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Abstract–This paper investigates the convergence
properties of the Multiple Sweep Method of Mo-
ments (MSMM), both analytically and numerically,
and presents some numerical results for various 2D
scattering geometries, such as a strip, a cylinder, and
a rough surface with and without a target on it. The
MSMM is an O(N2) iterative method for solving the
large matrix equations which arise in the method of
moments (MM) analysis of electrically large bodies.
In the MSMM, the body is split into P sections and
the currents on these sections are found in a recur-
sive fashion. Although the MSMM is a frequency
domain solution, it has a time domain interpreta-
tion. The first sweep includes the dominant scat-
tering mechanisms and each subsequent sweep in-
cludes higher order mechanisms. A connection be-
tween the MSMM and classical iterative methods is
established in this paper. Under certain conditions,
the MSMM is shown to be mathematically equivalent
to a block Jacobi preconditioned system of equations
that results from the moment method, and solved via
the method of symmetric successive over-relaxation
(SSOR) with relaxation factor ω = 1. Based on this
connection, the convergence is analyzed by examin-
ing the eigenvalue distribution of the iteration matrix
for different classes of 2D geometries, and for electric
and magnetic field integral equation formulations and
TEz and TMz polarizations. In addition, the MSMM
is compared with other recently used iterative meth-
ods for rough surface scattering problems, namely the
Method of Ordered Multiple Interactions (MOMI),
or the Forward-Backward (FB) Method. The results
show that the MSMM converges for some problems
for which the MOMI (and FB) fails to converge, e.g.,
the rough surface with a target on it, or when the
surface becomes multi-valued which causes large off-
diagonal elements in the interaction matrix.
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I. INTRODUCTION

The frequency domain method of moments (MM)
has been one of the most reliable and widely used
numerical methods for the analysis of radiation and
scattering from bodies of simple or complex shape
[1]-[3]. In the MM, the scattered or radiated field is
generated by a set of equivalent currents which re-
place the physical structure. The current on a body
is expanded in terms of N expansion functions, and
the N unknown coefficients in this expansion are ob-
tained as the solution of an order N matrix equation.
The standard MM is often limited by the O(N3) CPU
time required to solve the matrix equation by direct
methods, such as LU decomposition. Over the past
several years many methods have been developed to
improve the computational efficiency of the MM, and
thus allow it to be applied to electrically larger bodies
[4]. Iterative solution of the MM matrix equation has
received considerable attention since the CPU time
is reduced to O(N2) [5], [6].

A considerable effort has been directed toward the
solution of scattering of electromagnetic waves from
rough surfaces at low grazing angles since it has im-
portant applications in remote sensing of ocean and
land profiles [7]. Monte Carlo simulations of rough
surface scattering problems using direct numerical so-
lutions have become popular with the growth of mod-
ern computers and the development of the fast meth-
ods. Iterative techniques developed for solving gen-
eral systems of linear equations have been applied to
systems resulting from electromagnetic rough-surface
scattering problems [8]-[18]. One approach, called
the Kirchhoff iterative method (also known as the
Neumann expansion) [8]-[10], has been shown to be
useful, but that the method may fail to converge for
surfaces with large slopes or for large incidence angles
[9].

Recently, a new iterative technique termed the
Forward-Backward (FB) method has been proposed
by Holliday et al. [14]. A functionally identical ap-
proach, the Method of Ordered Multiple Interactions
(MOMI), has been developed by Kapp and Brown
[15]. These approaches have been shown to be very
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effective for the solution of the magnetic field inte-
gral equation (MFIE) for the scattering from per-
fectly conducting (PEC) surfaces that are single val-
ued and rough in one dimension (two-dimensional
scattering). The limitation of the MOMI (and the
FB method) is that the convergence of the method
is very much dependent on the sequential ordering of
the current elements along a certain direction. Hence
convergence may be a problem, especially for two-
dimensional (2D) rough surfaces (three-dimensional
scattering). Tran [16] applied MOMI to the scatter-
ing from a 2D rough surface and showed that the
convergence of the iterative process depends strongly
on the order in which the current elements are up-
dated. With some orderings it did not converge, and
it was found that in one case it did not converge even
though the optimal ordering was used.

The MOMI is shown to be mathematically equiv-
alent to a point Jacobi preconditioned system of
equations that results from the moment method,
and solved via symmetric successive over-relaxation
(SSOR) with relaxation factor ω = 1 (i.e., For-
ward Backward Gauss-Seidel method) [17]. West and
Sturm [17] tested the performance of the method
through application to a series of 1D surface pro-
files (2D scattering) that approximate breaking ocean
waves, and 2D perfectly conducting circular cylinder
problems. They found that the method diverges for
some breaking wave profiles, as well as for the closed
circular cylinder. Pino et al. [18] applied the FB
method to scattering from targets on 1D ocean-like
rough surfaces. They also came to the conclusion
that the method does not exhibit a convergent be-
havior if there is a target on the rough surface, and
developed a generalization of the FB method to han-
dle this case.

