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Abstract –This paper presents a hybrid numerical-
asymptotic technique for the analysis of large peri-
odic microstrip arrays. In the solution of a typical
array problem, both macro-scale and element-scale
spatial variations of the electromagnetic quantities
are encountered. For large periodic arrays, the trun-
cated periodicity induces a macro-scale behavior
that is weakly dependent on the radiating elements
themselves, but strongly dependent on the array
periodicity and phasing. To incorporate this global
phenomena, appropriate macro-scale functions are
used in the framework of a method of moment
solution. These macro-functions are associated to
Floquet wave induced diffracted waves and guided
waves, excited at the array boundary. The properties
of these functions are discussed here. The technique
is applied to the simple but significant case of
printed dipole array, in order to demonstrate the
effectiveness of the approach.

I. INTRODUCTION

Modelling large periodic array antennas involves
critical issues relevant to the intrinsic multi-scale
features of these structures. Macro-scale spatial vari-
ations coexist with element-scale variations which
require much-smaller than wavelength discretiza-
tion. These latter are due to element shape, and are
responsible of quasi-static interactions which often
dominate the frequency response of the antenna
input impedance. On the other side, macro-scale
variations are strongly dependent on the periodicity
of the array and on the phasing of the excitation.
Aim of this paper is to highlight such basic macro-
scale phenomena and to incorporate them, as array-
domain basis functions, into a full-wave method of
moment (MoM) analysis of the entire structure. In

order to simplify the treatment, we will refer to
simple configurations constituted by finite periodic
arrays of printed dipoles on a grounded dielectric
slab.

The approach based on the MoM solution of
integral equations is largely used for array prob-
lems. It is well known, however, that conventional
formulations are severely limited by the problem
size. Large and very-large arrays are often treated
using the approximation of infinite periodic structure
[1], [2]. Under this hypothesis, the electromagnetic
analysis is reduced to that of a single periodic cell,
by representing the Green’s function of the infinite
array as a summation of Floquet waves (FWs). This
approach, although computationally very efficient,
cannot be rigorously applied when the array has a
finite extension, since FWs do not constitute a com-
plete basis. The truncation effects are particularly
relevant for elements near the array edge and, for
wide scan angles, even for elements at the center
of the array. Moreover, in the case of arrays printed
on a stratified dielectric media or with a dielectric
cover, the array truncation may excite guided waves
(either surface waves (SWs) or leaky waves (LWs))
that cannot be predicted through the analysis of the
infinite periodic array. These guided waves cause
large oscillations of the current amplitude over the
array and are responsible of scan-blindness effects in
phased array antennas [3]. The presence of SWs can
be detected also in finite free-space dipole arrays,
when the array operates below the resonance and
the inter-element spacing is smaller than half of a
wavelength [4].

On the other side, a brute force application of
the MoM to the finite array leads indeed to large,
dense and sometimes ill-conditioned matrices, with
a consequent huge memory occupation and CPU
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time. In order to overcome these problems, synthetic
[5] or characteristic [6] basis functions have been
recently proposed. These basis functions are defined
from the solution of small-size numerically-tractable
problems, and then used in the MoM solution of
the large problem. This allows one to incorporate
the small- and intermediate-scale features of the
structure, while maintaining a reduced number of
unknowns.

Fig. 1. Waves excited by Floquet waves at a finite
array of linearly phased elementary dipoles printed
on a grounded dielectric slab: (a) spherical vertex-
excited (space) diffracted wave, (b) conical edge-
excited (space) diffracted wave, (c) planar edge-
excited surface wave, (d) cylindrical vertex-excited
surface wave.

In this paper, the use of problem-matched macro-
scale basis functions is proposed, to obtain a com-
pression of the MoM matrix, provided that a suitable
integral equation is derived in order to isolate the
edge-induced phenomenology. The basic principles
of this technique have been introduced in [8]-[10]
for free-space arrays, such as dipole or slot arrays
as well as open-ended waveguide arrays, and it is
extended here to arrays composed of planar radiat-
ing elements printed on or embedded in dielectric
stratifications.

