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Abstract - Traditionally, antennas have been designed 
as separate components, mounted on e.g. masts, 
buildings, and vehicles. Modern systems, however, 
require antennas to be integrated with existing 
structures. This paper discusses the analysis of 
conformally integrated array antennas using the hybrid 
UTD-MoM method, in particular arrays on doubly 
curved surfaces. Computed results are shown including 
singly and doubly curved surfaces. Most of the results 
are verified by measured results and calculated results 
obtained with a modal solution. 
 

I. INTRODUCTION 
 
The rapid growth in wireless communications, 
especially mobile communications, has caused the 
requirements on antenna systems to be more and more 
demanding. For future antenna systems a typical 
requirement is to integrate the antennas in the surface of 
different vehicles or platforms. For example, a modern 
aircraft has today many antennas protruding from the 
structure, for navigation, various communication 
systems, instrument landing systems, radar altimeter 
and so on. Integrating these antennas into the aircraft 
skin is highly desirable [1]. Antennas can also be 
integrated in various structures such as lampposts, 
chimneys, even trees, etcetera, in order to be more 
easily accepted by the public, as shown in Figure 1.  
 
The need for such antennas, conformal antennas, is 
even more pronounced for the large apertures that are 
necessary in e.g. satellite communication and military 
airborne surveillance radars. In order to ensure proper 
operation of these systems, it is important to be able to 
determine the characteristics of the antennas. Thus, 
efficient (numerical) methods suitable for the analysis 
of conformal antennas are needed. 
This paper will discuss modeling of conformal array 
antennas, in particular, antennas on electrically large, 
doubly curved surfaces. The emphasis is on the 
numerical implementation. The results are verified with 
measured data, but also with a modal solution. The 
layout of the paper is as follows; first, methods of 

analysis are discussed in general, but the main focus 
will be on the hybrid UTD-MoM method. This includes 
a discussion about geodesic ray tracing on surfaces with 
varying curvature. Finally, results are given to illustrate 
the accuracy of the hybrid method for singly and doubly 
curved PEC surfaces. The antenna element used 
through out this paper is the waveguide-fed aperture 
antenna, both with rectangular and circular cross-
sections. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Possible location for base station antennas [2]. 
 

II.  METHODS OF ANALYSIS 
 
Important steps in the analysis of conformal array 
antennas are to find the mutual coupling among the 
radiating elements and the (isolated and/or embedded) 
radiation patterns of the individual elements. A critical 
step in the analysis is therefore to find the 
electromagnetic fields on the surface and in the far-field 
in the presence of a complex and arbitrarily shaped 
body. This is, in general, a difficult problem since the 
surface is often large (in terms of wavelength) and it 
may be convex or concave or both. Furthermore, the 
surface can have edges and other discontinuities, and a 
dielectric layer can cover the antenna aperture.  
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The available methods are often divided into two 
categories; frequency domain methods and time domain 
methods. Frequency domain methods are probably the 
most commonly used methods for analysis of antennas, 
including conformal antennas. Thus, our focus will be 
on these methods -- the interested reader can find an 
overview of time domain methods (mainly FDTD and 
techniques to avoid staircase approximation errors) in 
[3]. 
 
The classical way of analyzing conformal antennas is to 
use a modal solution. Such a solution is possible to 
obtain only for some special cases like a perfectly 
conducting circular cylinder, elliptic cylinder, cone, or 
sphere [4]. However, if the geometry is more complex, 
e.g. a rotationally symmetric surface of arbitrary cross 
section, a modal solution is very difficult, if at all 
possible, to obtain. The analysis is also typically highly 
complex and suffers convergence problems when the 
size of the geometry is increased (in terms of 
wavelengths). Hence, the process of extracting 
numerical results can be difficult and very time-
consuming. A simplification of the modal solution for 
structures with rotational symmetry is to reduce the 3D 
problem to a spectrum of 2D problems by applying a 
Fourier transformation with respect to the symmetry 
axis as described by R. F. Harrington [5]. 
 
For arbitrarily shaped (3-D) bodies no exact analytical 
solutions exist. In the low frequency range, several 
reliable numerical procedures, e.g. method of moments 
(MoM) [6] and the finite element methods (FEM) [7], 
are available for solving the radiation/scattering 
problem. However, for higher frequencies, these 
numerical techniques become impractical since the 
associated matrix becomes very large. 
 