Recently, a new technique termed the Multiple
Sweep Method of Moments (MSMM) has been intro-
duced for the analysis of the radiation and scattering
from electrically large, perfectly conducting bodies
[19]-[21]. The MSMM is an extension or modification
of the Spatial Decomposition Technique (SDT) devel-
oped by Umashankar et. al. [22]. In both methods,
the electrically large body is split into P sections con-
taining approximately N/P unknowns per section.
The currents on the P sections are found in a recur-
sive fashion until they (hopefully) converge to the ex-
act result. The main difference between the MSMM
and the SDT is that the MSMM attempts to perform
the recursion so that the first sweep accounts for the
dominant mechanisms, while subsequent sweeps ac-
count for higher order mechanisms. Tapered resis-
tive cards (R-cards) [20], [23], [24], [25] are used on
the first sweep to minimize endpoint scattering from
the junctions between sections. Subsequent sweeps
are performed in the order in which currents would

change with time so that the higher order sweeps cor-
respond to higher order interactions.

In this paper, a connection between the MSMM
and well-known classical iterative methods in mathe-
matics is established so that the convergence proper-
ties of the MSMM can be investigated using matrix
theory. Based on this connection, the convergence
difficulties (such as for the closed cylinder) can be
explained by the inherent limitations of the corre-
sponding stationary iterative method. In addition,
the MSMM can be compared with the recently used
iterative methods for rough surface scattering prob-
lems (e.g., the MOMI, or FB Method) from both the-
oretical and numerical points of view.

The organization of this paper is as follows. Sec-
tion II presents the description of the Multiple Sweep
Method of Moments (MSMM) for the analysis of
scattering from a 2D PEC strip. The formulation
of the MSMM in matrix notation as a stationary
iterative algorithm is derived in Section III. An it-
eration matrix is derived analytically, and based on
that the convergence properties of the MSMM will be
discussed. Section IV presents a numerical investiga-
tion of the convergence properties of the MSMM for
the aforementioned various 2D scattering geometries
(i.e., strip, cylinder, and rough surface with and with-
out a target), by extracting and plotting the eigen-
value spectrum of the iteration matrix. The effect
of the initial guess vector on the convergence of the
method will be investigated numerically by using zero
current, the physical optics current, and the MSMM
first sweep current (which uses the R-cards), as start-
ing solutions for the current vector. Finally, discus-
sions and conclusions are included in Section V.

II. THE MSMM PROCEDURE

The basics of the original MSMM algorithm will
be illustrated briefly on the MSMM solution for the
current on a 2D PEC strip. Most of the material
presented in this section is drawn from [20] and [21].
Figure 1 shows the MSMM procedure for the problem
of TEz scattering from a PEC strip. For the purposes
of the standard MM solution, the strip is split into
N segments of width d = L/N , and the x̂ directed
current is expanded as

J =

N
∑

n=1

inJn (1)

where the Jn are the known subsectional expansion
functions and the in are the unknown coefficients.
Hence,the standard MM solution can be written as
the matrix equation

[Z]I = V i (2)
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Fig. 1. For the MSMM solution a strip of width L is
split into P sections with NP = N/P unknowns per
section.

where [Z] is the N × N impedance matrix (also
called “the interaction matrix”), V i is the length
N voltage vector due to the incident field, and I =
[i1, i2, . . . , iN ]T is the current vector. For the MSMM
purposes, the strip is split into P equal sections of
NP = N/P expansion functions per section, and of
width DP . Assuming the incident field propagates
from left to right in Fig. 1, the first sweep (k = 1)
begins by computing the current Jk=1

p=1 on section
p = 1 excited by the incident field. At this point
the remaining sections have no current, thus creating
a non-physical truncation of the current at the end of
section p = 1. To minimize that, the right-hand edge
of the section p = 1 is terminated in an exponentially
tapered R-card, as illustrated in Fig. 1(b). Once the
current on section 1 has been determined, the next
step is to compute the current Jk=1

p=2 on section p = 2
caused by the incident field plus the previously com-
puted current Jk=1

p=1 on section 1. The process is con-
tinued for p = 3, ..., P to complete Sweep 1.

Consider the computation of the first sweep cur-
rent, Jk=1

p , on an arbitrary section p. As illustrated
in Fig. 1(b), sections 1 to p − 1 contain previously
computed currents, section p is a PEC, the next sec-
tion is tapered R-card, and the remaining sections are
free space. Note that for the left hand edge of section
p, the previously computed currents on section p− 1
(approximately) enforce continuity of current at the
junction, and thus from an electromagnetic viewpoint
there is no edge. The currents on the PEC section
p and the R-card section p + 1 are produced by the
superposition of the incident field plus the previously

computed currents on sections 1 to p − 1.

