The sN  charge densities and the 3 dN  components of 
the polarization vector are unknown quantities whose 
determination is achieved by enforcing the equipotential 
nature of the conductors and the constitutive equation of 
dielectrics.  
Let rε  be the relative permittivity of the linear 
dielectric materials. We write the relation between P , 
E , and D  inside the thi  dielectric elementary volume: 

 

0i i iε= +D E P .     (3) 
 

Substituting it in the constitutive equation of the 
material 0rε ε=D E  yields: 
 

( ) ( ) ( )0 1i r iP Pε ε= −P E .   (4) 
 

Equation (4) is enforced by using the Galerkin 
procedure at every dielectric elementary volume [11]: 
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∑ ∑P Pδ Θ   1,.. , di N=  (5) 

 

and the result is projected along the reference axes. 
In the usual operation the bias voltage of every 
conductor with respect to an arbitrarily chosen reference 
conductor is known. Galerkin method is used to enforce 
the equipotential nature of the conductors. If a proper 
numbering of the elementary surfaces is performed (the 
indexes of the surfaces of a conductors are contiguous), 
we can write: 
 

, ,
1 1

S dN N

k k j j k i i
j i

V α σ
= =

= + ⋅∑ ∑β P  ,  1,.. , sk N= . (6) 

 

The terms kV s have to be constant if the elementary 
surfaces identified by the index k are on the same 
(equipotential) conductor. 
The coefficients ,i jδ , ,i jΘ , ,k jα , and ,k jβ  in eqs. (5) 
and (6) are obtained by the corresponding ones in eqs. 
(1) and (2) by averaging them on the thi  dielectric 
elementary volume and on the thk  elementary surface 
[12]. 
Once the linear algebraic system formed by eqs. (5) and 
(6) is solved (giving the charge and polarization 
distributions) it is possible to evaluate the force 
distribution on the moving plate. 
The structural analysis software is then able to evaluate 
the movement and the deformation of the armatures. At 
this newly evaluated geometric configuration we have 
to repeat the above described electrostatic analysis. A 
new force distribution is evaluated and the structural 

analysis is again performed. Usually a reduced number 
of iterates are necessary to reach the convergence. 
 
2.2 Electromagnetic Analysis 
In the most general case the deformed geometry cannot 
be discretized by using slabs and cylindrical sectors of 
rectangular cross section. General hexahedral elements 
are needed. The described analysis can be performed 
with these volumes but with longer calculation time 
because of the non availability of fast and accurate 
analytical expressions for the evaluation of the fields 
and potentials. Because of the limited extent of the 
deformations the hexahedra can be “approximated” by 
slabs with a negligible loss of accuracy and the 
analytical expressions can still be used. 
This same approximation is used in the electromagnetic 
analysis; the cN  conductive volumes are 
advantageously considered as slabs or cylindrical 
sectors of rectangular cross section.  

We now consider the centers of the elementary 
volumes of the discretized conductor and connect the 
centres of nearby elements (by segments or by circle 
arches). We also consider the centre of each exterior 
surface and connect it to the centre of the elementary 
volume to which it belongs. A 3-D grid is so obtained 
[13]. The total number of the points of the grid is then: 

c SN N+ . 
We then associate to each segment of the grid a new 

elementary volume having four edges parallel to the 
segment and the faces normal to the segment with their 
centres placed at the nodes of the grid. Inside each 
elementary volume a uniform distribution of current 
density J is assumed. This current is directed parallel to 
the segment above used. Its direction is then 
perpendicular to the two bases of the new elementary 
volumes, and is parallel to its lateral surface. These 
newly built volumes are the branches of the equivalent 
electric network; let bN  their number. The nodes of this 
network are the c SN N+  points introduced above. The 
procedure is shown in fig. 1. 
Let us consider a volume of the original discretization 
and the associated node; we see that it is located at the 
centre of an intersection of branches crossing its 
surfaces. This is shown in the figure 1f. This volume is 
in the inner part of the conductor and the sum of the 
currents flowing in the branches leaving the node is 
zero. 
If the node is on the boundary of the conductor, i.e. it is 
associated to an exterior surface, charges may 
accumulate on it. The governing equation can be 
deduced by the continuity equation of the electric 
current. 

18 ACES JOURNAL, VOL. 21, NO. 1, MARCH 2006



 
 (a)    (b) 

 
 (c)    (d) 

 
(e) 

 
(f) 

 

Fig. 1. Construction of the branches of the equivalent network. 
 
Because of the assumed (uniform) distribution of 
currents and charges we can write: 
 

,

ext
in k
k hJ

t
σ∂

= −
∂

.     (7) 
 

In eq. (7) h refers to the node associated with a volume 
in the inner part of a conductor and k refers to the node 
associated to an exterior surface. ,

in
k hJ  and ext

kσ  
respectively are the current leaving the surface and the 
charge densities on it. 