The definition of macro-scale functions is based
on a high-frequency analysis of the radiation
and scattering by truncated periodic arrays. The
frequency-domain phenomenology of wave excita-
tion in truncated periodic arrays has been exten-
sively analyzed in a series of recent papers dealing
with semi-infinite and sectoral arrays in free space
[11]-[13] and in stratified media [14]. The various
species of diffracted and guided waves excited in
a truncated periodic array are illustrated in Fig.
1, referring to a finite array of elementary elec-
tric dipoles on a infinite grounded dielectric slab.

Each periodicity-induced FW excites conical and
spherical space diffracted waves emanating from
array edges and corners, respectively. These wave
contributions are also present when the array is
in free-space. In addition, plane and cylindrical
guided waves (which can be either SWs or LWs)
are excited at edges and corners of the array. The
direction of propagation of edge-induced diffracted
and guided waves is such as to match the phase
velocity of the dominant FW along the edge. As
we will see next, while for elementary dipoles the
SW/LW wavenumber is dictated by the multilayered
dielectric environment [14], for actual finite-size
patches the SW/LW wavenumber is influenced also
by the presence of the periodic metallization, and
its calculation cannot leave apart the solution of the
dispersion equation.

The paper is organized as follows. Sec. III sum-
marizes the formulation that allows to separate the
different features of the array: the original integral
equation (IE) is decomposed into two equations, one
relevant to the infinite periodic problem, and one
relevant to the truncation-induced current. The infi-
nite periodic array IE is solved in Sec. IV by using
a conventional spectral-domain FW approach. Then
Sec. V presents the solution of the integral equation
associated to the truncation effects. Particular em-
phasis is given to the identification and construction
of the array-domain basis function, which allows
for a numerically efficient and physically appealing
solution. Numerical results are presented in Sec. VI
to show the accuracy of the method as compared
with a conventional element-by-element technique.
Finally, some concluding remarks are traced in Sec.
VII.

II. INTEGRAL EQUATIONS
FORMULATION

The geometry of a finite rectangular periodic
array of printed dipoles is shown in Fig. 2. The array
is composed byx-oriented dipoles, with lengthL
and widthW (W � L), arranged on a rectangular
grid, with spatial periodicity denoted bydx and
dy. The grounded dielectric slab has thicknessh
and relative permittivityεr. The array excitation
may be provided by an incident plane wave (Fig.
2a) or by delta-gap sources (Fig. 2b), with uni-
form amplitude and linear phasee−jk0·r, where
an ejωt time dependence has been assumed and
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suppressed. In the previous expression,r = xx̂+yŷ
is the position vector in an arbitrary point of the
array plane,k0 = γxx̂ + γyŷ is the transverse-
to-z wavevector component of the excitation field,
where γx = k sin θ0 cos φ0, γy = k sin θ0 sinφ0,
k = ω

√
εoµo is the free-space wavenumber, and

(θ0, ϕ0) denote the direction of the scattered/radiated
main beam in the conventional spherical coordinate
system.
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Fig. 2. Finite rectangular planar periodic array
of metallic dipoles printed on a grounded dielectric
slab. (a) Scattering problem: incident plane-wave ex-
citation; (b) Radiation problem: delta-gap excitation.

An electric current distributionJ is defined on
the surface of the printed dipoles. Imposing the
vanishing of the total electric field at the perfectly
conducting dipoles yields the electric field integral
equation (EFIE)

χAE
s
tan(J) = −χAE

imp
tan (1)

where E
s
tan(J) is the tangential (to thexy-plane)

component of the electric field scattered by the
unknown current distributionJ and E

imp
tan is the

impressed tangential electric field. In Eq. (1),A

denotes the portion of thexy-plane occupied by
the conducting dipoles andχA is the characteristic
function of A (χA(r) = 1 if r ∈ A, χA(r) = 0 if
r /∈ A).