The second sweep is done in reverse order, since
this is the natural order in which the currents would
change with time. That is, section P is modified
first, then section P − 1, . . ., and finally section 1.
Hence, the second sweep will include reflections of
the wave at the trailing edge. Figure 1(c) illustrates
the computation of Jk=2

p , the Sweep k = 2 current
on arbitrary section p. In computing the Sweep 2
current on section p, section p is a PEC, while all
other sections are represented by their most recently
computed currents. At this point in the Sweep 2
computation, sections p + 1 to P have already been
updated to the Sweep 2 currents, while sections 1 to
p− 1 still have the Sweep 1 currents. No R-cards are
needed for this and subsequent sweeps because J1

p−1

and J2
p+1 approximately enforce continuity of current

at the left and right edges of section p, respectively.
The current on section p is the superposition of that
due to the incident field plus the scattered component
due to the previously computed currents.

All Sweeps k > 2 are identical to Sweep 2, except
that odd numbered sweeps proceed from left to right
while even numbered sweeps proceed from right to
left as the MSMM solution attempts to model mul-
tiple interactions across the structure.

III. THE MSMM AS A STATIONARY

ITERATIVE METHOD

The MSMM solution procedure has been described
in Section II. The formulation of the MSMM in a
matrix notation as a classical (or stationary) itera-
tive algorithm is derived in this section. The term
stationary indicates that the iterative equations do
not change as the iterative algorithm is repeated [26],
[27].

It is of interest to solve the following matrix equa-
tion:











[Z11] [Z12] · · · [Z1P ]
[Z21] [Z22] · · · [Z2P ]

...
...

...
...

[ZP1] [ZP2] · · · [ZPP ]





















I1

I2

...
IP











=











V i
1

V i
2
...

V i
P











(3)
where [Zpq] is the NP ×NP block containing the mu-
tual impedances between expansion functions in sec-
tions p and q, V i

p contains the NP elements of the

incident voltage vector V i for section p, and Ip con-
tains the NP elements of the solution vector I for
section p.

Here we will assume that the first forward sweep of
the MSMM, which uses R-cards to isolate sections to
obtain the dominant scattering mechanisms, is done
to obtain an initial guess and is not part of the it-
erative method. The second sweep (the backward
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sweep) of the MSMM can be written in terms of ma-
trix notation as follows. As seen in Fig. 1(c), the sec-
ond sweep current on section p is due to the superpo-
sition of the incident field and the scattered field due
to the previously computed currents, i.e., J1

1 through
J1

p−1 and J2
p+1 through J2

P , where Jk
p denotes the kth

sweep current on section p. Hence, the MSMM uses
the most recently updated values of the current on
each section as they become available. The current
on section p is found as the solution of

[Zpp]Ip = V i
p + V s

p (4)

where V s
p is the scattered field vector on section p

due to the previously computed currents on all other
sections, and is given by

[

V s
p

]

= −
[

[Zp1] [Zp2] · · · [ZpP ]
]











I1

I2

...
IP











.

(5)
In equation (5), I1 through Ip−1 includes currents
from the previous sweep (the first sweep of the
MSMM, or initial guess of the matrix iterative al-
gorithm), Ip = 0, and Ip+1 through IP includes the
currents from the present sweep. From equations (4)
and (5), the second sweep can be written as

[Zpp] I
(2)
p = V i

p −

p−1
∑

j=1

[Zpj ] I
(1)
j −

P
∑

j=p+1

[Zpj ] I
(2)
j

(6)

where p goes from P to 1, i.e., a backward sweep.
Similarly, the third sweep (forward sweep) can be
written as

[Zpp] I
(3)
p = V i

p −

p−1
∑

j=1

[Zpj ] I
(3)
j −

P
∑

j=p+1

[Zpj ] I
(2)
j

(7)

where in this case p goes from 1 to P .
The remaining sweeps of the MSMM are identical

to Sweep 2 except that odd numbered sweeps pro-
ceed from left to right while even numbered sweeps
proceed from right to left, as the MSMM solution
attempts to model the multiple scattering interac-
tions. Hence, the generalization for an arbitrary
Sweep k = 2n or k = 2n + 1 is

[Zpp] I
(2n)
p = V i

p −

p−1
∑

j=1

[Zpj ] I
(2n−1)
j

−

P
∑

j=p+1

[Zpj ] I
(2n)
j , for p = P, ..., 1,
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Fig. 2. Decomposition of [Z] into a sum of block
matrices.

[Zpp] I
(2n+1)
p = V i

p −

p−1
∑

j=1

[Zpj ] I
(2n+1)
j

−
P

∑

j=p+1

[Zpj ] I
(2n)
j , for p = 1, ..., P

(8)

The operational count of the MSMM is O(N2) per
iteration, assuming the [Zpp] matrices have been fac-
torized before starting the iteration [19].

