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Abstract: A sub-cell tensor based technique for 
modeling dielectric interfaces is introduced into a 
(2,4) FDTD method. For each cell containing an 
interface, a tensor based method that enforces 
continuity conditions is used to determine the fields 
on both sides the sloped interface. These fields are 
then volumetrically averaged. The approach is used 
to calculate a corrected field value at each grid 
point of the large fourth-order stencil. The 
combined algorithm is computationally 
homogeneous, unlike most previous algorithms of 
this type, and thus lends itself to parallel 
processing. Additionally, the method may be used 
with other higher-order stencils. The accuracy is 
tested using the exact Mie series solution for 
scattering from a dielectric sphere. It is shown that 
using the (2,4) tensor method results in ~50-70% 
less error than the (2,4) standard Yee method in the 
vicinity of a dielectric sphere.  
 
Introduction: The finite-difference time domain 
(FDTD) method is one of the most widely 
employed methods in computational 
electromagnetics. As it has been pointed out in 
many articles, the method has problems when there 
are curved boundaries, which are represented by 
staircases on a Cartesian grid. If continuity 
conditions are not properly maintained across these 
curved interfaces, inaccuracies in the field 
components can occur. Nadobny et. al. [1] 
developed a 3D tensor method for the treatment of 
dielectric interfaces to enforce continuity of the 
appropriate field components. Their paper was a 
major extension of the work of Lee and Myung [2] 
and demonstrated much improved accuracy for the 
standard (2,2) algorithm.  

In this paper we adapt the tensor method for 
use with fourth-order methods. Fourth and other 
higher order methods permit modeling on coarser 
grids. This is important because fourth-order 
methods, although very accurate in homogeneous 
regions, generally present accuracy problems at 
material boundaries. One remedy for this problem 

is to employ a hybrid formulation of (2,4) FDTD 
and sub-grid (2,2) FDTD methods [3], where (2,4) 
stands for second-order accurate in time and fourth-
order accurate in space. In [3] a coarse (2,4) grid is 
used in the homogeneous regions and a finer (2,2) 
sub-grid near conducting walls and other structures. 
Another method [4] uses a large (2,4) region and a 
buffer layer of (2,2) cells between the (2,4) region 
and the interfaces. 

In [5] an efficient higher-order alternating-
direction implicit (ADI) finite-difference time-
domain method for unconditionally stable analysis 
of curvilinear electromagnetic compatibility (EMC) 
problems is presented. The method is practically 
dispersionless and offers improved accuracy for 
curved boundaries. Another paper [6] also discusses 
the reduction of numerical dispersion of the finite-
difference time-domain method based on a (2,4) 
computational stencil. Rather than implementing 
the conventional approach, based on Taylor 
analysis for the determination of the finite-
difference operators, two alternative procedures that 
result in numerical schemes with diverse wide-band 
behavior are proposed. The method is shown to 
outperform the standard (2,4) method. 

The method proposed here uses the same (2,4) 
algorithm and grid spacing for the homogenous 
regions and across boundaries as opposed to mixing 
different accuracy (second and fourth-order) 
algorithms. This is important for parallel 
processing, i.e. using the Message Passing Interface 
(MPI), where having a homogeneous algorithm is a 
great advantage so that each processor executes the 
same instructions. It also is an advantage 
computationally if a fourth-order accurate method 
can be used to model an electrically large structure 
on a smaller coarser grid, without any special sub-
gridding. We gauge the relative accuracy of the 
standard Yee fourth-order and combined sub-cell 
tensor fourth-order methods by comparing 
computed results with the exact Mie series solution 
for plane waves scattering from a dielectric sphere.  
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Sub-cell Tensor Method: The differential form of 
Maxwell’s equations is given by: 
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where  
 

ED ε=  .    (3)                                                                                      
In the homogeneous cells, where there are no 
interfaces, Eq. (3) can be used to obtain E. 
However, in those cells with interfaces, boundary 
conditions must be explicitly satisfied.  

At a dielectric interface these continuity 
conditions must be maintained at the interface 
between media 1 and 2: 

 
0( 2211 =⋅− n)EE εε ,     (4) 

 (Continuity of the normal components of D), 
 

0)( 21 =×− nEE ,    (5) 
(Continuity of the tangential components of E), 
 
where n  is the unit normal vector to the interface. 
 
Eqs. (4) and (5) can be solved for E2 in terms of E1 : 
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where the elements of the transformation matrix A~  
are: 
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For Yee cell faces cut by an interface the 
electric fluxes through the faces are broken into two 
parts: 
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where the S’s are areas and the superscripts stand 
for side 1 or 2. This is illustrated in Fig. 1. 

