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Abstract — This paper arises from an invited plenary 
talk by the author at the 2006 Applied Computational 
Electromagnetics Society Symposium in Miami, FL 
(The 71 original slides can be downloaded at  
http://www.ece.northwestern.edu/ecefaculty/

taflove/ACES_talk.pdf).  This paper summarizes 
the author’s perspectives on the history and future 
prospects of finite-difference time-domain (FDTD) 
computational electrodynamics on the occasion of the 
fortieth anniversary of the publication of Kane Yee’s 
seminal Paper #1.  During these four decades, advances 
in basic theory, software realizations, and computing 
technology have elevated FDTD techniques to the top 
rank of computational tools for engineers and scientists 
studying electrodynamic phenomena and systems. 
 

I.  INTRODUCTION 

In May 1966, Kane Yee published the first paper to 
delineate the space and time discretizations of 
Maxwell’s equations which form the basis of the finite-
difference time-domain (FDTD) method [1].  As of 
March 7, 2006, according to a search conducted by the 
author on the ISI Web of Science , Yee’s paper had 
been cited 2441 times since its publication.  This large 
number of citations is a quantitative measure of the 
seminal nature of Yee’s insights, which opened the 
door to an entirely novel approach to computational 
electrodynamics relative to the other techniques being 
used by engineers and scientists in 1966.  As shown in  
Fig. 1, the growth in FDTD-related publications 
continues unabated to the present time. 

 

            
 Fig. 1. Yearly FDTD-related publications.  Data source for years 1966–96: Shlager and Schneider [2].   
  The 2005 data point is an estimate based upon a Web of Science  search by the author. 
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II. HISTORY OF FDTD TECHNIQUES FOR MAXWELL’S EQUATIONS 
 
We can begin to develop an appreciation of the basis, technical development, and possible future of FDTD 
numerical techniques for Maxwell’s equations by first considering their history.  Table 1 lists some of the key initial 
publications in this area, starting with Yee’s seminal paper [1]. 
 

Table 1  

Partial History of FDTD and Related Techniques 
 

1966 Yee [1] introduced the basic FDTD space grid and time-stepping algorithm.   
1975 Taflove and Brodwin reported the correct numerical stability criterion for Yee s algorithm [3];  sinusoidal  
 steady-state Yee-based solutions of 2-D and 3-D electromagnetic wave interactions with material  
 structures [3, 4];  and Yee-based bioelectromagnetics models [4]. 
1977 Holland [5] and Kunz and Lee [6] applied Yee s algorithm to EMP problems. 

1977, Engquist and Majda [7] and Bayliss and Turkel [8] reported second-order accurate absorbing boundary  
1980 conditions (ABCs) for grid-based time-domain wave-propagation schemes 

1980 Taflove coined the FDTD acronym and published validated models of sinusoidal steady-state  
 electromagnetic wave penetration into a 3-D metal cavity [9].   

1981 Mur reported a second-order accurate ABC for Yee s grid [10] based upon the Engquist-Majda theory.   

1982, 3 Taflove and Umashankar [11, 12] reported a phasor-domain near-to-far field transformation which  
 permits calculating the far fields and radar cross-section of 2-D and 3-D structures. 

1984 Liao et al. [13] reported a novel space-time extrapolation ABC that is less reflective than Mur s ABC.   
1985 Gwarek introduced an lumped equivalent-circuit formulation [14]. 

1986 Choi and Hoefer modeled waveguide structures [15]. 

1987, 8 Kriegsmann et al. and Moore et al. published the first articles on ABC theory in IEEE  Trans. Antennas  
 and Propagation  [16, 17]. 

1987, 8, Contour-path subcell techniques were introduced by Umashankar et al. to model thin wires and wire  
1992 bundles [18];  by Taflove et al. to model penetration through cracks in metal screens [19];  and by  
 Jurgens et al. to conformally model smoothly curved surfaces [20]. 

1987, Finite-element time-domain (FETD) and finite-volume time-domain (FVTD) meshes were introduced by 
1990 Cangellaris et al. [21], Shankar et al. [22], and Madsen and Ziolkowski [23]. 