Because of the assumed distribution of the currents on 
the branches, the vector potential at a point P can be 
written as: 
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Let us consider the thi  branch and write the Ohm’s law 
at a point P inside it: 
 

( ) ( ) ( ) ( ), , , ,P t P t P t P t
t

ρ ϕ ∂
= = − −

∂
J E A∇   . 

Evaluating the line integral along the direction of the 
current, and averaging the result on the transverse cross 
section we obtain: 
 

( ) ( ),
1

( )
bN

i i i i j j
j

dR I t U t M I t
dt=

= −∆ −∑   ,  (9) 

 

where iR  is the resistance of the thi  branch along the 
direction of the current, ,i jM  is the coefficient of 

magnetic coupling with the current of the thj  branch 
and ( )iU t∆  is the voltages between the terminals of the 
branch produced by the distribution of charges on the 
surface of the conductors and by the polarization 
charges on the dielectrics. 
The electromagnetic analysis of the system can be 
carried on the electric network formed by the 
interconnection of the bN  branches described by eq. 
(9). Kirchhoff laws can be used to solve for the currents 
in this circuit. When the Kirchhoff Current Laws 
(KCLs) are written at the boundary volumes they 
assume the form of eq. (7) and the charge densities are 
added to the set of the unknown branch currents. 
Let us now consider a path inside the conductors and 
write the total voltage along this path; this results in 
imposing the Kirchhoff Voltage Law (KVL) and the 
resultant of the ( )iU t∆ s is zero on the closed loops.  
The introduction of new unknowns calls for new 
equations. A relationship has been already obtained 
involving the charge densities on the surfaces and the 
voltages between points on the armatures; it is given by 
the last electrostatic problem solved in iterative 
procedure used to solve for the coupled 
electro-mechanical problem. Equations (5) and (6) have 
to be added to the eqs. (7) and (9). 
Before using (5) and (6) we have to consider that at RF 
the armatures cannot be considered as equipotential 
regions. As a consequence elementary surfaces lying on 
the same armature can have different voltages kV . 
We solve eq. (5) in terms of the unknown polarizations 
of the dielectric elementary volumes expressing them as 
a linear function of the charge densities: 
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Substituting in eq. (6) we obtain: 
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1 1 1 1

S d S SN N N N

k k j j k i i j j k j j
j i j j

V α σ σ ξ σ
= = = =

= + ⋅ =∑ ∑ ∑ ∑β λ , 1,.. , .sk N=

                  (11) 
 

Performing the inversion we have: 
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Substituting eq. (12) in (7) we write: 
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1

SN
in in
h k k h k j j

j

J J V
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η
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Equation (13), written at the SN  nodes corresponding 
to the exterior surfaces, may be viewed as the nodal 
equilibrium equations of a network. Each node is fed 
with current generators ( ,

in
h kJ ) entering it, and is 

connected to SN  purely capacitive branches. The 
reference for the voltages involved in (13) is the 
external to the circuit and coincides with the reference 
potential used in the determination of the coefficients 

,P jα and ,P jβ  in eq. (1). 
This capacitive network has to be coupled to the 
network formed by the branches described by eq. (9) 
connected in correspondence of the cN  nodes 
associated to the inner elementary volumes. The 
coupling is performed by observing that the feeding 
currents of the capacitive subnetwork flow through the 
impedances built by the procedure described in fig. 1 
that connect the centres of the external faces with the 
centre of the elementary volume they belong to. It is 
worth to note that these latter impedances are described 
by eq. (9) too. 

 

 
 

Fig. 2. An example of the equivalent network.
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Figure 2 shows an example of the complete equivalent 
network used for the electromagnetic analysis of a 
MEMS capacitor in the RF range. A very coarse 
discretization consisting in four elementary volumes for 
each armature has been adopted and the system is fed 
by a voltage generator. For the sake of clarity the 
capacitors connecting each couple of exterior nodes 
(those labelled with integer numbers) are not shown; 
only the capacitors with respect to the reference node of 
the voltages are indicated. For the same reason the 
inductive coupling between the impedances is not 
shown. The nodes labelled with capital letters (A - H) 
are in the inner of the armature; the nodes labelled with 
integer numbers (1 - 32) are on the external surfaces. 
Node A is connected to the inner nodes B and D and to 
the external nodes 1, 8, 9, and 13. 
Modified Nodal Analysis (MNA) can be used to 
evaluate currents and voltages of the equivalent 
network. The structure of the network and the 
“localization” of the inductive coupling mostly in the 
inner branches and of the capacitive coupling in the 
exterior ones of the network suggest an “ad hoc” 
procedure. 
Figure 3 shows a simplified version of equivalent 
network and it is used to illustrate the procedure under 
the hypothesis of sinusoidal steady state. 
Let us consider the subnetworks derived by the 
armatures; for each subnetwork we can build a surface 
that cuts the branches connecting the inner with the 
outer nodes. The capacitors, not shown in fig. 3, are all 
outside the dashed closed lines that represent the surface 
in this simplified scheme. Let us label with b

jI  the 

current on the cut branch directed toward the thj  outer 
node exiting the surface. The total number of these 
currents is 