Combining Eqs. (6) with (7), the following 
tensor relationship is obtained between the average 
electric flux density and electric field in medium 1, 
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where ε~  is a 3 by 3 permittivity tensor with 
components: 
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Fig. 1. Center slice (face) of Yee cell centered 

around ),,( kjiEx . There are two flux areas 
separated by the dielectric interface.  

 
At each point in the stencil for updating the H 

field components the volume average of the E 
fields is used. The fourth-order update equation 
for zH  obtained by discretizing Eq. 1 is: 
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where 1V  and 2V  are the volumes on sides one and 
two of the interface. It should be noted that Eq. (9) 
is identical in form to the standard (2,4) update 
equation, the only difference being that each term is 
replaced by the volume averaged field. There are 
analogous update equations for xH and yH .  

Standard fourth-order update equations 
for xD , yD  and zD  may be obtained by 
discretizing Eq. 2. For example: 
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The term ),,( kjiEx in Eq. (9) represents the 
volume averaged field in the Yee cell centered 
on ),,( kjiEx . For any point in the stencil with an 
interface in that cell, Eq. (10) is used to correct for 

the interface. This concept is illustrated in Fig. 2.  If 
there is no interface, then 

ε
x
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This algorithm amounts to using a corrected field 
value at each point in the stencil to account for any 
interfaces cutting through the stencil volume in an 
arbitrary way.  If the stencil volume has no 
interfaces the algorithm reduces to the standard 
(2,4). The entire algorithm may be briefly 
summarized as follows for one update: 

[1] Perform standard (2,4) update of D  
using xH , yH  and zH . 
[2] Test all 8 E cells for interfaces within the 
fourth-order stencil for updating H . 
If E cell has an interface then use the sub-cell 
tensor method:  

(a) Compute electric field from average 
electric flux density, DεE ⋅= −1

1
~ . 

(b) Obtain electric field on other side of 
interface, 12

~EE A=  .    
(c) Volume average electric field, 
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 else if the E cell has no interface then, 

(a) Compute electric field from 
ε

x
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 [3] Perform standard (2,4) update for H  using 
xE , yE and zE . 

 
 
 
   

 
 

  
                                        
 
    
 
 
 
 
 
 
 
Fig. 2. The stencil for the (2,4) FDTD method 

showing the 8 E field cells (squares) and H 
field cell (circle). Two of the E field cells 
are cut by an interface (dotted line) at an 
angle and require the sub-cell corrections. 
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Computational Cases: Six computational cases are 
performed to test the accuracy of the standard (2,4) 
and tensor (2,4) algorithms. Scattering problems are 
done with a plane wave scattering from a dielectric 
sphere with a large dielectric change to emphasize 
errors near the interface. The incident plane wave is 
polarized in the z direction and travels in the +y 
direction, as illustrated in Fig. 3. The total- 
field/scattered-field (TF/SF) formulation is used to 
introduce a plane wave into the volume. Uniaxial 
perfectly matched layers (UPML), 10 cells wide, 
are used for the absorbing boundaries. Case I uses a 
sphere with a relative dielectric constant of 4 and a 
uniform grid spacing of 10 points per wavelength 
(ppw) in the sphere. The parameters for various 
cases are summarized in Table I.  
 
 
Table I. Parameters for Cases. 
 

Freq. 
(GHz) 

Dielectric 
Constant 

ppw Sphere 
Radius  

Case I     5.0      4    10     7.5 
Case II     5.0      4    20   15.0 
Case III     5.0      8    10     7.5 
Case IV     5.0      8    20   15.0 
Case V     5.0     12    10     7.5 
Case VI     5.0     12    20   15.0 

 
 

 

 
 
 

 
 
 

 
zeEE tkyii ˆ)(

0
ω−=  

 
Fig. 3.  Diagram of incident wave, dielectric sphere, 

coordinate system and y-cut at z value. 
 

Fig. 4 shows a typical computed cut for Case 
III, parallel to the y-axis and through grid point 
(x=0,z=1), near the sphere center. Shown is 
Ey(0,y,1) computed using the (2,4) tensor method 
and the (2,4) standard Yee method against the exact 
Mie series solution. Fig. 4 shows that the (2,4) 
tensor method agrees much better with the exact 
solution than the (2,4) standard method, along the 
entire cut.  

 
Fig. 4. Case III. Comparison of (2,4) tensor and 

(2,4) standard methods with exact Mie 
series. The sphere lies between grid points 
24 and 40. 