One way of avoiding these problems is to use a high 
frequency approach. The term high frequency means 
that the fields are being considered in a system where 
the properties and size parameters of the geometry vary 
slowly with the frequency. This is not a serious 
limitation in many cases since the minimum radius of 
curvature of the surface can be quite small. A 
commonly used requirement is 2 5kR ≥ −  (k is the 
wave number, R is the radius of the cylinder) for 
accurate results [8]. From an engineering point of view 
these conditions are often fulfilled for large bodies 
when the frequency is in the microwave frequency band 
or higher. 
There are a number of different high frequency 
techniques, or asymptotic techniques, available. The 
reason is that an asymptotic technique is often 
specialized for a certain problem and cannot be 
generalized easily. However, a general formulation is 
very desirable for efficient analysis of various realistic 

conformal antennas. A well known formulation is the 
ray-based uniform theory of diffraction (UTD) [9-11]. 
This approach has been successful and the solution is 
useful for different types of convex PEC surfaces, 
including doubly curved surfaces. Note, however, that 
UTD also has disadvantages as will be discussed later.  
 
If coated surfaces are considered there is no general tool 
for electrically large surfaces. For the special case of 
circular cylinders an efficient high frequency method is 
described in [12-13], valid in the non-paraxial region. 
For coated circular cylinders and spheres of moderate 
sizes, an efficient modal solution is described in [14]. 
 
An overview of different frequency domain methods 
suitable for conformal antennas, including a comparison 
of different methods, can be found in [3].  
 
 

III.   THE HYBRID UTD-MOM APPROACH 
 
As indicated in the previous section all methods have 
their advantages and disadvantages. To overcome the 
disadvantages a hybrid approach (a combination of 
different methods) is often used in practice. A 
commonly used method when analyzing conformal 
antennas is the hybrid UTD-MoM method, an 
alternative is the FE-BI method [15]. In the following, 
we will discuss the UTD-MoM method applied to 
waveguide-fed aperture antenna arrays on curved PEC 
surfaces. We will first present the general approach and 
then some aspects of the UTD formulation. Finally, the 
issue of finding ray paths (geodesics) on curved 
surfaces is described. 
 
A. General formulation 
The approach is based on the integral equation 
formulation, solved by the MoM. As will become clear, 
the general analysis is not any different from the planar 
case. However, it is more difficult to find the field 
representation outside a curved surface.  
 
Figure 2 shows the waveguide-fed aperture problem for 
aperture m with the computational domain divided into 
two regions, the interior and exterior regions. By using 
the field equivalence theorem [5, page 106] an 
equivalent (exterior) problem is obtained by covering 
the apertures with a perfectly conducting surface and 
introducing unknown equivalent magnetic current 
moments on the surface. These infinitesimal magnetic 
current moments then radiate in the presence of the 
curved perfectly conducting surface. 
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Figure 2. The interior and exterior domains at aperture 
m with the nth waveguide mode for a PEC surface. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. A symbolic picture of the physical and 
electrical ports in the antenna array. 
 
 
Applying the boundary condition for the tangential 
magnetic field results in the following integral equation; 
 

ext int
tan tan

ap apr S r S
H H

+ −∈ ∈
=           (1) 

where apS  is the set of all apertures, ext
tanH  is the 

external surface field caused by the equivalent magnetic 
current moments, and int

tanH  is the magnetic field in the 
interior region. 
 
Let us now consider an array with M apertures and N 
modes in each aperture. The antenna array can be 
treated as a M N×  port circuit according to Figure 3. 
Hence, the aperture magnetic field in the internal region 
is given as  
 
 

 
int
tan

apr S
H

−∈
≈  

( ) ( )
1 1

ˆ ˆ
M N

n n n n
g mn m m g mn m m

m n

Y E z e Y E z e+ −

= =

 × − ×  ∑∑ .       

(2) 
 
Equation (2) expresses the field expanded into a series 
of basis functions. Here, we have used the waveguide 

modes ( )n
me  in the waveguide as basis functions with 

unknown amplitudes mnE+  and mnE−  ( n
gY  is the modal 

admittance). The plus sign indicates a wave propagating 
towards the aperture and the minus sign a wave 
propagating away from the aperture Note that we have 
used a single mode index n to represent the triple mode 
index i, j, TE/TM where i, j are the usual mode indices 
and TE/TM is an index that indicate TE- or TM-mode. 
 
It should be noted that throughout this paper the 
transmitting apertures are fed by the dominant 
waveguide mode only. However, at the different 
waveguide openings, see Figure 2, infinitely many 
reflected evanescent modes are generated. Also at the 
receiving apertures infinitely many modes are generated 
from the external field. A single/dominant mode 
approximation is often used, but for a more accurate 
analysis higher order modes are needed as will be 
discussed later.  
 
