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Abstract−In this paper we describe an approach for 
solving large phased array problems, using the 
Characteristic Basis Function Method (CBFM) in 
conjunction with the Finite Difference Time Domain 
(FDTD) technique. The method is especially tailored 
for solving large arrays that may be covered with 
Frequency Selective Surfaces (FSSs). Several 
illustrative examples are provided and the results are 
validated for a number of test cases. This is 
accomplished by comparing the results derived by 
using the proposed technique with those obtained via a 
direct simulation of the entire array on a PC cluster. Of 
course, the direct problem places a heavy demand on 
the computer resources, especially as the problem size 
becomes large. In contrast to the direct method, the 
increases in the simulation time and the burden on the 
computer memory are incrementally small in the 
present approach, as the problem size is increased from 
moderate to large. 
 

I. INTRODUCTION 

 Numerical modeling of large but finite phased 
array antennas is a challenging problem because it 
places a heavy burden on the computer resources, 
especially when the array element is complex, and the 
antenna operates in a close proximity of an FSS 
radome whose period is not commensurate with that of 
the array. The array element is typically a microstrip 
patch, a Vivaldi or a waveguide, and the antenna may 
be covered by an FSS radome, whose elements may be 
patches, slots, cross-dipoles, etc., typically different 
from those of the array. Accurate prediction of the 
performance of such complex antenna systems is a 
very challenging problem indeed. 
 The Finite Difference Time Domain (FDTD) [1] 
method has proven to be a robust technique for 
modeling a wide variety of electromagnetic systems. In 
addition to its versatility and ability to handle complex 
geometries, it has the added advantage of being able to 
obtain the response of a device over a wide band of 

frequencies from a single run. Although the 
parallelization of the FDTD enables us to solve large 
problems using distributed processing, it is still 
desirable to reduce the solve time and memory 
requirements, whenever possible. Recently, the 
Characteristic Basis Function Method (CBFM) has 
been proposed as a technique for fast and accurate 
modeling of large structures both for scattering and 
radiation problems, and has been tailored for both the 
Method of Moments (MoM) and the FDTD [2-5]. The 
CBFM utilized in this work is based on the localization 
of the fields by using certain types of excitations to 
generate a set of basis functions with which to 
synthesize the solution to the original problems. 
 In this paper we extend the application of the 
CBFM to the problem of analyzing large phased array 
antennas, taking into account of the inter-element 
mutual coupling, which is often ignored in approximate 
methods—such as the pattern multiplication 
technique—in order to render the problem manageable. 
The validation is carried out by comparing the CBFM-
based results with those obtained by using the parallel 
version of the FDTD (PFDTD) on a cluster. It should 
be mentioned that the use of the CBFM allows one to 
solve much larger problems than would be possible by 
using the direct method, at little or no extra cost 
beyond that needed to solve of a moderate-size 
problem, which can be conveniently handled by using 
the PFDTD code, because of its manageable size. In 
addition, we show how the discrete phase progression 
of antenna elements which is modeled in the FDTD has 
a significant effect on the accuracy of the resulting far-
field patterns. 
 

II. THE CBFM TECHNIQUE 

 To further explain the underlying concepts of the 
CBFM for arrays, we start with an example of a 21 by 
21 rectangular waveguide array, shown symbolically in 
Fig. 1.  
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Fig. 1. Illustration of 21 × 21 rectangular waveguides. 

The picture symbolically shows the TE10 mode 
excitation in each waveguide. 

 
Each element of the array is excited in a TE10 

mode. The entire array is simulated by using the FDTD 
method and the electric field distribution at the 
frequency of operation in the aperture of the 
waveguides are derived (see Fig. 2 that shows the co-
polar components). We observe that the distribution of 
the fields at the edges and corners differs from those in 
the center region. Hence, we note that the inherent 
assumption in the pattern multiplication approach, 
namely that all the elements are identical, is not really 
valid.  Next, we investigate the case where only the 
center element of the same array is excited. We see 
from Fig. 3 that the effect of the inter-element mutual 
coupling is extended up to a few neighboring elements 
and is relatively strong in the E-plane (vertical 
direction) as compared to the H-plane (horizontal 
direction). Next, we argue that in the center region the 
field distribution only shifts in space (Fig. 4) as we 
move the location of the excitation source. We refer to 
these aperture distributions as the CBFs. We note that 
for the center region, the CBFs are relatively invariant 
to the location of the excitation source. Hence, we can 
bypass a considerable amount of computation involved 
in the generation of the CBFs by taking advantage of 
this feature. We can also use the localization approach 
to generate the CBFs for the edge and corner regions, 
and can reduce the computation time for these CBFs 
again by avoiding the duplicate calculations. 