 
Fig. 5 shows a comparable cut for Ey(0,y,5) for 

Case V. The (2,4) tensor method is closer to the 
exact solution inside the sphere, at the sphere 
boundaries, and outside the sphere.  The standard 
Yee method also exhibits pronounced overshoots at 
the interfaces.  

 
 

 
Fig. 5. Case V. Comparison of (2,4) tensor and 

(2,4) standard methods with exact Mie 
series. The sphere lies between grid points 
56 and 72. 

 
 
Error Evaluation: In order to assess the relative 
errors of the tensor and standard methods a 
numerical comparison is made between the 
computed values and the exact Mie series solution. 
The solution is computed in spherical coordinates 
and transformed into Cartesian coordinates along 
cuts through the sphere (shown in Fig. 3), to 
correspond in space to the FDTD spatial cuts. 

x 

y 

y z 
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z 
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The following error measure function is used: 

∑
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This error function is computed along a cut through 
the sphere and extending 1 radius beyond the 
sphere boundary on both sides so that the cuts are 4 
radii in length. The exact value is taken to be the 
average of the analytical value at center of the Yee 
cell, obtained from the Mie series solution. Using 
the spatial average of the exact solution is 
necessary near the jump discontinuities to properly 
compare to the computed values which are really 
the average values at the center of the Yee cells.  
Table II shows the errors computed for the six cases 
along y-cuts at 4 different z values for increasing 
dielectric constants. The ratio r shown is the tensor 
average error divided by the standard average. 
Table II shows that r is about 0.3 at 20 ppw and .6 
at 10 ppw for the six cases. Cases II and IV both 
show a decrease of about 50% in the average error 
by going from 10 ppw to 20 ppw for the tensor 
method. The standard method shows worse 
convergence. Case VI shows only about a 20% 
decrease in the average error by going to 20 ppw. 
 
Table II. Errors for Cases I – VI. 

 
Case I ez(1) ez(4.5) ey(1) ey(4) av. 

ten(2,4) 1.79 2.30 2.31 2.11 2.13 

sta(2,4) 1.94 3.53 4.85 4.06 3.60 
             r=.59 

Case II ez(1) ez(8.5) ey(1) ey(8) av. 

ten(2,4) 0.61 0.88 1.46 0.98 0.98 

sta(2,4) 1.80 1.78 4.83 4.41 3.21 
             r=.31 
Case III ez(1) ez(4.5) ey(1) ey(4) av. 

ten(2,4) 3.98 5.62 2.54 3.13 3.82 

sta(2,4) 6.67 11.30 6.99 5.68 7.66 

             r=.50 

Case IV ez(1) ez(8.5) ey(1) ey(8) av. 

ten(2,4) 2.15 2.16 1.94 1.48 1.93 

sta(2,4) 4.64 4.95 6.26 7.00 5.71 

             r=.34 

Case V ez(1) ez(4.5) ey(1) ey(4) av. 

ten(2,4) 3.45 3.25 2.77 3.26 3.18 

sta(2,4) 3.86 5.33 8.31 5.32 5.71 

             r=.56 

Case VI ez(1) ez(8.5) ey(1) ey(8) av. 

ten(2,4) 2.66 2.90 2.67 1.67 2.48 

sta(2,4) 5.87 3.55 8.48 8.88 6.70 
            r=.37 

Efficiency: The (2,4) tensor is compared with the 
(2,4) standard Yee for total CPU time and 
additional memory requirements. The computations 
were all performed on an IBM p690 parallel 
computer using 16 processors. This case uses a grid 
size of 168×168×168 and 2000 time steps. The 
(2,4) tensor method uses 373 s of CPU time 
compared to 251s for the (2,4) standard Yee, or a 
ratio of 1.49. The tensor method also requires some 
additional memory primarily to store the 9 1~−ε  
tensor components and the 9 transformation matrix 
components of the A~  matrix for each interface cell. 
For this case there are 786 interface cells for each 
of the staggered field positions xE , yE  and zE .  
Also the volume fractions must be stored for each 
interface cell. The total additional memory 
overhead compared with the standard (2,4) method 
amounts to only about 0.2 Mbytes for this case. 
 
Conclusions: A tensor method to handle dielectric 
interfaces has been combined in a straightforward 
way with a standard (2,4) FDTD algorithm and 
results in a computationally homogeneous 
algorithm suitable for parallel computing. The 
numerical cases, using scattering from a dielectric 
sphere, demonstrate that the combined (2,4) tensor 
method significantly improves the accuracy of the 
(2,4) standard Yee method near interfaces. The 
tensor method may be combined with any higher-
order FDTD algorithm, involving a large stencil.  
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