Now decompose [Z] in terms of a sum of block
matrices

[Z] = DM + UM + LM (9)

where DM is a block diagonal matrix, and UM and
LM are strictly upper and lower triangular block ma-
trices of [Z], respectively, as shown in Fig. 2. Hence,
equation (8) can be written in terms of block matri-
ces as,

Backward sweep:

DMI(2n) = V i − UMI(2n) − LMI(2n−1),

Forward sweep:

DMI(2n+1) = V i − LMI(2n+1) − UMI(2n).

(10)

The form in equation (10) is equivalent to Forward-
Backward block Gauss-Seidel (FB-GS, or equiva-
lently, block SSOR with a relaxation factor ω = 1)
by considering two half iterations [5], [28]. This itera-
tive algorithm is also equivalent to solving a block Ja-
cobi preconditioned system of equations via forward-
backward block GS iteration [29].

Equation (10) can be written in a similar format
as that of the FB-GS in [5], [28]

(DM + UM )I(k+ 1

2
) = V i − LMI(k)

(DM + LM )I(k+1) = V i − UMI(k+ 1

2
), (11)
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where I(k+ 1

2
) is an intermediate solution of the iter-

ate. The iteration matrix G [26] of a general station-
ary iterative system is defined from,

I(k+1) = G I(k) + V (12)

where V is a constant vector. Hence, the iteration
matrix of the MSMM can be found as

GM = (DM + LM )−1UM (DM + UM )−1LM . (13)

As shown in the numerical results of the next sec-
tion, the spectral radius of this matrix determines
the convergence rate.

One should note that as the MSMM section size
reduces to the size of one cell (i.e., the size of a sin-
gle MM expansion function), then DM → D, and
the block FB-GS (or block SSOR with ω = 1) be-
comes point FB-GS (or point SSOR with ω = 1).
West et. al. [17] showed that MOMI [15] (and hence
Forward-Backward method [14]) is mathematically
equivalent to a point Jacobi preconditioned system
solved via point SSOR with ω = 1, and zero initial
guess vector. We showed above that the MSMM is
mathematically equivalent to a block Jacobi precon-
ditioned system solved via block SSOR with ω = 1
(or equivalently block FB-GS), and the MSMM first
sweep (which uses R-cards) as an initial guess vector.
Therefore, we draw the conclusion that the MOMI is
equivalent to the MSMM with MSMM section size re-
duced to one basis element (i.e., block → point) and
with zero initial guess vector. It is also noted that
the MSMM is a more general form of the generalized
forward-backward method wherein block sections are
only used to encompass the obstacles on the rough
surface [18].

IV. NUMERICAL RESULTS

The spectral radius of the iteration matrix ρ(G),
which is the magnitude of the largest eigenvalue of G,
controls the convergence of the iterative method. The
iterative method is convergent if and only if ρ(G) < 1
[26]. Smaller values of ρ(G) give higher convergence
rates. This section presents a numerical investiga-
tion of the convergence properties of the MSMM for
various 2D scattering geometries by extracting and
plotting the eigenvalue spectrum of the iteration ma-
trix GM , which was derived in Section III. Examples
will include a strip, a closed and open cylinder, and
a rough surface with and without a target on it, as
shown in Fig. 3. The effect of the initial guess vector
on the convergence of the method is also investigated
numerically by starting with zero current, the physi-
cal optics (PO) current, and the MSMM first sweep
current which uses R-cards to isolate the sections.
The electric and magnetic field integral equation for-
mulations (EFIE and MFIE) and both polarizations

(TEz or TMz) of the incident field are considered.
The results are compared with the MOMI (or FB
Method) which corresponds to the case when the
MSMM section size (DP ) equals the cell size. In our
results, we use a pulse-basis function cell size (MM
segment size) of λ/10 and a frequency of 300 MHz.

(d) Rough Surface with 2D ship(c) Rough Surface

(b) Closed/Open Cylinder(a) Flat Strip

Hz

i

θ
z

i

Ez

H

H ii
Ez

i

θ

y

x

(EFIE)

z

(EFIE)

(EFIE, MFIE)
(EFIE)

Fig. 3. The 2D problem geometries that are investi-
gated for the convergence analysis.

The convergence of the iterative method is moni-
tored by examining the residual error norm

Rk =
‖r(k)‖

‖V i‖
(14)

where r(k) = V i − ZI(k) is the residual error vec-
tor at the kth iteration. Rk is a direct measure of
how well the matrix equation is satisfied by the kth

solution vector. This is important for integral equa-
tion problems because it is a measure of how well the
boundary conditions are satisfied for a given set of
testing functions. It is noted that the currents are
not guaranteed to converge to the exact value [30];
however, for RCS problems one is more interested in
the fields radiated by the currents and the enforce-
ment of field boundary conditions.