1988 Sullivan et al. published a 3-D model of sinusoidal steady-state electromagnetic wave absorption by a 
 complete human body [24]. 

1988 Zhang et al. modeled microstrips [25]. 

1989 Fang [26] introduced higher-order spatial derivatives. 

1990, 1 Kashiwa and Fukai [27], Luebbers et al. [28], and Joseph et al. [29] modeled frequency-dependent 
 dielectric permittivity. 

1990, 1 Maloney et al. [30], Katz et al. [31], and Tirkas and Balanis [32] modeled antennas. 

1990 Sano and Shibata [33] and El-Ghazaly et al. [34] modeled picosecond optoelectronic switches. 

1991 Luebbers et al. [35] introduced the time-domain near-to-far field transformation. 

1991-4 Optical pulse propagation in nonlinear media was reported, including temporal solitons by Goorjian and 
 Taflove [36];  beam self-focusing by Ziolkowski and Judkins [37];  and spatial solitons by Joseph and 
 Taflove [38]. 

1991-8 Digital processing of windowed FDTD time-waveforms was introduced by several groups [39-43] to allow  
 extracting the underlying resonant frequencies and quality factors.  

1992 Sui et al. modeled lumped circuit elements [44]. 

1993 Toland et al. modeled tunnel diodes and Gunn diodes exciting cavities and antennas [45]. 

1994 Thomas et al. [46] reported SPICE subgrid models of embedded electronic components.  

1994 Berenger introduced the extraordinarily effective perfectly matched layer (PML) ABC for 2-D grids [47],  
 which was later extended to 3-D grids by Katz et al. [48] and to dispersive waveguide terminations by  
 Reuter et al. [49].  

1995, 6 Sacks et al. [50] and Gedney [51] introduced a physically realizable, uniaxial perfectly  matched layer 
 (UPML) ABC. 
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Table  1 (continued)  

Partial History of FDTD Techniques for Maxwell’s Equations 
 

1995, 8 Hybrid FDTD-quantum mechanics models of two-level and four-level atoms were introduced by several  
2002, 4 groups [52-55] to model ultrafast optical interactions and lasing phenomena. 

1996 Krumpholz and Katehi [56] introduced the multiresolution time-domain (MRTD) technique based upon  
 wavelet expansion functions. 

1996, 7 Liu [57, 58] introduced the pseudospectral time-domain (PSTD) method, which permits coarse spatial  
 sampling approaching the Nyquist limit. 

1997 Ramahi [59] introduced complementary operators method (COM) analytical ABCs. 

1997 Dey and Mittra [60] introduced a simple, stable, accurate contour-path technique to model curved metal  
 surfaces.  

1998 Maloney and Kesler [61] introduced several novel means to analyze periodic structures. 

1999 Schneider and Wagner [62] reported a rigorous analysis of grid dispersion. 

1999, Namiki [63] and Zheng, Chen, and Zhang [64] introduced 3-D alternating-direction implicit (ADI) FDTD  
2000 algorithms with provable unconditional numerical stability. 

2000 Roden and Gedney introduced the convolutional PML (CPML) ABC [65]. 

2000 Rylander and Bondeson introduced a provably stable FDTD-FE hybrid technique [66]. 

2002-6 Hayakawa et al. [67] and Simpson and Taflove [68, 69] reported models of the entire Earth- 
 ionosphere waveguide for extremely low-frequency geophysical phenomena.  

2003 DeRaedt introduced the unconditionally stable, “one-step” FDTD technique  [70].  

 
III. TECHNOLOGY DEVELOPMENT THEMES 

 
In addition to the chronological summary provided in Table 1, it is useful to organize the past 40 years of FDTD 
developments according to their primary technology-development themes.  These are summarized in Table 2, 
referencing the key initial publications listed in Table 1. 
 

