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Abstract − An efficient method for the accurate 
computation of the response of photonic crystal filters is 
obtained when Model-Based Parameter Estimation 
(MBPE) is combined with accurate field solvers. In this 
paper, MBPE is combined with Multiple Multipole 
Program (MMP) and the Method of Auxiliary Sources 
(MAS) and the results are compared with results obtained 
from a commercial field solver. When metals are present 
in photonic crystal filters, strong material dispersion at 
optical frequencies cause nonlinearity of the filter 
response. It is demonstrated that MBPE is still useful 
although it is originally designed for linear systems. 
 
Keywords − Model-Based Parameter Estimation; PhC 
filters; MMP, MAS. 
 

I. INTRODUCTION 
 

Photonic Crystals (PhCs) consist of dielectric or 
metallic structures [1] arranged on a regular lattice like 
the atoms in a natural crystal. Mainly because of the 
Photonic Band Gap (PBG) - that is observed when the 
contrast between the materials used for fabricating the 
PhC is high enough - PhCs are very promising for 
integrated optics. In fact, the PBG is the photonic counter 
part to the electronic band gap of semiconductors. By 
doping PhCs one can easily introduce resonators (point 
defects) and waveguides (line defects) in a PhC. By 
combining both one can obtain useful components such as 
filters. PhC filters may be embedded in PhC waveguides 
but also in classical waveguides. The simplest PhC filter 
is a PhC slab illuminated by a plane wave. Such filters are 
currently intensively studied to determine their limitations 
and practical value. The main problem is that no simple 
design rules are available. Therefore, efficient numerical 
methods for the analysis and optimization of PhC filters 
are highly desirable. Model-Based Parameter Estimation 

(MBPE) [2 - 4] is an auxiliary technique that may be 
added to any field solver for obtaining the entire 
frequency response from the calculation of the response in 
a small number of frequency points. This means that the 
field solver only computes the filter for m discrete (real or 
complex) frequency points sk (k=1…m) and MBPE then 
provides a very fast approximation for any desired 
frequency s.  

Model-Based Parameter Estimation - also called 
Cauchy method [5] - was originally designed for linear 
PhC filters: The frequency response of linear filters is 
known to be best represented by a fraction of two 
polynomials (Cauchy formula) and MBPE takes 
advantage of this representation.  

In the following it is demonstrated that MBPE is also 
useful and efficient for PhC filters made of dispersive 
materials, namely, PhC filters that include metal with 
strongly frequency-dependent complex permittivity at 
optical frequencies. As a particular case, filter analysis in 
the optical frequency range is considered. The 
electrodynamic problem of the PhC filter structure - 
containing silver rods - was solved by using the frequency 
domain solvers Multiple Multipole Program (MMP) [6], 
[7], [10], [11] and the Method of Auxiliary Sources 
(MAS) [8], [ 9].  

  
II. MODEL-BASED PARAMETER ESTIMATION 

(MBPE) 
 

Most EM phenomena require essentially a continuous 
representation of the system response over a specific 
frequency range. The computation of the observables (S 
parameters, transmission and reflection coefficients, field 
strengths in certain points of space, etc.) with sufficient 
resolution can be expensive especially when sharp 
resonances are present. MBPE allows us to obtain the 
system response over the entire frequency range by using 
a relatively small number of frequency samples.   
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The main concept of MBPE is the following. In the 
frequency domain, the response of a linear system may be 
optimally represented by Cauchy’s method, i.e., 

  

F (s) =
N (s)
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where F is the response of the system and s the complex 
frequency that also may be limited to the radian frequency 
iω. The error of this approximation depends on the 
maximum orders n and d of the power series expansions 
in the nominator N and denominator D as well as on the 
method that determines the parameters Ni and Di. 

A simple technique to compute the parameters is to 
multiply equation (1) by D and rewrite equation (1) in a 
set of m frequency points sk: 
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   k = 1,.., m  

where E is an unknown error vector. When F is known in 
  m ≥ n + d + 1 points sk, equation (2) is a linear system of 
m equations. One then can evaluate the parameters Di and 
Ni in such a way that the square norm of the error vector is 
minimized. Before this is done, one should note that not 
all parameters are independent because nominator and 
denominator in equation (1) may be scaled with an 
arbitrary factor. For this reason, one of the parameters 
may be set equal to 1. It is reasonable to set Dd=1. One 
then obtains, 