A. F lat Strip

Figure 4 shows the eigenvalue spectrum of GM

for a 12.8λ PEC strip with various MSMM section
sizes (denoted by DP ). The strip is illuminated by
a TEz polarized plane wave with an incidence angle
of φi = 135◦ with respect to the x axis. As seen
from the figure, as the section size becomes larger
(i.e., the number of sections P of the MSMM gets
smaller), the spectral radius of GM gets smaller and
the convergence is expected to be faster. It is also
noticed that for P ≥ 32 (or DP ≤ 0.4λ), the method
diverges, i.e., ρ(GM ) > 1 as seen in Fig. 4(a). This is
consistent with the result that was reported before in
[19]. Hence, the EFIE formulation of TEz polarized
scattering from a strip is divergent if the section size
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Fig. 4. Eigenvalue spectrum of GM for various
MSMM section sizes for a strip. (a) DP = 0.4λ,
(b) DP = 0.8λ, (c) DP = 1.6λ, and (d) DP = 3.2λ.

in the MSMM is reduced without limit. This implies
that the MOMI (or Forward-Backward method) so-
lution (which corresponds to MSMM with P = 128,
or DP = 0.1λ) also diverges for this case.

The convergence in terms of the residual errors for
various initial guess vectors is shown in Figs. 5 and
6 for section sizes of DP = 1.6λ and DP = 0.4λ,
respectively. As seen from the figures, using the
MSMM first sweep current (which uses R-cards) as
an initial guess vector for the iterative method re-
sults in the lowest error, and using the PO current
as an initial guess gives slightly lower error than the
zero initial guess vector. The MSMM first sweep has
a physical interpretation, i.e., it includes the domi-
nant interactions on the scattering geometry. Hence,
it exhibits the lowest error for a given number of iter-
ations compared with PO and zero initial guess vec-
tors. As predicted by the eigenvalue spectrum of GM

for DP = 0.4λ in Fig. 4(a), the method is expected
to diverge for any initial start vector, as verified in
Fig. 6. As seen in both Figs. 5 and 6, the rate of
convergence (or divergence) is relatively independent
of the start vectors. So in some cases it may be more
efficient to use PO as the start vector and perform a
few more iterations than to use the more computa-
tionally complex R-card treatment.
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Convergence of MSMM for various initial guess (P=8 secs, D
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MSMM(k=1)
zero     
PO       

Fig. 5. Convergence of MSMM for various initial
guesses for a strip with P = 8 (DP = 1.6λ).
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Fig. 6. Convergence of MSMM for various initial
guesses for a strip with P = 32 (DP = 0.4λ).

B. Circular Cylinder

In this section the effect of having various aper-
ture sizes in the circular cylinder of Fig. 3(b) on the
eigenvalue spectrum of the iteration matrix GM is
investigated. The cylinder is broken up into MSMM
sections starting at the lower lip of the aperture
and proceeding counter-clockwise around the cylin-
der boundary. Figure 7 shows the eigenvalue spec-
trum of GM for two MSMM section sizes for a closed
cylinder (no aperture) of radius 12λ/π. In this case
the method diverges for any choice of section size,
even with only 2 sections. The reason may be par-
tially due to the EFIE (or MFIE) formulation for
closed surfaces which can result in a poorly condi-
tioned or even singular system matrix [Z], due to in-
ternal resonances. A combined field integral equation
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Fig. 7. Eigenvalue spectrum of GM for two different
numbers of MSMM sections for a closed cylinder. (a)
P = 12, (b) P = 2.

(CFIE) formulation would be one way to avoid the
internal resonance effects, and hence result in a bet-
ter conditioned matrix [31]. A summary of various
other approaches for overcoming the effect of internal
resonances can be found in [32], [33].

The eigenvalue spectrum of GM for the cylinder
with an aperture opening of θ = 5◦, using P = 2
MSMM sections is shown in Fig. 8(a). The method
still exhibits large eigenvalues, hence, the iterations
show divergent behavior (i.e. ρ(GM ) > 1). Fig-
ures 8(b) and (c) show the eigenvalue spectrum of
GM for the aperture sizes of θ = 30◦ and θ = 60◦,
respectively, with P = 8 MSMM sections. As the
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Fig. 8. Eigenvalue spectrum of GM for open cylinder
with (a) θ = 5◦, P = 2, (b) θ = 30◦, P = 8, (c)
θ = 60◦, P = 8.

aperture size increases, the rate of convergence of the
MSMM also increases, i.e., ρ(GM ) gets smaller. This
is due to the fact that increasing the aperture size
reduces the interior resonance effects, or “ringing.”