To solve for the unknown modal amplitudes, (2) is 
inserted into (1). The discretized integral equation is 
then transferred to a matrix equation by using 
Galerkin’s method (i.e. weighting functions = basis 
functions) with the inner product defined as 

( ),f g f g dS= ⋅∫∫ . We get 

( ) ( )ext ext
tan tan

1 1

ˆ ˆ, ,

ap

M N
n q n q

mn m p p mn m p p
m n

r S
qn qn
pm pm

E H e z e E H e z e

Y Y +

+ −

= =

∈

 
 
 × + × = 
 
  

∑∑

 
 

1 1

ˆ ˆ ˆ ˆ, ,  ,

δ δ

+ −

= =



 × × − × × ∀

 

∑∑
M N

n n q n n q
g mn m m p p g mn m m p p

m n qn qn
pm pm

Y E z e z e Y E z e z e p q

     (3) 
As seen, the mutual admittance ( )qn

pmY  between modes 
n q→  in the apertures m p→  is directly identified in 

mnE−  mnE+

 

Equivalent 
magnetic current 
moments 

Exterior 

Interior 

radH  ˆmz  
radH  
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equation (3). Hence, both the mutual admittance and the 

unknown modal amplitudes ( ),mn mnE E+ −  can be found 

if ( )ext
tan

n
mH e  is known. From the modal amplitudes the 

far-field radiation pattern can be calculated.  
 
A very important parameter in the analysis of 
(conformal) array antennas is the mutual coupling 
among the elements. Of interest is the scattering matrix 
which can be found easily since the mutual admittances 
are directly identified in (3). The scattering matrix is 
given by the following formula 

( )( ) 1−= − +S I Y I Y .             (4) 
Note that two cases can be distinguished. The first is the 
mutual coupling between two elements only, referred to 
as the isolated coupling since no other elements are 
involved. The other elements of the array are assumed 
to be absent (short circuited in case of apertures). For 
this case, Y  is a 2 2×  element matrix calculated as a 
function of the spacing or any other parameter of 
interest. With all elements present we use the term array 
mutual coupling. The array mutual coupling is obtained 
by considering all elements in the array, thus Y  is an 
M M×  element matrix where M is the number of 
elements in the array. If higher order waveguide modes 
are used in the analysis the matrix is of the size 
MN MN×  where N is the number of modes used (see 
equation (3)). 
 
An important observation is that the integral equation is 
referred to the curved aperture plane. However, the 

basis functions ( )n
me  are valid in a planar surface in a 

cross section of the waveguide. See Figure 4 where the 
planar surface in the waveguide is shadowed. Despite 
this fact, the fields at the convex surface are often 
assumed to be the same as in the waveguide and the gap 
in Figure 4 is disregarded.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. The geometry at the aperture. 

In many applications this approximation may be 
tolerable, especially if the radius of curvature is large in 
the “wide” plane of the aperture. But, if the radius of 
curvature becomes smaller, the error may become too 
large. One way of reducing the error is to add a phase to 
the aperture field at the planar surface to include the 
small distance to the curved surface. This is done in the 
simulations presented in this paper. 
 
B. The Uniform Theory of Diffraction (UTD) 
The uniform theory of diffraction was developed to 
retain all the advantages of GTD and overcome the 
failure of GTD in the shadow boundary transition 
region. Assuming that the principal radius of curvature 
of the surface is large in terms of wavelength, and 
slowly varying along the surface, it was possible to 
obtain uniform asymptotic solutions to the canonical 
problems of diffraction by perfectly conducting circular 
cylinders and spheres [9-11]. These solutions can then 
be generalized to arbitrary convex surfaces with the aid 
of the local properties of high frequency wave 
propagation.  
 
In this section, we limit the discussion to the surface 
field only, since it is needed in order to solve the 
integral equation for the unknown modal amplitudes 
(and the mutual coupling)#. The formulas will, however, 
not be repeated here, and the reader is referred to the 
papers indicated above for all details. The focus will be 
on a couple of complications that exist in the UTD 
solution. 
 
It is well known that the UTD solution experiences 
problems when the ray path approaches the axial 
direction of the cylindrical geometry. The reason is that 
the approximation used for the fields in terms of Fock 
type Airy functions cannot be completely justified in 
the paraxial region. However, limiting forms for the 
components of the surface dyadic Green’s function can 
be obtained for the PEC surface. This approach seems 
to give results accurate enough, and is used throughout 
this paper. But there is also an alternative, more 
accurate, solution available for the paraxial region. It is 
obtained by including higher order terms in the 
asymptotic evaluation of the exact solution and was 
presented by Boersma and Lee [16].  
 