Table 2  

Primary FDTD Technology Development Themes 
 

     • Absorbing boundary conditions    

 – Engquist-Majda one-way wave equation, 
  1977 [7]  

  – Bayliss-Turkel outgoing wave annihilators, 
  1980 [8] 

 – Liao et al. extrapolation of outgoing waves 
  in space and time, 1984 [13] 

 – Berenger perfectly matched layer, 1994 [47] 

 – Uniaxial perfectly  matched layer, 1995-6 [50, 51] 

 – Roden and Gedney convolutional perfectly 
  matched layer, 2000 [65] 

 
    

 

 
 
 
 
 
 
 

   •  Numerical dispersion 

 –  Fang higher-order spatial derivatives, 
1989 [26]  

 –  Krumpholz and Katehi MRTD, 1996 [56]  

 – Q. H. Liu PSTD, 1996-7 [57, 58] 

 – Schneider and Wagner analysis for Yee 
FDTD, 1999 [62] 

 
   •  Numerical stability 

 –  Taflove and Brodwin analysis, 1975 [3]  

 – Unconditionally stable ADI techniques,  
1999-2000 [63, 64] 

 – DeRaedt “one-step” FDTD technique, 
2003  [70]. 

   •  Digital signal processing 

 –  Umashankar and Taflove, phasor-domain 
near-to-far field transformation, 1982, 83 
[11, 12]  

 – Luebbers et al. time-domain near-to-far field 
transformation, 1991 [35] 

 – Extraction of underlying resonant 
frequencies and quality factors from 
windowed FDTD time-waveforms 1991-8 
[39-43]. 

   • Conforming grids 

 — Locally conforming contour-path subcell  
  techniques, 1987, 88, 92, 97 [18-20, 60] 

 —  Globally conforming grids, 1990 [22, 23] 

  — Rylander and Bondeson stable hybrid  
FETD / FDTD, 2000 [66] 
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Table 2  (continued)  

Primary FDTD Technology Development Themes 
 
 

     •  Dispersive and nonlinear materials 

 — Linear dispersions, 1990,91 [27-29] 

 —  Nonlinearities, yielding self-focusing and  
  temporal and spatial solitons, 1991-4 [36-38] 

 
 

 
IV. CURRENT AND EMERGING FDTD APPLICATIONS 

 
This section illustrates current and emerging FDTD computational electrodynamics modeling applications over the 
frequency range from about 1 Hz to 6 1014 Hz (i.e., extremely low frequencies to daylight). 

A.  Extremely Low Frequency Models of the Earth-Ionosphere Waveguide 

 FDTD has been recently applied to model extremely low frequency (ELF) electromagnetic wave propagation 
within the Earth-ionosphere waveguide.  Fig. 2 illustrates the most advanced gridding technique used in such 
studies, and sample results for antipodal wave propagation around the Earth calculated using a high-resolution grid 
with space cells spanning only about 40 km over the entire surface of the planet. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Fig. 2. FDTD model of the Earth-ionosphere waveguide.  Top: geodesic grid [69].  Bottom: snapshots 
  of impulsive wave propagation around the Earth (the complete video can be downloaded at  
  http://www.ece.northwestern.edu/ecefaculty/taflove/3Dmovietext@gif.avi)  

   •  Multiphysics coupling to Maxwell s equations 

 –  Charge generation, recombination, and 
transport in semiconductors, 1990 [33, 34]  

 –  Electron transitions between multiple energy 
levels of atoms, modeling pumping, 
emission, and stimulated emission 
processes, 1995, 1998, 2002, 2004 [52-55] 
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B.  Wireless Personal Communications Devices 

 Figs. 3-5 illustrate how FDTD has been applied to provide accurate, high-resolution models of cellphones [71].  
Here, the grid-cell size is as fine as 0.1 mm to resolve fine geometrical details. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Fig. 3.  FDTD model of the Motorola T250 cellphone [71].  Top: physical phone and the FDTD CAD model.   
   Bottom: agreement of measured and FDTD-calculated near-surface electromagnetic fields at 1.8 GHz. 
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 Fig. 4. Agreement of the measured and FDTD-calculated specific absorption rate (SAR) at 1.8 GHz for 
  the cellphone of Fig. 3 positioned adjacent to a standard phantom head model [71]. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Fig. 5. FDTD-calculated SAR at 1.8 GHz for the cellphone of Fig. 3 positioned adjacent to a realistic  
  head model derived from tomographic scans of a volunteer subject [71].  The head model has  
  121 slices (1 mm thick in the ear region, 3 mm thick elsewhere), wherein each slice has a  
  transverse resolution of 0.2 mm. 
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C.  Ultrawideband Microwave Detection of Early-Stage Breast Cancer 