  
F (s

k
) D

i
i = 0

d −1

∑ s
k

i − N
i

i = 0

n

∑ s
k

i = − F (s
k
)s

k

d + E
k

= R
k

+ E
k
,   (3) 

  k = 1,.., m  

where R is a known, right-hand-side vector. Note that 
equation (3) can be solved in such a way that the error 
vector E is zero when m=m0=n+d+1, because one then 
obtains a square matrix system. This does not imply that 
Error(s) becomes zero as well. Especially when the 
sample values F(sk) are only approximately known – 
which is always the case in practice – it is more 
reasonable to work with an overdetermined system of 
equations with m > m0. Reasonable overdetermination 
implicitly provides smoothing of “noise” and “ripples” 
caused by inaccurate Maxwell solvers. When highly 
accurate codes such as MMP and MAS are used, very 
weak overdetermination (with overdetermination factors 
m/m0 around 1.1) is sufficient. This obviously reduces the 
number of frequency points required. Since the time-

consuming part of the MBPE is the computation of the 
sample values by the Maxwell solver, weak 
overdetermination saves computation time. 

The most difficult problem is to determine the required 
maximum orders n and d of the power series of the 
nominator and denominator. Both depend very much on 
the size of the frequency range of interest, the desired 
accuracy, and the complexity of the system. Since metals 
within Metallic Photonic Crystals (MPhCs) and Metallo-
Dielectric Photonic Crystals (MDPhCs) are strongly 
dispersive at optical frequencies, MPhC and MDPhC 
filters are non-linear and may be linearized only over a 
sufficiently short frequency interval. Therefore, it is 
reasonable to limit the maximum orders n and d by a 
value of typically not higher than 10 and to subdivide the 
frequency interval into two or more parts when the MBPE 
approximation is not accurate enough. 

The algorithm block scheme of the MBPE procedure 
used for the PhC filter analysis is presented in Fig. 1. The 
MBPE procedure is adaptive and starts with small orders, 
i.e., n and d values and with a small number of test points 
according to the overdetermination factor specified by the 
user. It then increases the order by 1 and compares the 
resulting MBPE approximations. When the differences 

Define maximum order 
Overdetermination factor and desired 

interval of changing parameter 

Start 

Yes 

No 

End 

Fitting error< ε 
and S∈[0,1] 

Increase order or divide domain into 
sub domains 

Construct data model; Solve system 
of linear equations for finding 

unknown coefficients Ni and Di; and 
estimate fitting error 

Find frequency point for next 
calculation and carry out calculation 

for defined frequency point. 

 
 
Fig. 1. MBPE procedure for PhC filters analysis. 
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between the two approximations are below a user-defined 
error bound over the entire frequency range and when all 
S parameters are within the range 0…1, the MBPE 
approximation is good enough and the procedure stops. 
Otherwise, it inserts new test points within the frequency 
range as follows: If an S parameter is out of the range, it 
inserts the new test point at the frequency where the 
biggest distance from the range 0…1 is encountered. 
Otherwise, it searches for the maximum difference 
between the current and previous MBPE approximation 
and sets the new test point at the corresponding 
frequency. The evaluation of the filter response, e.g., the S 
parameters, in the new test point is then performed by the 
field solver, for example, MMP or MAS. When the 
number of test points is high enough, the MBPE order is 
increased – provided that the user-defined maximum 
order is not yet reached. As soon as the maximum order is 
reached, the frequency interval is split into two intervals 
with half the length of the original interval and a separate 
MBPE approximation is started for each interval. This 
procedure is recursively continued if required. 

One is often interested in the frequency dependence of 
several characteristic values, for example, the S 
parameters. Usually, the field solver can simultaneously 
evaluate all parameters with almost the same numerical 
costs as for a single parameter. Therefore, it is reasonable 
to implement an MBPE procedure that simultaneously 
evaluates the frequency response of several observables, 
for example, all S parameters. All that needs to be done 
for such a multi-parameter MBPE is to define the 
maximum fitting error over all model parameters – 
typically the sum of the square errors of all model 
parameters. Beside this, the procedure outlined in Fig. 1 
remains the same. 

To demonstrate how MBPE works for dispersive 
materials, we consider the problem of coupled metallic 
nanoparticles [11 - 13]. The first test system contains only 
two circular cylinders made of silver with a radius of 25 
nm and a surface-surface separation of 5 nm (see Fig. 2), 
illuminated by an H-polarized plane wave. H-polarization 
is chosen, because plasmon resonances are obtained for 
this case. The electrodynamic problem was solved by the 
MAS. The MBPE procedure was started in 30 sample 
points and the overdetermination factor was set equal to 
1.1. For the system response over the wavelength range 
100 nm to 350 nm the adaptive MBPE algorithm requires 
only 63 frequency points for a maximum fitting error 
below 1%. In Fig. 2 the Scattering Cross Section (SCS) 
for the system is shown and Fig. 3 illustrates the field 
distribution at plasmon wavelengths. The Drude model is 
used for the frequency dependence of the permittivity of 
silver [10], 