Another disadvantage with UTD is that small details 
cannot be included. Due to the approximations used in 
the derivation, the distance between the source and field 
points must be larger than circa 0.5λ . This is a 
problem, especially when calculating the self 
admittance since the dyadic for the surface magnetic 
                                                 
# The radiation pattern can be found using the formulas in 
[10] once the modal amplitudes are found. 
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field has a 3s−  singularity as 0s →  (s is the distance 
between the source and field points). For the circular 
cylinder Yung et al. [17] has shown that it is possible to 
rewrite the dyadic for the surface magnetic field with 
the help of the planar Green’s function. Thus, a 
regularization can be obtained if the surface dyadic 
Green’s function G  is rewritten as  
 

pert.

cyl. pl.pl.
asympt. asympt.

G

G G G G= + −        (5) 

The second term in (5) can be viewed as a perturbation 
due to the curvature of the circular cylinder. 
Furthermore, note that the asymptotic cylindrical dyadic 
is still used in (5). This is possible, at least when 
calculating the self admittance of the dominant TE10 
mode as shown in [18]. The only requirement is that the 
cylinder radius exceeds about two wavelengths. This 
requirement is often fulfilled in most practical 
applications. An explicit expression for the self 
admittance of the dominant TE10 mode, based on the 
above approach, is found in [19]. The outlined approach 
can also be used for arbitrarily shaped singly curved 
surfaces by approximating the surface at the aperture 
location with a circular cylinder. The radius of the 
circular cylinder then equals the local radius of 
curvature at the element position.  
 
Another possible approximation for handling small 
separations between source and field points is to use a 
planar solution.. Comparison of the planar approach and 
the above mentioned regularization process has shown 
that the planar approximation gives satisfactory results 
for the geometries of practical interest. A rigorous study 
for doubly curved surfaces has, to the author’s 
knowledge, not been performed. But, it can be assumed 
that the planar approximation is accurate enough for 
most applications. Hence, in the calculations made in 
this paper the planar approximation is used both for 
singly and doubly curved surfaces. The result is 
satisfactory as will be seen later. 
 
C. Geodesics 
Before UTD can be applied to curved surfaces it is 
important to find the proper ray(s) that connect(s) 
arbitrarily located points on a smooth surface. For a 
correct solution, the rays must obey certain conditions 
in order to be valid geodesics on the surface. A 
complete treatment of this problem is beyond the scope 
of this paper, the interested reader is referred to 
textbooks on differential geometry (see e.g. [20]), but 
some highlights will be discussed with emphasis on 
doubly curved surfaces. 
 

In its most general form, the geodesics are given by a 
second order differential equation, which satisfies the 
generalized Fermat's principle. Unfortunately, the 
solution to the differential equation is often difficult to 
find explicitly; instead some kind of numerical (ray 
tracing) procedure has to be used. Anyhow, every 
solution (it may be more than one!) that fulfills the 
geodesic equation is called a geodesic, whether it is an 
arc of shortest distance or not. Thus, geodesics may be 
regarded as stationary curves rather than strictly 
shortest distances on the surface. Hence, a general 
definition of a geodesic is that ”along the geodesic the 
principal normal ( n̂ ) coincides with the surface normal 
( N̂ )”. Figure 5 illustrates a situation when a curve 
along the surface is not a geodesic. 
 
Fortunately, the ray tracing procedure can be simplified 
for certain geometries. This considerably reduces the 
numerical computations. The class of surfaces that can 
be analyzed in this way belongs to the geodesic 
coordinate system (GCS) [20], i.e. the parameter lines 
of the surface are orthogonal to each other. In these 
cases the geodesic equation is reduced to a first order 
differential equation. Examples of surfaces that belong 
to the GCS are any of the eleven surfaces defined by the 
Eisenhart coordinate system. Actually, the analysis 
presented here can also be extended to non-Eisenhart 
surfaces. The only requirement is that the surface can be 
defined in the GCS. One example of a non-Eisenhart 
surface is the ogive, which is of great interest in 
aerospace engineering since it can describe many of the 
shapes encountered in the area. The ogive is not a 
coordinate surface of an Eisenhart coordinate system 
but can be identified as the coordinate surface of the 
bispherical coordinate system [21], which fulfills the 
requirements. Thus, a straight forward analysis can be 
performed for many geometries of interest within the 
conformal antenna area. 
 
 
 
 
 
 
 
 
 
 
Figure 5. A curve along a surface, but not a geodesic 
surface ray. 
 
Assume that the parametric equation of the surface is 

( ), ,  1...3i ix X u v i= =  where u and v are the 
curvilinear coordinates, within a certain closed interval. 

