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Abstract  —  CEM methods such as FDTD and TLM 
are the de-facto standard for general purpose EM field 
modeling in the time domain. On the other hand, the 
Microsoft .NET Framework and the associated C# 
programming language have become the de-facto 
standard for software development on Windows. This 
paper presents the technique for building a time domain 
CEM object library in C#. This approach could be the 
basis for creating an open-source standard CEM library. 

Index Terms  —  CEM, FDTD, TLM, time domain 
analysis, object-oriented approach. 

I. INTRODUCTION 

Traditional computational electromagnetics (CEM) 
research does not place sufficient emphasis on object-
oriented design and implementation.  Classic and recent 
CEM books [1] – [8] do not address the importance of 
object orientation at all. As a result, software packages 
developed by CEM practitioners usually cannot be 
maintained outside of their respective research 
institutions. It is hard to imagine engineers around the 
world would have to re-invent the basic string and math 
functions before they could start writing codes to solve 
their design problems. However, when it comes to 
developing new programs for CEM applications most 
CEM practitioners have to start from scratch because 
there is no standard CEM library at their disposal. 
Using free packages such as NEC [9], TLM3D [10], 
YatPac [11], and MEEP [12] to solve EM problems is 
one thing; building new programs base on these 
packages is a completely different challenge. 

In the author’s opinion, general purpose CEM 
methods such as MOM, FEM, FDTD and TLM are 
mature enough to be placed in an open source standard 
CEM library. The existence of such a library would not 
pose unwanted competition to the CEM software 
industry because the role of CEM industry should be in 
optimizing the well known modeling methods with 
proprietary features, in customizing the software with 
industrial strength graphical user interface front-end, 
and in interconnecting the field modeling engines to 
CAD/CAE packages. 

Object-oriented paradigm is the key for 
implementing a standard CEM library. However, 
Object orientation is not equivalent to programming in 
Java, C++, and C#. In fact, it is not difficult to find 
procedure-oriented spaghetti code written in these 
languages. A truly object-oriented program makes good 
use of encapsulation, inheritance, and polymorphism. 
Stroustrup discusses the concept in great details in his 
authoritative C++ book [13]. 

The author has illustrated the advantages of an OOP 
CEM framework in an earlier paper [14]; in order to 
build a standard CEM library in a reasonably short 
period of time, existing procedure-oriented CEM codes 
should be leveraged as much as possible. This paper 
thus spells out the details of converting a procedure-
oriented program to an object-oriented implementation. 
Since the Microsoft .NET Framework and its associated 
C# programming language have become the de-facto 
standard for the Windows software industry, this paper 
makes use of the C# programming language to apply 
the OOP techniques to computational electromagnetics. 

II. IMPLEMENTATION OF TLM IN C# 

The theory of TLM is well described in the literature 
[1], [4], [15] and [16]. Procedure-oriented 
implementation of the method can be found in [1] and 
[10]; a package written in C/C++ has been recently 
released by Russer et al. [11]. These TLM source codes 
are invaluable resources for CEM researchers who are 
interested in the TLM method. However, these 
computer codes are based on legacy modules that are 
not object-oriented. To illustrate the idea of object-
oriented implementation, this paper describes the 
software technology for converting the TLM_INHO 
Pascal program in [1] to a reusable class object in C#; 
the source codes presented in this paper can be 
downloaded at the CERL website [17]. 

C# is not the only programming language that is 
suitable for implementing polymorphic CEM programs. 
Many CEM professionals may prefer C++ and Java to 
C# because of the maturity of the two older languages 
as well as the general availability of third party 
numerical libraries [18] and [19]. C# is used in this 
paper because it supports multi-dimensional arrays in a 
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way that is similar to Pascal and FORTRAN.  
Furthermore, C# supports C++ style operator 
overloading which is a crucial feature for implementing 
a complex mathematic library. Finally, C# can leverage 
the computing power of library modules written in 
C/C++, Pascal and FORTRAN via the .NET 
Framework InteropServices. Hence, C# is a serious 
programming language that CEM researchers may not 
want to ignore. 

The first step to convert the TLM_INHO.PAS 
program to C# is to map the Pascal data types to the 
equivalent C# data objects. Pascal’s numeric data types 
such as integer and single can be translated in a 
straightforward manner to the C#’s int and float 
data types. In both languages, double precision floating 
p o i n t  n u m b e r s  a r e  c a l l e d  d o u b l e . 

{------- Pascal Code Segment -------} 
nx, ny : integer;  {mesh dimension  } 
d1, d2 : single;   {normalized freq.} 
header : string[80]; {temp. storage } 
 
//-------- C# Code Segment ---------- 
int nx, ny;     // mesh dimension 
float  d1, d2;  //normalized freq  
string header;  //temporary storage 

Listing 1. Code segment using simple data types to 
illustrate the equivalence of data types 
between Pascal and C#. 