  

ε(ν ) = 1 +
iτω

p
2

2πν(1 − i2πτν )
,                         (4) 

with τ = 1.45 × 10−14 s  and 16 11.32 10p sω −= × . Note that 
this frequency dependence is only approximate and not 
very accurate. For more realistic results, experimental 
values should be used [14]. The value used here just 
serves as a demonstration how the MBPE can handle 
dispersive materials. Furthermore, this allows us to 
compare the results with time-domain solvers that only 
can handle dispersive materials described by simplified 
mathematical models such as the Drude model. Figure 4 
illustrates the real and imaginary part of the permittivity 
of the Drude model for silver together with the different 
MBPE domains. The second and third domains are small 
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Fig.2. SCS for two intersecting cylinders made of silver 

with a radius of 25 nm at a surface-surface 
separation of 5 nm. The field is evaluated in 68 
sample points marked by circles. 

 

α) λ = 297 nm  b) λ = 239 nm 
 

Fig. 3. Near-Filed around coupled circular nanoparticles 
illuminated by an H-polarized plane wave 
incident from the left side. 
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compared with other ones although the frequency 
dependence of the material properties is rather smooth 
everywhere. The reason for this is that plasmon 
resonances occur when the real part of the permittivity is 
close to -1, i.e., the adaptive MBPE has correctly located 
the critical frequency range. Note that the number of 
plasmon resonances depends on the material 
characteristics and on the geometry. Therefore it is 
usually not possible to precisely foresee the locations of 
the resonances.  

 

III. 2D METALLIC PHC SLAB 

The PhC filter structure considered in the following 
consists of a 2D PhC with 5 layers of circular silver wires 
arranged on a square lattice. This structure extends to 
infinity in x direction and is finite in y direction, as 
illustrated in Fig. 5. The wire radius is 73.3 nm and lattice 
constant is 820 nm. Ez polarization is considered because 
metallic PhCs have a fundamental band gap for this 
polarization. 

Numerical methods can take advantage of the periodic 
symmetry in x direction in different ways.  

1) The MMP code introduces fictitious boundaries that 
separate a single “fundamental” cell from its neighbors as 
illustrated in Fig. 5. Along these boundaries, periodic 
(Floquet) boundary conditions are imposed [11]. It is then 
sufficient to compute the field in a single cell. Since this 
cell extends still to infinity in y direction, two additional 
fictitious boundaries are introduced that separate three 
areas: a) the upper half space with incident plane wave 
plus reflected zero and higher order Rayleigh expansions, 

b) the PhC area, and c) the lower half space with 
transmitted zero and higher order Rayleigh expansions. 
The areas a) and c) are modeled as for arbitrary gratings, 
whereas area b) has a finite size. Within b) the field is 
approximated by standard MMP expansions as an 
ordinary scattering problem.  

Taking care of the periodic symmetry by means of 
periodic boundary conditions has the advantage of 
generality and simplicity in the implementation, i.e., any 
frequency-domain code that can handle simple scattering 
problems can handle periodic structures such as gratings 
and PhCs as soon as periodic boundary conditions are 
implemented. Within MMP, not only multipoles but a big 
library of analytic solutions of Maxwell’s equations is 
available. All of these functions may then not only be 
applied for modeling scattering problems but also for 
modeling PhCs. For example, the field inside the wires is 
approximated by Bessel expansions rather than by 
multipoles. 

 
2) The Method of Auxiliary Sources (MAS) uses an 

approximation of the scattered field by a set of auxiliary 
sources, i.e., monopole sources, distributed along 
auxiliary lines that are always outside the physical area of 
the scattered field. Here, the periodic symmetry is taken 
into account by using periodic arrays of monopole sources 
as illustrated in Fig. 6. Thus, the periodic boundary 
conditions are automatically satisfied by the periodic 
expansions. Since only one type of relatively simple 
expansions – monopoles – is used, the implementation of 
a periodic set of expansions is not too difficult, but for an 
efficient implementation, a careful numerical analysis is 
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Fig.4. Frequency dependence of the permittivity of silver 

(Drude model). The vertical grey lines indicate the 
MBPE domains obtained from the automatic 
procedure. In each domain a Cauchy 
approximation of order 10 was used. 
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Fig. 5. The PhC filter structure for MMP code. 
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required. The functions describing the fields of auxiliary 
sources have the form 

 
   
F
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where d - is the period of the structure; α=1 for diffraction 
lattices and α = (-1)m for waveguides with non-
homogeneous filling. Now, the singularities are singled 
out in an explicit form. When the bad convergence of 
equation (5) is improved by use of the Poisson formula, 
an efficient algorithm is obtained. The amplitudes of each 
monopole array are computed in such a way that Floquet 
conditions are automatically met, i.e., no periodic 
boundary conditions are required. For the calculation of 
the reflected (y>yn) and transmitted (y<yn) fields for the 0 
and p-th harmonic one has,  
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where θ ∈ (0,π), is the incident angle of the plane wave; 
{an}, n=1..N are the amplitudes of the auxiliary sources, 
that must be calculated by imposing standard continuity 
conditions on the surface of the wires within one period in 
x direction. 