Not a geodesic. 

n̂  N̂  
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Then, the geodesic equation for the surfaces belonging 
to the GCS is given as 
 

( )

( )
2

,

α β
α

α

±
= +

−

ℑ

∫ Ev u du
G G

u

     (6) 

where E and G are two out of three so called first 
fundamental coefficients [20]. α  is a constant of 
integration, known as the first geodesic constant. The 
±  sign in front of α  depends on whether v is 
monotonically increasing or decreasing with u. β  is 
the second geodesic constant. The physical significance 
of α  and β  is that they uniquely characterize a 
geodesic.  
 
The solution to (6) provides the general solution for the 
specific geometry. To find the particular solution that 
connects two points on a surface the geodesic constants 
α  and β  have to be found. Since the positions of the 
different antenna elements are known, as well as the 
field or diffraction points, α  and β  can be found by 
solving the following system of equations 
 

( )
( )

start start

stop stop

, ,

, .

α β

α β

= ℑ +

= ℑ +

v u

v u
   (7) 

The analysis is facilitated since the integral in (6) can be 
solved in closed form for the surfaces defined by the 
Eisenhart coordinate system! Furthermore, both the ray 
parameters of the differential type as well as the integral 
type in the UTD formulation can be found directly for 
the geometries discussed here with the aid of 
differential geometry. In fact, the only unknown in 
these expressions is the first geodesic constant α . 
Hence, the accuracy of the results obtained with UTD 
depends exclusively on the accuracy of the first 
geodesic constant α . As a consequence some authors 
have called the method the geodesic constant method 
(GCM) [22]. 
 
Analyzing singly curved surfaces is straightforward 
since they are developable surfaces. Thus, they can be 
unfolded and analyzed as flat surfaces and the key 
parameters in the UTD formulation are obtained from a 
two-dimensional analysis. Hence, they can be studied 
directly without solving the geodesic equation.  
 
More interesting is the solution of the geodesic equation 
for doubly curved surfaces. Any rotational symmetric, 
doubly curved surface can be described, in parametric 
form, as 

( ) ( ) ( )cos ,  sin ,  = = =x f u v y f u v z g u         (8) 
 
and the solution to the geodesic equation (6) becomes 

( )
( )( ) ( )( )

( ) ( )( )

2 2

2 2

f u g u
v u du

f u f u

α
β

α

′ ′± +
= +

−
∫ .    (9) 

 
For the case of a sphere ( sin cos ,x a θ ϕ=  

sin sin ,y a θ ϕ=  )cosz a θ=  the geodesics are given 
by: 

1
2 2 2

costan
sina

α θϕ β
θ α

−  
= − + 

 − 
. (10) 

 
The paraboloid of revolution ( cos ,x au ϕ=  

sin ,y au ϕ=  )2z u= −  has the following solution to 

the geodesic equation: 
2 2 2 2 2

2 2 2 2 2 2

2 2 2
1

4 2

4 2ln
4 2

      sin .
4

α αϕ
α

α β
α

−

+ + −
= +

+ − −

 −  +
 + 

a a u a u
a a a u a u

a a u

u a

  (11) 

 
Additional explicit formulas for geodesics on singly and 
doubly curved surfaces are found in [3]. 
 
One important factor, as already indicated, is that the 
accuracy of the field solution depends on the accuracy 
of α . It has been stated that α  must be computed 
accurately with up to eight decimal places for a given 
arbitrary set of source and observation points [23]. By 
changing the value of α  from the correct result the 
angular distance will change resulting in a shorter or 
longer geodesic. In the analysis of conformal antennas 
some surface-ray parameters will then change and in the 
worst case give unsatisfactory results. To keep the 
angular distance within one tenth of a degree (assuming 
the field and observation points are at the same z-value 
of a paraboloid) α  has to be computed accurately up to 
four decimal places for this example. If eight decimals 
are correct the angular difference will change no more 
than about o0.000005  in this case. Another example is 
shown in Figure 6 where a paraboloid is considered 
with: 1.0a = , start 0.5u = , stop 2.5u =  and 

o
stop start 130ϕ ϕ− = . In this example the correct 

geodesic is shown together with two geodesics when 
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the correct value of α  is increased and decreased, 
respectively, with 1%. The result is an angular 
difference of circa 3 degrees. Hence, as shown here, it 
is probably not necessary to compute α  with up to 
eight decimal places in the practical analysis of 
conformal antennas. 
 