 Once the CBFs have been constructed, we can 
synthesize the aperture field of the array via 
superposition, as shown in Fig. 5.  

Assuming that the array is mounted in a metallic frame, 
we can assume that the fields external to the array 
vanish in the plane of the array. We can then perform a 
near-to-far-field transformation to compute the pattern 
of the array. If we make the further assumption that the 

 
Fig. 2. Distribution of the co-polar component of the 

electric field in the opening of the 21 × 21 
rectangular waveguides. 
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Fig. 3. Distribution of the co-polar component of the 

electric field in the opening of the 9 × 9 
rectangular waveguides when only the center 
element is excited. 
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Fig. 4. Distribution of the co-polar component of the 
electric field in the opening of the 9 × 9 
rectangular waveguides when only the next to 
the center element is excited. 
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Fig. 5. Distribution of the co-polar component of the 

electric field in the opening of the 21 × 21 
rectangular waveguides reconstructed after 
proper shift and superposition. 

 
behavior of the aperture fields remains relatively 
unchanged when we move the source from one 
waveguide to another, even when we are close to edge, 
or a corner, we can construct the aperture field by 
simply shifting, superposing and, finally, truncating the 
synthesized aperture fields to within the interior of the 
metallic frame. The above procedure can be 
implemented equally well in the spectral domain by 
superposition of the spectral transforms of CBFs. 
However, at the end, it becomes necessary to perform a 
convolution of the resultant with a window function, 
which is equivalent to truncating the fields in the 
region external to the array aperture in the spatial 
domain approach. We have found that the first 
approach (spatial domain) is simpler to implement than 
its counterpart in the spectral domain. 
 Next, we present in Figs. 6 and 7 the far-field 
patterns, for the E- and H-planes, respectively, derived 
by using the different techniques. We see that the effect 
of mutual coupling is insignificant in the H-plane and 
that the pattern multiplication, though approximate, 
yields results with reasonably good accuracy in this 
plane. This is consistent with the results shown in Figs. 
3 and 4, in which the coupling in the horizontal plane is 
seen to be weak. However, the pattern multiplication 
approach is no longer accurate in the E-plane, and the 
improvement in accuracy in the CBFM results over the 
pattern multiplication method is evident in this plane. 
 We now summarize the CBFM as applied to the 
large but finite array problems. We begin in this 
method with the modeling of a moderate-size array, 
which is only large enough to capture the mutual 
coupling effects associated with the excited element. 
Once we have derived this aperture field, we can 
generate the results for the larger sizes of the array by 
shifting, superposing and truncating the above aperture 
field. We mention, once again, that an extrapolation of 
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Fig. 6. E-plane far-field pattern of the 21 × 21 

waveguide array obtained by using different 
techniques. 
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Fig. 7. H-plane far-field pattern of the 21 × 21 

waveguide array obtained by using different 
techniques. 

 
the solution from a moderate to a large-size array only 
requires a trivial amount of additional computational 
effort and memory usage, and the accuracy of the 
results improves as well. These are unique and very 
desirable features of the CBFM, not readily found in 
other approaches. 
 

III. BEAM SCANNING CASE 

 We now go on to show in this section that the 
method, described above, can be used for beam 
scanning as well. The only modification needed is the 
addition of appropriate phase shift to the CBFs to 
account for the progressive phase shift introduced in 
the array elements to enable the array to scan. To 
illustrate the application of the CBFM to this case, we 
consider the example of a 9 x 9 array of waveguides 
and use the procedure for synthesizing the aperture 
field to obtain the results for a 21 x 21 array with 60 
degree progressive phase shift of the elements along 
the H-plane, which corresponds to an 11 degree scan. 
The aperture field synthesis is accomplished by 
simulating the 9 x 9 array when only the center region 
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is excited, followed by aperture translation, 
introduction of the phase progression, superposition, 
truncation, etc., and, finally, the near-to-far-field 
transformation. Figure 8 shows the comparison of the 
CBFM results with that obtained by using the direct 
simulation of array 21 x 21 by FDTD, in which the 
progressive “time delay” has been added in the 
excitation of the elements corresponding to the 60 
degree progressive phase at the frequency of interest.  
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Fig. 8. H-plane far-field pattern of 21 × 21 rectangular 

waveguides (H-plane 60 degree progressive 
phase). 