1 2S SN N+ , having indicated with 
1SN  and 

2SN  the number of external surfaces of the armature. 
The portion of network enclosed by these surfaces does 
not contain capacitors and it is constituted by branches 
that are magnetically coupled each other. 
A mesh analysis of the subnetworks enclosed by the 
surfaces may be advantageously performed. Let us label 
the mN  loop currents with m

jI . The mesh equations 
written to the central loops of the two subcircuits are: 
 

1 2
, ,

, ,
1 1

0
S Sm N NN

m m m m b b
j jk j k j

j j

Z I Z I
+

= =

= +∑ ∑ , 1, ..., mk N= .     (14) 

 

Superscript m stands for mesh and b stands for branch. 
The first superscript in the coefficients ,

,
m m
k jZ  and ,

,
m b
k jZ  

indicates that we are performing a mesh analysis, the 
second superscript selects between “mesh” or “branch” 
current. 
The nodal equations at the nodes outside the surfaces 
are: 
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                (15a) 
 

The equations at node 6 and 22 respectively are: 
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1 2
,

22 22,
1

S SN N
b n n n b

j j E
j

I Y V I
+

=

= −∑  ,             (15c) 

 

where b
EI  is the current on the voltage generator 

directed from node 6 to node 22 and n stands for nodal. 
 

 
Fig. 3. Simplified equivalent network. 
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The KCL has to be explicitly imposed on the two closed 
surfaces: 
 

1

1

0
SN

b
j

j

I
=

=∑ ,               (16a) 

2

11

0
S

S

N
b
j

j N

I
= +

= ∑ .               (16b) 

 

The coupling of the mesh and nodal equations is 
performed by expressing the voltage between couples of 
external nodes in terms of the voltage drops along paths 
that connect the two nodes and that are constituted by 
branches lying in the inner parts of the subnetworks.  
As an example we can write: 
 

1 2
, ,

1 2 (1,2), (1,2),
1 1

S Sm N NN
v m m v b b

j j j j
j j

V V Z I Z I
+

= =

− = +∑ ∑ .              (17) 

 

The superscript v is for voltage; the meaning of the 
symbols is similar to that of eq. (14). The number of 
independent paths is 

1
1SN −  for the first subnetworks 

and 
2

1SN −  second one. 
A further equation governing the branch with the 
voltage generator connected to the armatures has to be 
added, 
 

6 22
b

E EV Z I E V= + + .                (18) 
 

The total number of the eqs. (14) – (18) is 

( )1 2
2 1m S SN N N+ ⋅ + +  and it is the same as the 

number of the unknown quantities.  
By inverting eq. (14) we write: 
 

( ) 1, ,m m m m b b−
= −I Z Z I                 (19) 

 

where bold characters are used to denote vectors and 
matrices. 
Coupling eqs. (15) and (18) we can write for the 
voltages at the external nodes the expression: 
 

b E= +V KI H .                 (20) 
 

Equation (17) may be written in matrix form by the 
introduction of the matrix D  that performs the 
difference between two elements of the vector V , 

, ,v m m v b b= +DV Z I Z I .                (21) 
 

Substituting eqs. (19) and (20) in (21) we obtain: 
 

( ) ( ) 1, , , ,b v m m m m b b v b bE
−

+ = − +D KI H Z Z Z I Z I    (22) 
 

that coupled with eq.(16) allows the evaluation of the 
currents bI . Back substitution in (19) and (20) 
completes the solution of the equations. 