Another important factor when analyzing doubly curved 
surfaces is the geodesic splitting phenomenon. It 
appears for certain combinations of source and 
observation coordinates for which the geodesic equation 
can result in two distinct values for α , thereby 
resulting in two distinct geodesics for a given direction 
and order. This may be surprising since it is well known 
that between any two arbitrarily located points on a 
cone or a cylinder, there exists primary and higher-
order (of multiple encirclements) geodesics in both 
anticlockwise and clockwise directions. However, the 
number of geodesics of a given order and direction 
never exceeds one. In contrast, for doubly curved 
surfaces the geodesic of a given order and direction can 
be split into two! For the paraboloid this phenomenon 
appears when the start and stop positions have the same 
z-value, but with an angular distance o180≥ . Figure 7 
shows an example of the splitting phenomena for a 
paraboloid with 1.6a = , start stop 2u u= = , and 

o
stop start 220ϕ ϕ− = . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. One example where the angular difference has 
changed with 3 degrees when α  was changed ±1%. 
 
Unfortunately, there is no a priori method of identifying 
which geodesics are the dominant contributors to the 
total surface ray field. Thus, the splitting phenomenon 
gives, in general, an unavoidable doubling of the 
computations. However, in most cases the arc length  

Figure 7. An example of geodesic splitting.  
 
gives a hint about which geodesic is the dominant one 
since the surface ray field is decaying as a function of 
the arc length. Hence, the situation in Figure 7 is not 
critical since the geodesic traveling in the opposite 
direction around the surface is the shortest one. But for 
a more general surface there can be situations when two 
(or more) geodesics have about equal lengths. In such 
cases the arc length is no longer a useful parameter for 
finding the dominant surface ray path. One option is 
then to consider the radius of curvature since the loss of 
energy is also due to diffraction from the surface ray. If 
this does not give information enough all geodesics 
have to be included in the analysis. 
 
 

IV.   NUMERICAL RESULTS 
 
This section discusses several examples to illustrate the 
accuracy and usability of the UTD-MoM method. Both 
singly and doubly curved PEC surfaces are considered. 
If a coating is present the problem becomes more 
difficult, especially for electrically large surfaces as 
discussed earlier. The results shown are in many cases 
verified with measured results, but the modal solution is 
also used to study circular cylinders with small radii. 
 
A. Singly curved surfaces 
Antennas mounted on singly curved surfaces are an 
important class of conformal arrays for applications 
where a large (azimuthal) angular coverage is required. 
These types of antennas have been used in many 
experimental radar and communication systems. An 
overview of different types of antennas is found in e.g. 
[3, 24]. 
 
The first example to be considered is a PEC circular 
cylinder with radius 0.3R =  m. The array consists of 
54 rectangular aperture radiators with circumferential 
polarization. The size of the apertures is 0.016 m ×  
0.039 m and they are located in three rows with 18 
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elements in each row. Each row corresponds to an 
angular interval of approximately 120 degrees and the 
frequency is chosen to be 4.3 GHz (the cutoff frequency 
for the dominant TE10 mode is ≈ 3.8 GHz). These data 
correspond to an experimental antenna built by Ericsson 
Microwave Systems AB in Mölndal, Sweden in 1998. 
The antenna is shown in Figure 8.  
 
As may be seen, the cylinder is truncated at the rear due 
to practical reasons. Hence, no surface rays encircling 
the cylinder were taken into account in the calculations 
(i.e. only a single surface ray was accounted for in the 
simulations). Furthermore, during the measurements, 
absorbers were placed on the edges to minimize edge 
effects. Note that the aperture in the lower left corner is 
aperture number 1, and aperture number 54 is located in 
the upper right corner. 
 
The results shown here is the array mutual coupling, i.e. 
the coupling among the elements in the array 
environment with all elements present and terminated in 
matched loads. Additional results (other frequencies, H-
plane coupling, radiation patterns and so on) can be 
found in [3, 25]. Figure 9 shows the amplitude and 
phase of the mutual coupling along the center row of 
the array, i.e. E-plane array coupling. In the calculations 
only a single waveguide mode is used. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. The experimental antenna. Courtesy of 
Ericsson Microwave Systems AB. 
 
Even with a single mode approximation, the mutual 
coupling diagram shows good agreement between  the 
calculated and measured results (including the self 
term), at least down to about -50 dB. For elements far 
away the agreement is not so good but here the coupling 
levels are very low. 
 