 Fig. 6 illustrates how FDTD has been applied to model a proposed ultrawideband (UWB) microwave technique 
for early detection of breast cancer [72].  Here, FDTD was used to model the breast tissues and an antenna system 
consisting of impulsive sources and receptors located at the surface of the breast.  In the case shown, a 2-mm 
diameter malignant tumor was assumed to be embedded 3 cm within a realistic breast model derived from 
tomographic scans of a volunteer subject.  The impulsive excitation had spectral components primarily in the 1-10 
GHz range.  FDTD-calculated data for the backscattering response observed at the antenna was post-processed to 
derive the image shown.  From Fig. 6, we see that the proposed UWB microwave technique yields a cancer 
signature which should be readily detectable, i.e., 15 dB to 30 dB stronger than the clutter due to the surrounding 
normal tissues.  This is very encouraging, since a small malignancy of this type would almost certainly not be 
detectable using x-ray mammography. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 Fig. 6. Calculated image of a 2-mm diameter malignant tumor embedded 3 cm below the surface of a  
  model of the female human breast [72].  This image was derived by post-processing FDTD data  
  for the backscattering of ultrawideband electromagnetic wave pulses radiated by an antenna system  
  located at the surface of the breast.  The breast model was assembled from tomographic scans of a  
  volunteer subject.  The presence and location of the small tumor is easily discerned.  Such a cancer  
  would almost certainly not be detectable using x-ray mammography. 
 

 

Calculated image 
of tumor 

Simulated 
2-mm tumor 

dB 
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D.  Ultrahigh-Speed Bandpass Digital Interconnects 

 Fig. 7 illustrates how FDTD has been applied to model proposed ultrahigh-speed substrate integrated 
waveguide (SIW) interconnects for digital circuits [73].  Each SIW would be implemented in a multilayer circuit 
board by inserting two parallel rows of vias to connect adjacent ground planes.  With no center conductor required, 
high-characteristic-impedance operation is possible and copper losses can be significantly reduced relative to 
stripline interconnects.  Furthermore, sharp bends up to 90˚ are possible with negligible reflections and little overall 
impact on the signal transmission.  Fig. 7(top) is a photograph of a prototype straight SIW constructed and tested at 
Intel Corporation in summer 2005 [73].  Measurements confirmed the FDTD predictions (Fig. 7(bottom)) that both 
straight and bent SIWs exhibit 100% bandwidths with negligible multimoding, for this prototype, 27 GHz – 81 GHz.  
In ongoing work, half-width folded SIWs are predicted by FDTD to have even larger (115%) bandwidths.  Board-
level interconnects using this technology could stream digital data at rates 10 – 50 times greater than possible today, 
which would satisfy Intel’s needs for the next decade. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 Fig. 7. FDTD-calculated S21 transmission versus frequency for the prototype substrate integrated waveguide 
  board-level digital interconnect shown at the top [73].  FDTD predicts little difference in the S21 
  characteristic over the entire 100% bandwidth if a 90˚ bend is inserted (see inset for a snapshot  
  visualization of the electric field within the bend, showing a clean pattern with no multimoding). 
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E.  Micron/Nanometer Scale Photonic Devices:  Category 1 (Linear) 
 
 Currently, FDTD is routinely applied by the photonics community to analyze and design micron- and 
nanometer-scale devices operating at infrared through visible-light wavelengths.  Fig. 8 illustrates one recent 
application of 3-D linear FDTD modeling to design a microcavity laser [74].  This electrically driven, single-mode 
device employs a photonic bandgap defect-mode cavity and operates at room temperature with a low threshold 
current.  The physics of electromagnetic wave confinement by the cavity is properly simulated. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.  Application of 3-D FDTD modeling to design a photonic bandgap defect-mode microcavity laser [74]. 
 