C. Rough Surface

The rough sea surface geometry sketched in
Fig. 3(c) is a randomly generated realization of a
Gaussian random process with a Pierson-Moskowitz
ocean spectrum for a given wind speed [34]. The
length of the surface is 12.8 m. We consider the fol-
lowing cases in this section:

Case 1: EFIE formulation for TEz scattering,
Case 2: EFIE formulation for TMz scattering,
Case 3: MFIE formulation for TEz scattering.

For Case 1 the wind speed is 10 m/s which gives
rise to an RMS surface roughness of 0.54 m. The re-
sults are shown in Fig. 9 for various MSMM section
sizes. As the number of MSMM sections increases,
the convergence rate of the MSMM decreases. Also,
notice that if the number of sections is 32 or larger,
the method diverges; therefore, MOMI cannot pro-
duce a convergent result for this case which would
correspond to P = N = 128 sections.

A wind speed of 15 m/s (RMS roughness 1.106 m)
is used for Cases 2 and 3. The results for Case 2
are shown in Fig. 10. It is seen that the method
converges even if the section size is reduced to the cell
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Fig. 9. Eigenvalue spectrum of GM for the rough
surface with 10 m/s wind speed. Case 1: EFIE for
TEz polarization. (a) P = 32, DP = 0.4λ, (b) P =
16, DP = 0.8λ, (c) P = 8, DP = 1.6λ, (d) P = 4,
DP = 3.2λ.

size, i.e. DP = 0.1λ, so the MOMI is also expected
to converge for this case. It is interesting to note
that the eigenvalues are closely grouped, suggesting
that a more optimum iterative algorithm could be
constructed [26].

The results for Case 3, which makes use of the
MFIE formulation, is shown in Fig. 11. The spectral
radius is very small compared with the EFIE formu-
lation, so the convergence rate is greatly increased by
using the MFIE. Also note that the method converges
for DP = 0.1λ, i.e., MOMI (or FB) also converges
for this case. Hence, the MFIE formulation is well
suited for these types of iterative methods. However,
one should be aware that the MFIE formulation is
technically valid only for closed surfaces, although it
is often used for finite rough surface scattering prob-
lems.

D. Rough Surface with a Ship−Like Target

The problem geometry considered in this section
is sketched in Fig. 3(d), and shown in Fig. 12. The
EFIE formulation for TMz scattering is used to pro-
duce the [Z] matrix. The MSMM sections are as-
sumed to have about the same number of modes.
No attempt has been made to make the sections of
the same length, and have varying numbers of modes
on the sections. Therefore, the length of the section
which has the target will be significantly smaller than
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Fig. 10. Eigenvalue spectrum of GM for the rough
surface with 15 m/s wind speed. Case 2: EFIE for
TMz polarization. (a) P = N = 128, DP = 0.1λ, (b)
P = 8, DP = 1.6λ.

the other sections which do not have the target. How-
ever, the three dimensional results that have been
presented in [20] and [21] may have different num-
bers of modes on each section.

Figure 12 shows the eigenvalue spectrum for the
MOMI (or FB method), i.e., the MSMM section size
is DP = 0.1λ. There are two large eigenvalues that
cause the algorithm to diverge. However, as the sec-
tion size is increased, the MSMM converges quite
rapidly as seen in Fig. 13. In the case of Fig. 13(a)
the ship-like geometry is part in one section, part in
another, and the method still produces convergent
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Fig. 11. Eigenvalue spectrum of GM for the rough
surface with 15 m/s wind speed. Case 3: MFIE for
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results. However, the MOMI (or FB method) does
not show convergent behavior if there is a target
(or other strongly coupled region such as a breaking
wave) on the surface.

V. CONCLUSIONS

The convergence properties of the Multiple Sweep
Method of Moments (MSMM) has been studied both
analytically and numerically for some classes of 2D
scattering geometries. A connection between the
MSMM and well-known classical iterative methods in
mathematics is established so that the convergence
properties of the MSMM can be investigated using
matrix theory. The MSMM is shown to be mathe-
matically equivalent to a block Jacobi preconditioned
system of equations that results from the moment
method, and solved via block symmetric successive
over-relaxation (SSOR) with relaxation factor ω = 1
(i.e., block Forward Backward Gauss-Seidel method).
Based on this connection, the convergence difficulties
(such as for the closed cylinder) can be explained
by examining the eigenvalue distribution of the it-
eration matrix G defined for any stationary itera-
tive method. In addition, the MSMM can be com-
pared with other recently developed iterative meth-
ods for rough surface scattering problems such as the
Method of Ordered Multiple Interactions (MOMI),
or Forward-Backward (FB) Method, from both the-
oretical and numerical points of view. The results
show that the MSMM converges for some problems
for which the MOMI (and FB) fails to converge, e.g.,
the rough surface with a target on it, or a multi-
valued surface which has large off-diagonal elements
in the interaction matrix. It is also shown that the
MSMM can be reduced to the MOMI if the block
section size reduces to a single Method of Moments
segment size, and the initial start vector is set to zero.