Following the procedure introduced in [7], [8],
the unknown electric current is decomposed as

J = χAJ∞ + Jf (2)

whereJ∞ is the infinite periodic array current, and
Jf denotes the ’fringe’ current, i.e. the perturbation
current induced by the truncation. We defineχAJ∞

as the Physical Optics (PO) approximation current,
where the PO terminology is used with reference to
the abrupt truncation (via the functionχA) of the
infinite array current onA. The currentJ∞ is the
solution of the EFIE pertinent to the infinite periodic
array,

χ∞E
s
tan(J∞) = −χ∞E

imp
tan (3)

whereχ∞ is the characteristic function of the dipole
region of the infinite periodic array. Note that the
infinite array characteristic function can be written
asχ∞ = χA + χA∗ , whereA∗ is the portion of the
xy-plane external to the array regionA.

By inserting (2) into (1), and successively sub-
tracting (3) from (1), yields the Fringe Integral
Equation (FIE)

χAE
s
tan(Jf ) = χAE

s
tan(χA∗J∞) (4)

whose unknown function is the fringe currentJf .
The forcing term of Eq.(4),χAE

s
tan(χA∗J∞), rep-

resents the tangential component of the electric field
radiated by the infinite array current truncated on
the complementary array regionA∗. (Note that this
term is known once the infinite array current has
been computed.) Thus, the FIE (4) interprets the
fringe currentJf as the perturbation, with respect
to the PO approximation, which is necessary to
compensate for the absence of radiation from the
suppressed currentχA∗J∞, in order to ensure the
boundary conditions (1) onA. The total current of
the finite array is found, through relationship (2),
by the MoM solution of Eq. (3) and (4), with the
process described next.

III. INFINITE PERIODIC ARRAY
SOLUTION

The first step of the procedure is the MoM so-
lution of the integral equation (3) relevant to the
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infinite periodic array. The problem is solved by
using a conventional periodic MoM [1]. The current
J∞ of the infinite periodic array respects the pseudo-
periodic property imposed by the Floquet condition

J∞(r) = J0(r)e
−jk0·r (5)

where J0(r) is a doubly periodic function with
periodicity (dx, dy). Thus, the MoM computation
of the infinite array current is reduced to that of
a single periodic cell, by representing the Green’s
function kernel as a summation of FWs. The electric
current J0 on the dipole of the reference cell is
expanded into a set of basis functions (either entire
or sub-domain functions). By applying the Galerkin
method, the integral equation (3) is reduced to the
algebraic linear system

Z∞(k0, ω)Ī = V̄ (k0, ω) (6)

where, for the sake of convenience, we have ex-
plicitated the dependence of the matrixZ∞ and
of the vectorV̄ (and consequently of the unknown
coefficients vector̄I) on the excitation wavevector
k0 and (angular) frequencyω.

IV. FRINGE INTEGRAL EQUATION
SOLUTION

The solution of the FIE is expressed in terms of
diffracted and guided wave contributions associated
to the truncation effects. The unknown fringe current
Jf is expanded using array-domain basis functions,
associated to diffracted wavesFd

i,µ and to guided
wavesFGW

i,ν ,

Jf (r) ≈
∑

i

[

∑

µ

ai,µF
d
i,µ(r) +

∑

ν

bi,νF
GW
i,ν (r)

]

(7)
whereai,µ and bi,ν are unknown coefficients to be
determined through a MoM scheme. In the previous
expressions, the first subscript (i = 1, . . . , 4) denotes
the edge numbering of the rectangular array, while
the second subscriptµ (ν) denotes the diffracted
(guided) wave. The array-domain basis functions are
obtained by multiplication of the element-scale cur-
rent Jd

i,µ and J
GW
i,ν with the macro-scale functions

fd
i,µ andfGW

i,ν , respectively,

F
d
i,µ(r) =

∑

rnm∈A

J
d
i,µ(r − rnm)fd

i,µ(rnm) (8)