3 Example of application 
 
Before showing two examples of application let us 
discuss some properties of the proposed formulation 
that can be of great usefulness in the analysis of MEMS 
capacitors. 
The typical geometries of the conductive and dielectric 
domains are characterized by poor aspect ratios. The 
thickness of the armatures of the capacitor is of the 
order of micron or less, while the other dimensions are 
more than two magnitude orders greater. Realistic 
discretizations of these domains (in terms of number of 
elementary volumes) result in elementary volumes with 
very poor aspect ratio. As a consequence the use of 
analysis tools based on the Finite Element Method 
(FEM) may result in low accuracy. The proposed 
formulation belongs to the class of the integral 
formulations and inherits their properties. In particular 
the aspect ratio of the elementary volumes produced by 
the discretization does not affect the accuracy of the 
computations as in the FEM formulations. 
Without appreciable loss of accuracy it is possible to 
use elementary volumes with poor aspect ratio 
especially in the central portions of the domains where 
the polarization vector, the current and the charge 
densities are likely to be uniformly distributed over 
relatively large regions. The presence of elementary 
volumes having one dimension (the thickness) a 
magnitude order lower than the other two is a common 
practice in those regions.  
The regions near the edges where fringing effects are 
present may be discretized using elementary volumes 
“stick” shaped parallel to the edges. The corners and the 
points where the currents are injected require a finer 
discretization. This is automatically obtained because of 
the structured nature of the discretization. 
The use of elementary volumes with poor aspect ratio 
may cause long computation times in the evaluation of 
the coefficients in eqs. (5) and (6) and of the auto and 
mutual inductance terms in eq. (9). The availability of 
analytical expressions for these coefficients mitigates 
this drawback. 
The presence of the holes in the moving armature can 
be easily modelled and does not result in a dramatic 
increase of the unknowns because the limited fringing 
effects in correspondence of the edges of the holes do 
not require a refinement of the discretization. 
Dielectric materials that at RF may present dispersive 
behaviour with consequent power losses may be easily 
modelled by the proposed method. A complex 
frequency dependent electric permittivity in eqs. (4) and 
(5), when they are written in the frequency domain, 
implies the presence in eq. (13) of complex ,k jη  
coefficients. As a consequence the equivalent network 
portion built starting from eq. (13) has to be completed 
by inserting proper resistances parallel connected to the 
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capacitors already inserted. If a transient analysis has to 
be performed convolution integrals appear in the 
equilibrium equations and long computational time may 
be required unless the dispersive medium is a Lorentz 
or Debye one [14]. 
The reduction of the electromagnetic analysis to a 
network analysis makes very easy the coupling of the 
MEMS capacitors with the external circuit and allows 
an accurate, though extremely CPU consuming, analysis 
of the overall system. 
The proposed formulation has been used to analyse two 
tunable parallel plate capacitors. The complete 
description of the geometries of the devices is reported 
in [6]. The principle of operation assumes that the 
moving plates in both the capacitors behave as rigid 
bodies, i.e move without deformation. This hypothesis 
is not valid because of the shape of the plates whose 
thickness is far less than the other two dimensions. The 
effective stiffness of the systems is lower than that 
estimated by considering the stiffness of the T-type 
suspension only. As a result the pull in voltage and the 
natural frequency also decrease. 
 

 
Fig. 4. Two plate MEMS capacitor natural frequency. 
 

 
Fig. 5. Three plate capacitor natural frequency vs. V2 with 

V1=0. 

Figures 4 - 6 show the natural frequency versus the bias 
voltage for the two and three plates MEMS capacitors 
respectively. 
 

 
Fig. 6. Three plate capacitor natural frequency vs. V1 with 

V2=0. 
 

 
Fig. 7. Tuning characteristics of the two plate capacitor. 
 

 
Fig. 8. Tuning characteristics of the three plate capacitor vs. 

V2 with V1=0. 
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Fig. 9. Tuning characteristics of the three plate capacitor vs. 

V1 with V2=0. 
 
As expected the natural frequencies are smaller than 
those evaluated in [6] where the rigid motion of the 
armature is assumed; furthermore a dependence of the 
natural frequencies with the applied bias voltage is 
evidenced. 
Figure (7) shows the tuning characteristic of the two 
plate tunable capacitor. The tuning ratio is 
approximately 1.45 and the pull-in occurs at about 4 V. 
Figures 8 and 9 show the tuning characteristics of the 
three plates capacitors with respect to two bias voltages. 
Figure 8 refers to the voltage between the bottom and 
the suspended plate, and fig. 9 to the voltage between 
the top and the moving plate. Pull –in occurs when 4.2 
V are applied to the bottom plate and when 1.65 V are 
applied to the top plate. 
All the three simulated tuning characteristics 
significantly differ from the experimental ones reported 
in [6]. The cause of these differences is likely due to the 
effects of the deformations produced by the 
compressive stress in polysilicon layer that in our 
analysis has been neglected. 

 
Fig. 10. Simulated “Q” quality factor. 

Figure 10 shows the simulated quality factor for the two 
plate capacitor. A satisfactory agreement with the data 
reported in [6] is obtained so confirming the ability of 
the proposed method. 
 
 
4 Conclusion 
 
In this paper we propose a numerical technique for the 
simulation of MEMS devices. The method is based on 
the coupling between electrical and mechanical 
analysis, taking into account both the deformations and 
the electromagnetic interactions. A standard FEM 
structural formulation is coupled with the MoM for the 
bias analysis; an equivalent network approach based on 
an integral formulation is used for the electromagnetic 
analysis and allows to be interfaced with a full wave 
model of the entire devices. 
The method has been tested on a MEMS capacitor, 
giving consistent results. 
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