3) For time-domain methods such as FDTD and FIT 
[15] the appropriate handling of periodic symmetries 
becomes simple only for a vertically incident plane wave. 
One then may introduce electric or magnetic walls in y 
direction for separating the “fundamental” cell used in the 
MMP model.  

Furthermore, absorbing boundary conditions may be 
imposed in the areas a) and c) for absorbing the reflected 
and transmitted waves (see Fig. 7). Consequently, FDTD 
(and FIT) codes discretize only a finite rectangular area b) 
like MMP. For the more general case of an obliquely 
incident plane wave, FDTD becomes more complicate 
and requires a complex formulation for taking the 
periodic boundary conditions accurately into account. 
Incidentally, material dispersion causes additional 
problems for time-domain codes. In order to avoid the 
time-consuming evaluation of convolution integrals, 
material models for dispersive materials are simplified, 
for example, by the Drude model given above. Despite of 
its inaccuracy, it is used for the following test case in 
order to obtain a comparison of MMP-MBPE and MAS-
MBPE with commercial FDTD and FIT codes. 

 

IV. NUMERICAL TEST CASE: 2D METALLIC 
PHC SLAB 

Figures 8 and 9 show the transmission characteristics of 
a PhC filter obtained with the three different methods 
outlined above. Excellent agreement is observed at 
sufficiently low frequencies (λ = 1.0 µm to 3.0 µm) (Fig. 
8). The maximum difference between MMP brute-force, 
MMP-MBPE and MAS-MBPE is 0.02 % (there is no 
observable difference between curves plotted on graphs) 
and between MMP and FIT it is 0.1 %. For MMP-MBPE 
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Fig. 6. The PhC filter structure for MAS code.
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Fig. 7. The PhC filter structure for FDTD code. 
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and MAS-MBPE only 20 points were computed by MMP 
and by MAS, the remaining points were interpolated by 
MBPE (see Fig. 8, points with triangles). The total 
computation time for these MBPE solutions was below 1 
minute on a PC and 5 minutes for the less accurate FIT 
solution.  

Excellent agreement between MMP and MAS is also 
observed for higher frequencies (λ = 0.3 µm to 1.0 µm) 
that cannot be handled correctly with the commercial FIT 
code (see Fig. 9). Only 145 frequency points were 

computed and the remaining points were interpolated by 
MBPE for higher frequency interval, while at least 2000 
frequency points were required for getting a smooth curve 
using MMP or MAS without MBPE technique, i.e. the 
speed-up factor provided by the MBPE is more than 10. 

Note that the computation time for FDTD and FIT 
codes for the more general case with oblique incidence 
and more accurate material models would strongly 
increase the computation time of the time domain codes, 
whereas it does not increase the computation time of the 
MMP-MBPE and MAS-MBPE solutions. The near field 
distribution for PhC filter is shown in Fig. 10. 

The wavelength dependence of the permittivity 
(according to the Drude model with solid line and 
measurement fitting with doted line) is presented in Fig. 
11 together with MBPE sample points where the field was 
evaluated. For long wavelength (λ = 1.0 µm to 3.0 µm) it 
was sufficient to use 20 sample points and the MBPE 
domain was not subdivided by the adaptive algorithm. 
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Fig. 8. MMP-MBPE, MAS-MBPE, and CST Microwave 
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Fig. 9. MMP and MAS results with and without MBPE 
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Fig. 10. Near-Filed for PhC filter. 
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Fig. 11. Silver dielectric constant – Drude model. With 
vertical grey lines the MBPE sample point 
locations is plotted.  
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V. CONCLUSIONS 

Adaptive MBPE algorithms may be added to any 
frequency domain field solver. These algorithms 
drastically reduce the numerical effort for the accurate 
computation of the filter response also when dispersive 
materials are present. It can simultaneously evaluate the 
frequency response of several observables. For the 
metallic photonic filter test case, excellent agreement 
between the MMP-MBPE and MAS-MBPE solutions is 
observed even at high frequencies, where the commercial 
FIT solver fails. This solver is outperformed by MMP-
MBPE and MAS- MBPE even when simplified models 
are considered that cause no problems for FDTD and FIT. 
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