F
GW
i,ν (r) =

∑

rnm∈A

J
GW
i,ν (r − rnm)fGW

i,ν (rnm). (9)

Details on the selection and construction of the
macro-scale and element-scale functions are given in
the following paragraph. It is worth noting that the
number of basis functions is completely independent
of the number of array elements, thus allowing the
numerical analysis of arbitrarily large arrays with
the same number of unknowns.
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Fig. 3. Ray description of macro-scale diffracted
and guided wave basis functions. The macro-scale
function includes an edge contribution plus two
end-point vertex contributions, ensuring the unform
continuity of the current at the shadow boundaries.
The propagation constant along the edge is fixed
by the excitation according the generalized Fermat
condition in (13) and (14).

A. Macro-scale functions: FW-matched diffracted
and guided waves

Each macro-scale functionfd
i,µ, fGW

i,ν includes
an edge contribution plus two end-point vertex
contributions, which ensure the uniform continuity
to the current (Fig. 3). The edge diffracted waves
are cylindrical wave which asymptotically propagate
with the speed of light and decay likeρ−3/2

i , where
ρi denotes the distance of the observation point
from the i-th edge. The vertex diffracted waves are
spherical waves with ray spreadingr−2

i , being ri

the distance from thei-th vertex. The exact ex-
pression of the FW-induced space diffracted waves
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and the relevant phenomenology is given in [8]-
[10]. The edge-excited guided waves decay asρ0

i

(inhomogeneous plane waves), thus providing the
dominant contribution to the fringe currentJf . The
propagation constant of the guided waves is dictated
by the environment and by the shape and periodicity
of the microstrip array elements. The problem of the
identification of the guided waves wavenumbers is
addressed in the following sub-section. The vertex-
excited terms are cylindrical waves originating from
the end-point of the edge with ray spreadingr

1/2

i .
In this latter case, we approximate the wavenumber
with that of the relevant edge term, by using the
criterion to compensate for the discontinuities at
the shadow boundaries. Actually, the propagation
constant of the guided waves excited in the array
varies with the azimuthal angle since the ’effective’
periodicity of the medium depends on this angle.
Nevertheless, it will be shown from the numerical
results that this approximation does not affect the
accuracy of the method.

B. Identification of FW-matched guided
wavenumber

The propagation constant of the guided waves
excited in the microstrip array differs from that
of the grounded slab modes, since it is affected
by the periodic loading effect of the finite-size
metallic patches. Indeed, the guided waves excited
in the microstrip array can be seen as a periodicity-
induced perturbation of those supported by the bare
grounded slab structure. The individuation of the
propagation constant of the array guided waves is
achieved through the solution of a homogeneous
resonance equation [15] which is obtained from Eq.
(6) by removing the excitation term, namely

Z∞(kGW , ω)Ī = 0. (10)

For any frequency, this equation admits non-trivial
solutions when the matrix determinant vanishes, i.e.,

det[Z∞(kGW , ω)] = 0 (11)

where the unknown is the guided-wave complex
transverse wavevector

k
GW = kGW

x x̂ + kGW
y ŷ GW = SW, LW.