 

 Fig. 9 illustrates a recent application of 3-D linear FDTD modeling to analyze the transmission of 532-nm 
wavelength light through a 200-nm diameter hole in a 100-nm thick gold film [75].  This illustrates the capability of 
a dispersive FDTD algorithm to properly model the formation of a plasmon mode at the surface of the gold film, 
which enhances the transmission of the normally incident light through the small hole. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9.  Application of 3-D FDTD modeling to analyze enhanced light transmission through a sub-micron hole 
    in a gold film due to the formation of a plasmon mode at the surface of the film [75]. 
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F.  Micron/Nanometer Scale Photonic Devices:  Category 2 (Macroscopic Nonlinearity and Gain) 

 The incorporation of material nonlinearity and gain is an emerging area in FDTD modeling of micron- and 
nanometer-scale photonic devices.  One approach incorporates nonlinearity and/or gain in the macroscopic 
description of the dielectric polarization or the index of refraction.  Such nonlinearity and gain can be either 
independent or dependent upon the optical wavelength.  Fig. 10 illustrates the first reported application of nonlinear 
FDTD modeling to simulate the propagation and interaction of spatial optical solitons [38].  Here, parallel, co-
propagating, equal-amplitude spatial solitons having a dielectric wavelength of 528 nm in a glass medium exhibit a 
periodic coalescence or “braiding” if the optical carriers are assumed to be in phase.  If the optical carriers are 
assigned a relative phase of , FDTD modeling shows that the spatial solitons either immediately diverge to infinite 
separation or coalesce once before diverging.  Such phenomena can form the basis of an ultrafast all-optical switch. 
 

 
 
 
 
 
 
 
 
 
 
 

 Fig. 10. Application of 2-D nonlinear FDTD modeling to analyze the periodic “braiding” of 
  co-phased spatial optical solitons in glass [38].  The solitons propagate from left to right. 
 

 
 

 Fig. 11 illustrates an interesting recent application of 2-D nonlinear FDTD modeling to analyze the operation of 
a proposed low-power all-optical switch implemented in the crossing junction of photonic crystal defect-mode 
waveguides [76].  Here, the control signal perturbs the refractive index (and thereby the resonant frequency) of a 
defect-mode cavity at the intersection of the waveguides.  This flips the cavity’s transmission of the signal from 
stopband to passband, permitting the signal to reach the output port.   
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Fig. 11. Application of 2-D nonlinear FDTD modeling to analyze a proposed all-optical switch [76].   

(a) control input is absent, yielding low signal output 

 

(b) control input is present, yielding high signal output 
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G.  Micron/Nanometer Scale Photonic Devices:  Category 3 (Semiclassical Models) 

 A second, more rigorous and more flexible approach to incorporate nonlinearity and gain in optical media 
involves time-stepping concurrently with the normal FDTD field updates a set of auxiliary differential equations 
which describes the behavior of individual atoms and their electrons.  Phenomena of interest here include electron 
transitions between multiple energy levels of atoms that involve pumping, emission, and stimulated emission 
processes [52-55].  With this technique, quantum phenomena are coupled to the classical Maxwell’s equations, 
yielding what may be called a semiclassical model.   

 Fig. 12 illustrates recent modeling results for electron population inversion and lasing output vs. time obtained 
using the semiclassical four-level-atom FDTD model reported in [55].  This laser is assumed to have a one-
dimensional, optically pumped, single-defect, distributed Bragg reflector cavity with three layers of refractive 
indices alternating between n = 1.0 and 2.0, with thickness 375 nm and 187.5 nm, respectively.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Fig. 12. Top:  electron population density probability showing the inversion between Levels 1 and 2;   
  Bottom:  intensity output of the pump and laser output signals [55]. 
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H.  Biophotonics:  Category 1 (Optical Interactions with Small Numbers of Living Cells) 

 Another important emerging application for FDTD modeling involves analyzing optical scattering by human 
biological cells and tissues.  Such analyses are currently playing a key role in developing novel medical techniques 
for detecting precancerous conditions in the cervix and colon, with potential additional early detection applications 
for pancreatic, esophageal, and lung cancers.  Fig. 13 illustrates the goal: to unambiguously distinguish normal cells 
from distressed cells when conventional optical microscopy fails. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13. Similar conventional microscope images: (a) normal HT-29 cells; (b) distressed chemically treated cells. 
 