The difference between the direct solution and the 
CBFM result is evident in this case. A close 
examination of the source of the error reveals that it is 
the discretization in the time delays introduced in the 
FDTD excitation that is responsible for this error, and 
this leads us to conclude that we need to enforce the 
time delay more precisely in the direct method to 
obtain the results with the desired accuracy. To 
mitigate the phase error problem, we need to 
deliberately decrease the time step to a value smaller 
than that dictated by the Courant condition from 
stability considerations. We illustrate this fact by 
referring to Fig. 9, which shows the linear phase taper 
introduced in the FDTD simulation along the 21 
elements in the H-plane (Fig 9). Next, in Fig. 10, we 
plot the deviation from the ideal linear phase for two 
cases: (i) Courant-based time-step; (ii) one-half of 
Courant-based time-step. We observe that decreasing 
the time step has the effect of reducing the error in 
phase shift from 10 to 4 degrees, and the resulting 
improvement in the corresponding the patterns is 
evident from Fig. 11. Figure 12 shows that the phase 
shift error can be further reduced by choosing smaller 
time steps and, as expected, this helps reduce the 
deviation of the pattern from the expected exponential 
decrease of the side lobes (see Fig. 13).  
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Fig. 9. Linear phase taper introduced in the FDTD 

simulation. 
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Fig. 10. Reduction of the phase errors when the time 

step is shortened by a factor of two from that 
of the Courant condition. 
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Fig. 11. Change in the Pattern with the reduction in the 

time step. 
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Fig. 12. Further reduction of the phase error when the 

time step is 0.1 of Courant condition. 
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Fig. 13. Comparison between the patterns with time 

delay equal to 0.1 Courant condition and that 
obtained by using CBFM. 

 It is worthwhile mentioning here that it is not 
necessary to significantly reduce the time step--which 
leads to a long simulation time--if we are only 
interested in modeling the array single frequency at a 
time. This is because we can always find an adjusted 
time-step, which is not much smaller than the Courant-
based time-step, whose integral multiple equals the 
required time delay, and whose use essentially 
eliminates the phase errors. For instance, in the 
previous example, we can choose a time step that 
equals 0.9432 of the Courant time-step so its integral 
multiple is exactly equal to the time delay. The 
maximum error between the elements then reduces to 
levels below a few thousandth of a degree as shown in 
Fig. 14, and the pattern (see Fig. 15) is identical to that 
obtained by using a time-step equal to a tenth of the 
Courant-based time step. Note that, with this 
modification in the direct FDTD solution, we again 
obtain an excellent agreement (see Fig. 16) between it 
and the CBFM, albeit for a fixed frequency. (The time 
step has to be reset as the frequency is changed in order 
to maintain the accuracy of the direct solution). 
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Fig. 14. Phase error for the time step of 0.9432 of 

Courant condition. 
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Fig. 15. Comparison between the patterns with time 

steps equal to 0.9432 and 0.1 Courant 
condition. 
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Fig. 16. Comparison between the direct H-plane 

pattern employing 0.9432 Courant for the time 
step and that generated by CBFM. 

 On the basis of the above study, we conclude that 
one has to be careful while generating the direct 
solution during the process of validating the CBFM 
result to ensure that the former is sufficiently accurate. 
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Of course, we realize that the above phase error 
problem would not exist if we were to carry out the 
simulation in the frequency rather than in the time 
domain.  
 Earlier we had mentioned that the CBFM 
technique does not suffer from the phase error because 
the phase shifts are introduced directly and precisely in 
the aperture. However there is an exception to the 
above statement that we should bring to the attention of 
the reader. The phase error may also exist in the CBFM 
analysis, unless the time delay is adjusted to minimize 
or eliminate it, when we derive the aperture basis 
functions by exciting a cluster of elements in the array, 
rather than a single one. As detailed in the next section, 
this type of excitation is employed, for instance, when 
we are modeling composite arrays, comprising of 
phased array antennas covered with FSS radomes, 
whose periods are dissimilar. For this configuration, we 
excite a macro-unit cell of the antenna-radome 
composite to generate the basis functions, and we 
introduce a progressive time delay for the scan case 
within this macro-cell.  We reiterate that this error does 
not exist for the case of single element excitation and, 
more importantly, when we extend the results from a 
moderate array to a larger one using the CBFM, since it 
carries out the phase shifting artificially, independent 
of the FDTD simulation. 
 