(12)
When the propagation wavenumber is real (kSW

x,y =

βSW
x,y ), the corresponding mode is a bound (non-

radiating) SW. When the propagation constant is

complex (kLW
x,y = βLW

x,y − jαLW
x,y ), the mode is a

(radiating) LW. The elements of the matrixZ∞

involve a double summation in the spectral do-
main over the transverse FW wavenumberskGW

xp =

kGW
x + 2πp/dx and kGW

yq = kGW
y + 2πq/dy. Dif-

ferent branch choices are possible for the doubly
infinite number of spatial harmonics. The branch
choice for the wavenumber in the dielectric region
kzd,pq =

√

εrk2 − k2
xp − k2

yq (the superscript GW
has been suppressed for simplicity) is arbitrary, since
the Green’s function is an even function ofkzd,pq.
Each wavenumber in the semi-infinite air region
kz,pq =

√

k2 − k2
xp − k2

yq may be chosen to be
proper (negative imaginary part, corresponding to
a spatial harmonic that exponentially decays in the
z-direction) or improper (positive imaginary part,
corresponding to a harmonic exponentially increas-
ing in thez-direction). Since only physical solutions
must be retained, the branches are chosen according
the rules given next. Before proceeding further, it is
worth emphasizing that, since we are looking for
edge-excited guided waves, one component of the
propagation constant (the one along the edge) is
imposed by the phasing of the excitation.

In the SW case, the FW phase-matching condition
[14] along the edges of the array imposes

βSW
x = kFW

xp or βSW
y = kFW

yq (13)

for edges alongx or y, respectively, wherekFW
xp =

γx + 2πp/dx andkFW
yq = γy + 2πq/dy are the FW

transverse wavenumbers. Consequently, the only un-
known is the real propagation constant orthogonal to
the edge. In this case, all FW harmonics are in the
slow-wave region and the proper branch choice is
taken.

In the LW case, the phase-matching condition
imposes

βLW
x = kFW

xp , αLW
x = 0

βSW
y = kFW

yq , αLW
y = 0 (14)

for edges alongx or y, respectively. Note that, since
the transverse components of FW wavevectors are
real, the LW attenuation constant along the edges
is always zero. In this case, the unknowns are the
propagation and attenuation constant orthogonal to
the edge. For a radiating fast-wave harmonic the
physical solution correspond to the proper branch
choice when the harmonic is a backward wave (the
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group velocity is in opposite direction with respect
to the phase velocity), and to the improper one when
the harmonic is a forward wave [16].

Finally we note that, since in practical phased ar-
ray antenna or FSS problems only one FW harmonic
is propagating, the couple of indicesp, q in (13) and
(14) reduces top, q = (0, 0).

C. Element-scale functions

The element current distributionJd/GW
i,µ/ν (r), asso-

ciated to both diffracted and guided waves, has to
be determined, to construct the basis functions (8)
and (9).

In the case of guided-wave current,JGW
i,ν (r)

represents the eigenfunction of the homogeneous
system (10), which can be computed by setting to
unity one element of the vector̄I and then solving
for the remaining elements [17].

In the case of diffracted-wave functions, the ele-
ment current on the dipolesJd

i,µ(r) is assumed of
resonant type, without care on the sub-wavelength
details, which are indeed described by the infinite ar-
ray solution. For more complicated element shapes,
synthetic basis functions are generated by solving
a periodic array problem with a suitable excitation
[18].

V. NUMERICAL RESULTS

In this section, a sample of numerical results
is shown to validate the above technique and to
highlight some typical truncation effects of finite
microstrip arrays. The results obtained with this
technique (labelledT(FW)2) are compared with
those from a conventional element-by-element MoM
(El.-by-el. MoM) and with the (windowed) infinite
array approximation (PO approx.). In all cases, the
current on the dipoles is expanded in terms of PWS
basis functions.