 

 Fig. 14 illustrates applying FDTD to evaluate the sensitivity of optical backscattering and forward-scattering to 
small, random, refractive-index fluctuations spanning nanometer length scales [77].  Here, the spectral / angular 
distribution of scattered light from a randomly (and weakly) inhomogeneous dielectric sphere is compared to that for 
the homogeneous sphere of the same size and average refractive index.   
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Fig. 14. FDTD-computed optical scattering signatures of a 4-μm-diameter sphere with average refractive index 
  navg =  1.1:  (a) homogeneous sphere;  (b) random index fluctuations ( n = ±0.03; ~50 nm) within sphere. 
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 From Fig. 14, we see that that there exists distinctive features of the backscattering spectral / angular 
distribution for the inhomogeneous case of Fig. 14(b) despite the fact that the inhomogeneities for this case are weak 
(only 3%) and much smaller (only about 50 nm) than the diffraction limit at the illuminating wavelengths.  In 
contrast, the forward-scattering signature in Fig. 14(b) exhibits no distinctive features.   

 These FDTD models have supported laboratory optical backscattering measurements of rat colon tissues treated 
with the carcinogen AOM [78].  As shown in Fig. 15, only two weeks after application of the AOM, the treated 
colon tissues exhibited perturbed backscattering spectra apparently caused by the formation of subdiffraction tissue 
inhomogeneities akin to those in Fig. 14(b).  Note that these could not be seen under a microscope.  In fact, these 
precancerous changes could not be detected by any existing pathology technique.  These findings led to the 
development of a preclinical instrument which has shown excellent sensitivity and specificity in initial trials with 
several hundred human subjects [79].  Currently, these trials are being greatly expanded.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 Fig. 15. Typical measured backscattering spectral / angular distributions for rat colon tissues [78]. 
 

 Current FDTD modeling work in this area has shifted toward spectral analysis of individual backscattered 
pixels so that highly localized changes within a single biological cell can be investigated.  First, as illustrated in Fig. 
16, the near-to-far field transformation was augmented to yield a backscattered amplitude image [80]. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.16. Agreement of measured / FDTD-calculated backscattered amplitude images of 6-μm dielectric sphere [80]. 
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 Next, assuming a normally incident plane wave, FDTD was used to calculate the optical spectra of individual 
pixels within the backscattered amplitude image of a rectangular layered material slab.  Referring to Fig. 17, each 
layer of the slab was assumed to have a thickness in the order of 25 nanometers, with sub-micron lateral 
“checkerboard” inhomogeneities near the diffraction limit.  As shown in this figure, it was determined that the 
backscattered spectra at pixels centered within each checkerboard square were highly correlated with those for a 
material slab having the same nanometer-scale layering, but no lateral variations (i.e., a 1-D illumination geometry) 
[81].  This yields additional evidence that nanometer-scale inhomogeneities can cause pronounced alterations of 
backscattering spectra.  Furthermore, it suggests means to deduce the local layering of an inhomogeneous material 
structure (such as a living cell) by analyzing the spectra of individual pixels within its backscattered amplitude image.  

 Finally, exploiting the insights developed via FDTD modeling, a microscope  system was constructed to acquire 
pixel-by-pixel backscattering spectra of individual living cells [81].  As shown in Fig. 18, this system was readily 
able to distinguish the normal HT-29 cells of Fig. 13 from their distressed, chemically treated counterparts. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Fig. 17. FDTD-calculated spectra of four distinct pixels within the backscattered amplitude image 
  of a layered material slab [81]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 18.  Normal HT-29 cells have different pixel backscattering spectra than those chemically treated [81]. 
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I.  Biophotonics:  Category 2 (Optical Interactions with Large Numbers of Living Cells) 

 Pseudospectral time-domain (PSTD) computational solutions of Maxwell’s equations introduced by Liu 
[57, 58] permit coarse spatial sampling approaching the Nyquist limit.  This characteristic of PSTD techniques 
permits modeling electromagnetic wave interactions in 3-D spatial regions spanning many tens of wavelengths.   
As a consequence, an important emerging biophotonics application of PSTD modeling involves analyzing light 
propagation through, and scattering by, large clusters of living cells;  in fact, much larger clusters than possible 
using traditional FDTD techniques.  Obtained directly from Maxwell’s equations, PSTD solutions are more rigorous 
than many approximate techniques that are widely used by the biophotonics community.  Hence, PSTD modeling 
affords new opportunities to advance a wide range of medical diagnoses and treatments that are based upon 
interactions of light with biological tissues. 