In order to improve the accuracy even further, higher 
order waveguide modes were included in the analysis. 
With the four lowest TE-modes (in increasing cutoff 
order, i.e. TE10, TE20, TE01, and TE11) only small 
differences were observed. But when taking also the 

TM11 mode into account a significant improvement was 
obtained, see Figure 10. Now the simulated results 
show good agreement with measurements down to 
coupling levels as low as –80 dB. The agreement of the 
phase is also improved. Using even more modes (up to 
20 modes were tried) improved the results very little 
[25]. Hence, the results are certainly sufficient for array 
design purposes. The importance of the TM11 mode is 
probably explained by the fact that this mode is the first 
mode with an electric field component parallel with the 
direction of propagation in the waveguide. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. The array mutual coupling (including the self 
term 19,19S ) along the center row of the array (E 

plane). Single mode approximation, 4.3 GHzf = . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. The array mutual coupling (including the self 
term 19,19S ) along the center row of the array (E 

plane). 5 modes approximation, 4.3 GHzf = . 
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To investigate the ability of the UTD-MoM solution to 
handle electrically small surfaces, we will now consider 
a circular cylinder with a very small radius. The same 
elements as above (and frequency) is used, but the 
radius is reduced to ( )0.06 m 0.86λ . This is less than 
the commonly accepted limit for the UTD formulation 
where a radius of curvature as small as 1λ  is expected 
to be very close to the limit. Figure 11 (a) shows the 
amplitude and phase of the isolated coupling between 
two elements as a function of the angular distance along 
the circumferential direction (i.e. E-plane coupling). 
Figure 11 (b) shows the case when the axial distance 
between the apertures is changed and equals 0.041 m 
( )0.59λ . The angular extent in the circumferential 
direction is 180  degrees in both cases, and a single 
mode approximation is used. It has been shown [3] that 
the inclusion of higher order modes does not increase 
the accuracy in the case of isolated mutual coupling. 
Furthermore, two rays are included in the UTD-MoM 
solution – one in each direction around the circular 
cylinder. To be able to verify the solution a modal 
solution is used [4]. Generally speaking, the agreement 
is good and it appears as if the UTD-MoM solution 
recovers the canonical cylindrical solution even for 
small cylinders. The disagreement seen in Figure 11 (a) 
appears when the angular distance is less than 20  
degrees. However, this equals an arc length of 0.3λ , 
and, as mentioned earlier, the UTD solution is supposed 
to be valid for distances larger than about 0.5λ .  
 
Considered next is the PEC elliptic cylinder. By 
changing the ellipticity different kind of surfaces can be 
studied. We show the isolated mutual coupling in the E 
plane as a function of the ellipticity, i.e. the ratio 
between the major and minor axes ( )a b . The 

transmitting                (b) 
 
Figure 11. The isolated mutual coupling between two 
apertures located on a circular cylinder, 0.86R λ≈ . (a) 
Along the circumferential direction, i.e. E-plane 
coupling. (b) Along the circumferential direction when 
the two elements are 0.59λ  apart in the axial direction. 
 
transmitting element (indicated by a cross in Figure 12) 
is fixed, but the receiving element is moved along the 
surface in the counter clockwise direction. Its final 
position is indicated by a ring in Figure 12. The same 
type of rectangular waveguide-fed aperture is used as in 
the experimental antenna, but the frequency is changed 
to 5 GHz. Furthermore, only a single mode 
approximation is used here and two surface rays are 
included in the simulations, one in each direction 
around the elliptic cylinder.  Figure 13 shows the 
isolated coupling vs. the shape of the elliptic surfaces. 
Due to space limitations only the amplitude is shown.  
 
As expected, the decay of the isolated mutual coupling 
is reduced when the surface gets flat but increases again 
when passing through the sharpest part of the surface. 
The ripple at large separations is caused by the 
interference of the two waves traveling in opposite 
directions around the elliptic cylinder. In this example, 
the UTD-MoM solution is once again pushed to its limit 
for some of the surfaces with very sharp edges. In the 
results shown here the local radii of curvature at the 
sharpest point are (starting with the circular cylinder) 

5r λ= , 3.47λ , 1.25λ , and 0.14λ . And, as seen, the 
results have a reasonable behavior. However, the 
accuracy cannot be ascertained since no reference 
results have been found. The most important conclusion 
is, however, that the UTD solution gives satisfactory 

(a) 
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results for many surfaces that are interesting from a 
practical engineering point of view. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12. The different elliptic cylinders considered. A 
cross indicates the fixed position of the transmitting 
aperture, and a circle shows the final position of the 
second aperture. The circular cylinder is also shown for 
comparison. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13. The amplitude of the isolated mutual 
coupling in the circumferential direction (E plane) for 
apertures at elliptic cylinders. 
 
 
B. Doubly Curved Surfaces 
The extension to doubly curved PEC surfaces is 
challenging and interesting. Unfortunately, the literature 
references in this area are not many and much remains 
to be investigated. 
 