It has been shown in earlier works that the
point SSOR (and hence MOMI and FB methods) is
strongly effected by the ordering of the elements. It
is because of the fact that changing the ordering of
the elements results in a different iteration matrix
G, that the iterative procedure may have different
convergence properties. Hence, convergence may be
a problem, especially for 2D surfaces (3D scattering
problems) because a sequential ordering of elements
is difficult to achieve. The convergence of the MSMM
has no sensitivity to a change in the ordering of the
elements because the ordering of groups becomes im-
portant rather than the elements. However, if the size
of the blocks is reduced to the size of one element,
the MSMM essentially becomes the MOMI and will
have the same difficulties with convergence.

The effect of using different integral equation for-
mulations (EFIE or MFIE) and the polarization of
the incident field (TEz or TMz) on the convergence

of the MSMM are also considered and the results
are compared with the MOMI. The EFIE with TEz

polarization is found to have the worst divergence
problem if a small block size is used, and the MFIE
with TEz polarization has extremely good conver-
gence for any block size. The convergence is also
affected by the geometry, and high Q structures such
as the closed or partially open cylinder may not con-
verge for any choice of block size (except, of course,
when the entire geometry is in one block).

Guidelines for the implementation of the MSMM
and some suggestions for the choice of an optimum
P are presented in [35]. It has been found that as
the MSMM section size increases (or the number of
MSMM sections decreases) the rate of the conver-
gence of the method also increases, i.e., ρ(GM ) gets
smaller. However, increasing the section size also in-
creases the CPU time to factorize the [Zpp] block ma-
trices. For the strip (also for the rough surface) the
optimum section size is found to be DP ≈ 1λ. How-
ever, it is not easy to generalize this conclusion for
an arbitrary geometry because every geometry has
a different convergence behavior with respect to the
section size. Furthermore, it is not easy to predict
the ρ(GM ) a priori for a given MSMM section size.
As a rule of thumb, one can apply the following pro-
cedure. For a given a problem geometry, first include
any target or high Q geometry in one MSMM section.
As a result, the [Z] matrix will have less significant
off-diagonal blocks. Next, the smooth part of the ge-
ometry can be sectioned into DP = 1λ width MSMM
sections. However, if the entire geometry is a high Q
structure, such as a closed cylinder, then a better in-
tegral equation formulation could be used to make
the MSMM converge.
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[21] D. Çolak, R. J. Burkholder, and E. H. Newman,
“The Multiple Sweep Method of Moments Analy-
sis of Electromagnetic Scattering from 3D Targets
on Ocean-Like Rough Surfaces,” IEEE Trans. on
Geoscience and Remote Sensing, vol. 49, no. 1,
pp. 241-247, January 2007.

[22] K. R. Umashankar, S. Nimmagadda, and A.
Taflove, “Numerical Analysis of Electromagnetic
Scattering by Electrically Large Objects Using
Spatial Decomposition Technique,” IEEE Trans.
on Antennas and Propagat., vol. AP-40, pp. 867-
877, Aug. 1992.

[23] E. H. Newman and J. L. Blanchard, “TM Scat-
tering by an Impedance Sheet Extension of a
Parabolic Cylinder,” IEEE Trans. on Antennas
and Prop., vol. AP-36, pp. 527-534, April 1988.

[24] T. B. A. Senior and J. L. Volakis, “Sheet Simu-
lation of a Thin Dielectric Layer,” Radio Sci., vol.
22, pp. 1261-1272, Dec. 1987.

[25] T. B. A. Senior, “Backscattering from Resistive
Strips,” IEEE Trans. on Antennas and Prop., vol.
AP-27, pp. 808-803, Nov. 1979.

[26] G. H. Golub, and C. F. Van Loan, Chapter 10 in
Matrix Computations, Second Edition, The Johns
Hopkins University Press, Baltimore, 1989.

[27] R. Barrett, M. Berry, T. Chan, J. Demmel, J.
Donato, J. Dongarra, V. Eijkhout, R. Pozo, C.
Romine, and H. van der Vorst, Templates for the
solution of linear systems: Building blocks for it-
erative methods, SIAM, Philadelphia, PA, 1994.

[28] R. J. Burkholder, “On the use of classical itera-
tive methods for electromagnetic scattering prob-
lems” in 4th Conf. on Electromag. and Light Scat.
by Nonspherical Particles: Theory and Applica-
tions (Digest), pp. 65-72, Sept. 1999.

[29] D. M. Young, Iterative Solution of Large Linear
Systems,, Academic Press, New York, 1971.