First, a41 × 41 array is considered, with dipole
length L = 0.6 cm, width W = 0.1 cm, and
periodicity dx = dy = 0.8 cm. The dielectric
substrate has relative permittivityεr = 10.2 and
thicknessh = 0.1905 cm. An incident TM-polarized
plane wave is assumed to illuminate the array, with
the scattered main beam anglesθ0 = 40o and
ϕ0 = 20o. The operating frequency isf = 7
GHz. The propagation constants of the guided waves
excited at the edges of the array are computed by
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Fig. 4. Magnitude (in A/m) and phase (in degrees)
of the surface electric current sampled at the centers
of the dipoles on the central row of the array. Results
refers to a41 × 41 array of dipoles withL = 0.6
cm, W = 0.1 cm, dx = 0.8 cm, anddy = 0.8
cm. The dielectric substrate hasεr = 10.2 andh =
0.1905 cm. The array is excited by an incident TM-
polarized plane wave withθ0 = 40o andϕ0 = 20o.
The operating frequency isf = 7 GHz.

solving the resonance equation (11). Only one real
solution is found, corresponding to a non-radiating
SW. Complex roots associated to LWs are neglected
due to the high values of the attenuation constant.
The propagation constant of the SW excited by
the y-oriented edges is given by Eq. (11), with
the kGW

y = k sin θ0 sinϕ0 = 0.22k, that yields
kGW

x = βx = 1.197k. For the SW excited by
the x-oriented edges, the solution of Eq. (11), with
kGW

x = k sin θ0 cos ϕ0 = 0.604k, gives kGW
y =

βy = 0.920k. Thus, the transverse propagation
constant of the SW supported by the array iskGW =
|kGW | = 1.217k for the mode excited by they-
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of the surface electric current sampled at the centers
of the dipoles on the central row of the array. Results
refers to the41 × 41 array of dipoles described in
the caption of Fig. 4.

oriented edges, andkGW = |kGW | = 1.1k for
the mode excited by the thex-oriented edges. Note
that the phase constant of the SWs excited at two
orthogonal edges differs each other, due to the
anisotropy of theeffective periodic medium. Figs.
4 and 5 present the electric current (amplitude and
phase), sampled at the centers of each dipole, for the
dipoles on the central row and on the central column
of the array, respectively. An excellent agreement
is found between the present technique (solid line)
and the reference solution (dotted line). Also the
infinite array data (dashed line) are shown in the
diagrams, in order to appreciate the influence of
the fringe current contributions. In the E-plane (Fig.
4), this influence can be quantified in terms of a
large oscillation of the current amplitude around the
value of the infinite array level. The normalized far
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Fig. 6. Normalized far field scattered by the array
on the incidence plane. Results refers to the41×41
array of dipoles described in the caption of Fig. 4.

field scattered by the array on the incidence plane is
shown in Fig. 6. It can be noted that the crude PO
approximation (dashed line) fails in predicting even
the amplitude of the first side lobe.

In the previous case the dominating guided mode
was a bound SW. This mode does not radiate
directly, but affects the far-field pattern by virtue
of the diffraction at the truncation of the array.
A change in the nature of the guided wave may
happen when the frequency is varied. When one
of the spatial harmonics associated to the guided
wave enters the visible region, the wave becomes a
radiating LW, with a complex propagation constant.
To describe this phenomenon and its effects on the
array performance, we refer to a19 × 19 array of
dipoles, with lengthL = 0.39 cm, widthW = 0.01
cm, and periodicitydx = dy = 0.6 cm, printed on
a dielectric substrate with thicknessh = 0.1 cm
and relative permittivityεr = 2.55. The array is
illuminated by an incident plane wave from broad-
side, at frequencyf = 30 GHz. The diffracted and
guided waves excited at the array edges propagate
orthogonally to the edges. The dominant TM guided
wave is excited at they-oriented edges of the array
(direction of propagation along the dipoles), while
it is not excited at thex-oriented edges, due to the
polarization mismatch (direction of propagation or-
thogonal to the dipoles). The solution of the disper-
sion equation withkGW