IV. COMPOSITE ARRAYS 

 For the last example, we apply the CBFM to a 
composite array structure, comprised of phased array 
antenna covered by an FSS radome, depicted 
symbolically in Fig. 17. It shows a waveguide array 
covered by a loop-type FSS radome, and we note that 
the periodicities of the two are not the same.  

Macro unit cell: 3x3 Rect.WG 
subarray and a 2x2 FSS structure

Top viewTop view  
Fig. 17. Illustration of the 3 x 3 array of waveguide-

with-FSS macrocell. 

To tackle this problem using the CBFM, we define a 
macro-unit containing 3 x 3 waveguide array, covered 
by the 2 x 2 loop array. To implement the CBFM for 
this problem, we again simulate a moderate-size array 
of 3 x 3 macro-unit cells, and then use the result of this 
simulation to synthesize the aperture distribution of a 
larger array comprising of 441 waveguides. In the 

simulation of the 3 x 3 macro-unit cells we have to 
excite the waveguides of the center macro-unit cell in 
the progressive time delay in order to scan 11 degrees 
along the H-plane. As explained in the previous 
section, to achieve the required accuracy we need to 
adjust the time step such that an integral multiple of 
this step exactly equals the required time delay for the 
corresponding beam scan at the frequency of interest. 
Once again, to validate the CBFM result, we carry out 
a direct simulation of the entire array using a parallel 
FDTD code running on a cluster of computers. Similar 
to the previous example, we adjust the time step for the 
required time delay. The comparison between the two 
results, shown in Fig. 18, demonstrates that the CBFM 
results are quite accurate. We reiterate, once again, the 
fact that the extension to larger arrays merely requires a 
post-processing of the data obtained previously, and 
does not require additional simulation that can be time-
consuming. Fig. 19 verifies the above statement and 
shows that the patterns obtained by CBFM and direct 
simulation for a 3969 waveguide array are in good 
agreement with each other. It goes without saying that 
direct simulation is very expensive to obtain for this 
large problem, as it requires sizable computational 
resources in terms of CPU time and memory. On the 
other hand, the CBFM can handle arbitrarily large 
arrays with little difficulty, and with only a slight 
increase in the computational burden.  
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Fig. 18. H-plane far field pattern of 7 x 7 array of 

waveguide-with-FSS macrocell (441 
waveguide elements). 

 
We close this section with one final comment on the 
slight differences between the direct and CBFM results 
for wide angles that are present in the pattern plots 
appearing in both Figs. 18 and 19. Our experience 
shows that, for large problems being simulated directly, 
it becomes necessary to extend the size of the 
computational domain in the vertical direction in order 
to reduce the spurious reflections from the top surface 
of the perfectly matched layer (PML) boundary that 
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Fig. 19. H-plane far field pattern of 21 x 21 array of 

waveguide-with-FSS macrocell (3969 
waveguide elements). 

introduce errors at wide scan angles. Obviously, 
moving the PML boundary further away increases the 
problem size even more in the direct simulation case, 
and often renders the problem unmanageable. 
However, we note that the levels of these spurious 
reflections from the PML boundaries are much lower 
in the CBFM, since the simulation is carried out for a 
much smaller geometry than in the direct simulation. In 
fact, we have found that, for large problems, the CBFM 
results can be more accurate than the direct solution, 
especially at wide angles. 
 

V. CONCLUSION 

 In this paper we have presented a novel approach, 
based on the Characteristic Basis Function Method 
(CBFM), for solving large phased array problems that 
may be covered with an FSS radome. A key feature of 
the method is that it builds on the solution of a 
moderate-size problem, which is manageable in terms 
of CPU memory and time, to construct the solution of a 
much larger problem, with little extra computational 
effort. Numerous representative examples have been 
included in the paper to validate the proposed 
approach, both for phased arrays and array-radome 
composites. Although not discussed in this paper, the 
CBFM has been useful for solving large-body 
scattering problems as well, including radar targets and 
antennas mounted on complex platforms.  
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