[30] G. Dudley, “Error Minimization and Conver-

217ÇOLAK, BURKHOLDER, NEWMAN: CONVERGENCE PROPERTIES OF THE MULTIPLE SWEEP MOM



gence in Numerical Methods,” Electromagnetics,
vol. 5, no. 2-3, pp. 89-97, 1985.

[31] R. J. Adams, and G. S. Brown, “A combined
field approach to scattering from infinite elliptical
cylinders using the method of ordered multiple in-
teractions,” IEEE Trans. on Antennas and Prop.,
vol. 47, no. 2, pp. 364-375, Feb. 1999.

[32] R. Mittra, and C. A. Klein, “Stability and Con-
vergence of Moment Method Solutions,” Chap-
ter 5, in Numerical and Asymptotic Techniques in
Electromagnetics

[33] A. F. Peterson, S. L. Ray, and R. Mittra, Com-
putational Methods for Electromagnetics, Insti-
tute of Electrical and Electronics Engineers, New
York, 1998.

[34] W. J. Pierson and L. Moskowitz, “A proposed
spectral form of fully developed wind seas based
on the similarity theory of S. A. Kitaigorodskii,”
J. Geophys. Res. vol. 69, pp. 5181-5190, 1964.

[35] D. Colak, “The Multiple Sweep Method of Mo-
ments (MSMM) Analysis of Three Dimensional
Radiation and Scattering Problems,” Ph.D. Dis-
sertation, The Ohio State University, Dec. 2000.

Dilek Colak received the B.S.
and M.S. in electrical and elec-
tronics engineering from Bilkent
University, Ankara, Turkey, in
1991 and 1993, respectively, and
Ph.D. degree in electrical engi-
neering from The Ohio State Uni-
versity, Columbus in 2000. She

worked at Bell Laboratories, Lucent Technologies,
Murray Hill, NJ in 2000-2002 as a professional sci-
entist. She is currently working at Biostatistics,
Epidemiology and Scientific Computing of the King
Faisal Specialist Hospital and Research Centre as a
scientist. Her research interests are in the areas of
computational electromagnetics, wireless communi-
cations, computational bioinformatics, and develop-
ment of new methodologies for the analysis of high
throughput data. She is currently working on the
development and application of statistical and com-
putational methods for the analysis of biomedical and
genomic data, assessing reliability/agreement of new
measurement scales/methods, bioequivalence stud-
ies, and computational bioinformatics. Dr. Colak
was a recipient of the Young Scientist Award of the
International Union of Radio Science (URSI) at the
24th General Assembly in 1993. She is a member of
IEEE and Applied Computational Electromagnetic
Society.

Robert J. Burkholder received
the B.S., M.S., and Ph.D. degrees
in electrical engineering from The
Ohio State University, Columbus,
in 1984, 1985, and 1989, respec-
tively. Since 1989, he has been
with The Ohio State University
ElectroScience Laboratory, De-
partment of Electrical and Comp-

uter Engineering, where he currently is a Senior
Research Scientist and Adjunct Professor. Dr.
Burkholder has contributed extensively to the EM
analysis of large cavities, such as jet inlets/exhausts,
and the scattering from targets over a rough sea sur-
face. He is currently working on the more general
problem of EM radiation, propagation and scattering
in realistically complex environments. His research
specialties are high-frequency asymptotic techniques
and their hybrid combination with numerical tech-
niques for solving large-scale electromagnetic radia-
tion and scattering problems. Dr. Burkholder is a
Fellow of the IEEE, an elected Full Member of URSI,
Commission B, a member of the American Geophys-
ical Union, and a member of the Applied Compu-
tational Electromagnetics Society. He is currently
serving as an Associate Editor for IEEE Antennas
and Wireless Propagation Letters.

Edward H. Newman was born
in Cleveland Ohio on July 9,
1946. He received the BSEE, MS,
and PhD degrees in electrical en-
gineering from The Ohio State
University in 1969, 1970, and
1974, respectively. Since 1974 he
has been a member of the Ohio
State University, Department of

Electrical Engineering, ElectroScience Laboratory,
where he is currently a Professor. His primary re-
search interest is in the development of method of
moments techniques for the analysis of general an-
tenna or scattering problems, and he is the primary
author of the “Electromagnetic Surface Patch Code”
(ESP). Other research interests include electromag-
netic shielding and antennas on automobiles, aircraft
and similar platforms. He has published over 60 jour-
nal articles in these areas, and is a coauthor of the
IEEE Press book “Computational Electromagnet-
ics (Frequency Domain Method of Moments)”. Dr.
Newman is a Fellow of the IEEE, and is a member
of Commission B of URSI and the Electromagnetics
Institute. He is a recipient of the 1986 and 1992 Col-
lege of Engineering Research Award, and is a past
chairman of the Columbus sections of the IEEE An-
tennas and Propagation and Microwave Theory and
Techniques Societies.

ACES JOURNAL, VOL. 22, NO. 2, JULY 2007218