y = 0, yields the propagation
constant of the dominant TM mode of the structure.
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The β − f diagram in Fig. 7, shows the behavior
of the normalized phase and attenuation constants
of the fundamental harmonic(p, q) = (0, 0) of
the wave in the frequency range(27 − 37) GHz,
together with the behavior of the normalized phase
constant of theTM0 surface wave of the grounded
bare dielectric slab. At the operating frequency, the
value of the propagation constant of the fundamental
harmonic isβx,00−jαx = (1.0607−j0.0071)k. The
(p, q) = (−1, 0) spatial harmonic of the dominant
TM mode is in theβx < 0 zone of the fast-wave
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Fig. 11. Normalized magnitude of theθ-component
of the electric field scattered by the array on theE-
plane, for (ϕ = 0o, θ0 = 36o) plane-wave incidence.
Results refers to the19×19 array of dipoles of Fig.
8.
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Fig. 12. Normalized magnitude of theθ-component
of the electric field scattered by the array on theE-
plane, for (ϕ = 0o, θ0 = 38o) plane-wave incidence.
Results refers to the19×19 array of dipoles of Fig.
8.

region; thus, representing a backward radiating LW,
with the imaginary part of the propagation constant
associated to the leakage of power. The direction of
maximum radiation of the LW, computed through
the relationshipθLW ≈ sin−1(βLW

x,−1,0/k), is ±37.6
degrees.

The results obtained with the present tech-
nique (solid line) are compared with the reference
element-by-element MoM solution (dotted line).
Fig. 8 presents the amplitude of the electric current

at the center of the dipoles along the central row
of the array. Fig. 9 shows the normalized scattered
far field on theE-plane. The dip, noticeable in the
far-field pattern around±37.6 degrees, is due to
the interference between the PO field and the field
radiated by the(p, q) = (−1, 0) harmonic of the
dominant LW mode excited at the two edges of
the array (those orthogonal to the dipoles). In the
case of a phased array antenna, this kind of LW
is responsible for the scan-blindness phenomenon.
Clearly, this effect cannot be predicted by a crude
PO approximation (dashed line in Fig. 9), since
it neglects the excitation of guided waves. Leaky
wave radiation is absent on theH-plane, as shown
in the far-field pattern of Fig. 10, due to the fact
that the leaky-wave pattern has a null on this plane
(analogously to the case of a TM mode excited by
a dipole on a grounded dielectric slab). In order
to better appreciate the effects of the LW radiation
on the scattered field, two additional cases are
considered with a plane wave incident along the E-
plane (ϕ = 0o) from directionsθ0 = 36 andθ0 = 38
degrees, that are slightly below and above the LW
radiation direction. Far-field results are shown in
Fig. 11 and Fig. 12, and are normalized with respect
to the maximum of the actual scattered field. In
both cases, it is evident how the PO approximation
dramatically fails in predicting the correct field. In
particular, for incidence atθ0 = 36 degrees, the
PO scattered field maximum is about9 dB below
the actual field maximum. Moreover, the direction
of the maximum is shifted of about1.5 degrees.
On the contrary, for incidence atθ0 = 38 degrees,
the PO scattered field maximum is about8 dB
above the actual field maximum, with a shift of0.5
degrees. These results demonstrate how the infinite
array approximation can lead to erroneous results in
certain conditions.

VI. CONCLUSIONS

This paper presented a study on the edge effects
in large periodic microstrip arrays. The analysis is
performed through a hybrid numerical-asymptotic
method, which allows to efficiently compute the
fringe current excited at the truncation of the array.
Based on physical considerations, this fringe current
is expanded in terms of array-domain diffracted
and guided wave basis functions. The unknown
coefficients are found through the numerical solution
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of a linear system, where the number of unknowns is
completely independent of the number of elements
in the array. Thus, this method constitutes an effi-
cient and effective technique to analyze large arrays.
Moreover, it provides a deep physical insight into
the truncation effects of large periodic microstrip
arrays, which can be an aid during the design
stage of a practical array. The technique has been
applied to the simple case of an array of microstrip
dipoles, in order to highlight the fundamental ef-
fects. The generalization to more general shapes
of the radiating element and to arbitrary stratified
dielectric layers can be performed following the
criteria furnished in this paper.
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