 Shown here are some results for a doubly curved array, 
both mutual coupling results and radiation patterns are 
considered. The doubly curved experimental antenna 

Figure 14. The geometry of the experimental doubly 
curved antenna. Courtesy of Ericsson Microwave 
Systems AB. 
 
shown in Figure 14 was built at Ericsson Microwave 
Systems AB in Mölndal, Sweden, in 2000. The 
experimental antenna is shaped as a paraboloid of 
revolution with f 0.22d ≈ , and the diameter of the 
surface is approximately 600 mm with a depth of 
approximately 175 mm. Absorbers were placed on the 
edge to minimize edge effects. In this example circular 
waveguide-fed apertures are used, with a diameter of 
14.40 mm. For practical reasons they are filled with 
Rexolite ( 2.53rε = ). The cutoff frequency for the 
dominant 11TE -mode is 7.65 GHz.  
 
The surface has 48 circular apertures with the layout 
shown in Figure 14. The positions have been chosen to 
cover most element positions of interest in a doubly 
curved array, without covering the surface completely. 
In order to study polarization effects one of two 
orthogonal polarizations can be selected. This is 
achieved by rotating the waveguides by 90 degrees. 
 
Figure 15 shows the isolated coupling along the 
principal plane of the paraboloid. The fed element is the 
element farthest away from vertex. Shown here is the E-
plane coupling when using the dominant TE11-mode 
only. Furthermore, only a single ray is accounted for in 
the simulations, but the first geodesic constant α  is 
obtained with high accuracy (at least eight decimals). 
Measured results are also included here and the 
agreement is good. If the surface had been more pointed 
a slope change could have been observed when passing 
the vertex point ( )0s λ= . 
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Figure 15. Isolated coupling along the principle 
direction of the paraboloid, H plane. Single mode 
approximation, 8.975 GHzf = . 
 
The next example shows the isolated power pattern. If 
the element at vertex is element number 1, the pattern is 
shown for element number 7. Assume that the origin is 
at vertex and that the z-axis is pointing out of Figure 14, 
then the pattern is shown in a plane containing the 
symmetry axis of the paraboloid. The element is 
polarized in such a way that we get an E-plane pattern, 
and the result is shown in Figure 16 including measured 
data. Once again, only a single mode is used as well as 
a single ray. Note, however, that Kaifas et al. [26] 
shows that a ray caustic appears for certain element 
positions versus the shape of the surfaces. In these cases 
the single ray splits into three rays and has to be treated 
separately, but this does not appear for the cases 
considered here. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16. Calculated and measured power pattern (E 
plane) from a circular waveguide-fed aperture at the 
paraboloid. Single mode approximation, 

8.9 GHzf = . 

The results presented here are, to our knowledge, one of 
few where a UTD based method has been 
experimentally verified for a doubly curved surface. As 
seen, the agreement is good and it is possible to use 
UTD also for analyzing and designing doubly curved 
conformal array antennas.  
 
Additional results (different polarization combinations, 
single element patterns, array patterns etcetera) can be 
found in [3, 27]. 
 

V.   CONCLUSIONS 
 
This paper presents an overview of the analysis of 
conformal array antennas. The focus is on the hybrid 
UTD-MoM method, and both singly and doubly curved 
PEC surfaces are considered. An important factor for 
accurate results is the problem of finding the geodesics. 
The reason is that it is possible to formulate the UTD-
MoM solution in a single parameter form for certain 
types of surfaces. The solution then becomes directly 
related to the geodesics through the first geodesic 
constantα . Hence, the accuracy of the results depends 
exclusively on the accuracy of α . In this paper α  is 
determined with an accuracy of at least eight decimal 
places.  
The types of surfaces considered here belong to the 
geodesic coordinate system. This means that the 
parameter lines of the surface are orthogonal to each 
other, and any rotational symmetric doubly curved 
surface belongs to this class. For these cases the 
geodesics are found by quadrature, and in many cases 
the integral can be solved in closed form. This 
facilitates the analysis a lot.  
 
As shown here, it is possible to generate very accurate 
results for different singly and doubly curved PEC 
surfaces by using the UTD-MoM approach. Both 
mutual coupling and radiation patterns have been 
considered. The results are verified by measured data 
obtained from two experimental antennas built at 
Ericsson Microwave Systems AB in Mölndal, Sweden. 
Furthermore, the limitation of the UTD formulation has 
been studied by comparing the results with results 
obtained from a modal solution. In conclusion, the 
hybrid UTD-MoM approach is surprisingly accurate 
both for electrically large and small PEC surfaces. 
Hence, the method is accurate enough to be used when 
designing conformal array antennas. However, more 
research is needed to be able to include coated surfaces. 
Some special cases can be handled, as indicated in this 
paper. But, there is today no verified tool for 
electrically large coated surfaces in general.  
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