 Fig. 19 illustrates the accuracy of the Fourier-basis 3-D PSTD technique in calculating the differential scattering 
cross-section of a single dielectric sphere (diameter d = 8 μm, refractive index n = 1.2) [82].  The PSTD solution 
(wavelength 0 = 750 nm, grid resolution  = 83.3 nm, staircased surface) agrees very well with the Mie series over 
a range of about 105:1.  Fig. 20 illustrates the accuracy of this technique in calculating the total scattering cross-
section (TSCS) of a 20-μm cluster of 19 randomly positioned dielectric spheres (each d = 6 μm, n = 1.2) [82].  Here, 
the PSTD solution (  = 167 nm, staircased surfaces) agrees well with the results of a multi-sphere series expansion. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 19.  Validation of Fourier-basis PSTD for scattering by a single sphere [82]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 20.  Validation of Fourier-basis PSTD for scattering by a 20-μm cluster of 19 dielectric spheres [82]. 
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 The capability of the Fourier-basis 3-D PSTD technique to accurately solve the full-vector Maxwell’s equations 
for closely coupled, electrically large objects opens up possibilities for accurately modeling optical interactions with 
clusters of biological cells.  Fig. 21 illustrates a generic example wherein information regarding the diameter of 
individual particles within a cluster is obtained from its PSTD-computed TSCS [82].  Fig. 21(top) graphs versus 
frequency the PSTD results (grid resolution  = 167 nm, staircased surfaces) for the TSCS of a 25-μm cluster of  
192 randomly positioned dielectric spheres (each d = 3 μm, n = 1.2).  Now, we perform a cross-correlation of this 
data set with the TSCS-versus-frequency characteristic of a single “trial” dielectric sphere of refractive index n = 1.2 
and adjustable diameter d.  We hypothesize that the maximum cross-correlation is achieved when the diameter of 
the trial sphere equals the diameter of the individual spheres comprising the cluster.  Indeed, Fig. 21(bottom) shows 
that the peak cross-correlation occurs when the diameter of the trial sphere is 3.25 μm, within 10% of the actual  
3 μm diameter.  Similar results have been reported for a variety of clusters of dielectric spheres [82]. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Fig. 21. Top:  PSTD-calculated TSCS vs. frequency of a 25-μm cluster of 192 dielectric spheres   
  (d = 3 μm, n = 1.2).  Bottom:  Cross-correlation of the top TSCS data set with the TSCS-vs.- 
  frequency characteristic of a single trial dielectric sphere of the same refractive index (n = 1.2) 
  but adjustable diameter [82]. 
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V. FUTURE PROSPECTS 
 
During the past 40 years since Yee’s Paper #1, 
advances in FDTD theory and software and in 
general computing technology have elevated FDTD 
techniques to the top rank of computational tools 
for engineers and scientists studying electro-
dynamic phenomena and systems.  There is every 
reason to believe that the steady pace of these 
advances will continue.   

 In particular, the author believes that a large 
expansion of FDTD and related techniques will 
occur in four research areas which cover the 
frequency spectrum from ELF past visible light:  
(1) geophysics and related remote sensing of the 
Earth and its atmosphere;  (2) biophotonics;   
(3) nanometer-scale physics, especially interfacing 
with quantum electrodynamics;  and (4) inverse 
scattering.  Impacting these disparate areas is made 
possible by the extraordinary flexibility and 
robustness of FDTD and related grid-based time-
domain solutions of Maxwell’s equations, which 
arguably involve computational techniques which 
are the closest to how Mother Nature “solves” her 
electrodynamics problems. 
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