 

The string types between these two languages are quite 
different.  In Pascal, string is an array of characters; the 
characters in a string can be manipulated at run-time. In 
C#, string is an immutable built-in type; a new string 
must be created if any characters in the old string are to 
be changed. In addition to that, the C# string is a 
reference type. When the value of a string variable is 
assigned to another string variable, only the reference 
to the string is assigned to the new variable; both 
variables will refer to the same character string. The 
code segments in Listing 1 and 2 illustrate the said 
concepts. When the content of a string is no longer 
referred by a string variable, the memory location 
occupied by the defunct string will be recovered by the 
.NET Framework’s garbage collection utility. This 
garbage collection concept applies to all built-in and 
user defined reference data types. 

Arrays in Pascal and C# are quite similar but the 
differences have to be noted.  In Pascal, array lower 
bounds can be easily specified.  In C#, arrays have a 
default lower bound of zero; arrays with user specified 
lower bounds can be created with the static 

CreateInstance class method.  In the original 
TLM_INHO.PAS program, the three-dimensional array 
for storing voltage impulses is declared as: 

v:array[1..5,1..12,1..12] of single; 

A three-dimensional C# array that allows indices to 
span through [1..5, 1..12, 1..12]  would be: 

float[,,] v = new float[6,13,13]; 

The above three-dimensional C# array in fact has 
1×13×13 extra entries. To avoid wasting storage, one 
may use the following statement: 

float[,,] v = (float[,,]) 
Array.CreateInstance( 
typeof(float), 
new int[] { 5,12,12 }, 
new int[] { 1, 1, 1 }); 

string a, b; // string variables 
a = “abc”;// assign address of “abc” 
b = a;    // to a and b. a and b now 
          // refer to the same string 
a = “def” // a refer to a new string. 
b = a;    // a and b now refer to 
          // “def”, “abc” becomes 
          // inaccessible. 

Listing 2. Code segment illustrates the reference 
characteristic of the C# string; the 
unreferenced “abc” string will eventually 
be garbage collected by the .NET 
Framework. 

 

Instead of typing the declaration statement above 
repetitively in a source file, one may define the 
following generic static method to create three 
dimensional arrays: 

public static T[,,] Array3D<T> 
 (int x1, int x2, int y1, 
  int y2, int z1, int z2){ 
int[] dim={x2-x1+1, y2-y1+1,z2-z1+1}; 
int[] lower={x1, y1, z1}; 
return (T[,,])Array.CreateInstance( 
             typeof(T), dim, lower); 
} 

Using this generic method, a three dimensional array of 
storage for the voltage impulses can be created via the 
following simple statement: 

float[,,]  v = 
Array3D<float>(1,5,1,12,1,12); 
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The same technique can be employed to create two-
dimensional arrays of any type; the generic method in 
this case would be: 

public static T[,] Array2D<T> 
(int x1, int x2, int y1, int y2){ 
 int[] dim ={ x2-x1+1, y2-y1+1}; 
 int[] lower ={ x1, y1 }; 
return (T[,])Array.CreateInstance( 
             typeof(T), dim, lower); 
} 

Hence, non-zero lower bound two-dimensional arrays 
of type char, int and float can be declared like: 

char[,]  a = 
Array2D<char>(1,5,1,120); 
int[,]     b = 
Array2D<int>(1,5,1,120); 
float[,] c = 
Array2D<float>(1,5,1,120); 

One would expect this technique to work for one-
dimensional arrays as well.  However, the version 2.0 
C# compiler does not allow one-dimensional 
System.Array to be typecast to T[]. This compiler 
deficiency, or bug, can be overcome by using the 
following simple Array1D<T> class. 

 
Fig.1. Helper classes for a new TLM_INHO object. 
 
public class Array1D<T>{ 
  public Array1D(int x1, int x2){ 
    int[] dim ={ x2 - x1 + 1}; 
    int[] lower ={ x1}; 
    a = Array.CreateInstance( 
        typeof(T),dim, lower); 
  } 

  public T this[int i]{ 
    get { return (T)a.GetValue(i); 
} 
    set { a.SetValue(value,i); } 
  } 
  public Array a; 
} 

Besides demonstrating C#’s generic class definition, 
this implementation also illustrates the use of C#’s 
indexer, [], as well as the accessor (get) and mutator 
(set) property methods. With these array creation 
methods and the Array1D <T> class, it is 
straightforward to transform the TLM_INHO Pascal 
program to a C# program — all data and procedures 
crucial to the TLM simulation are placed inside a main 
C# class; supporting data and utility functions are 
placed in other general purpose helper classes. A screen 
shot of the module that contains the immediate helper 
classes for a new TLM_INHO object is shown in 
Figure 1.  SrStream and SwStream are text based 
file IO classes whereas the TheBase consists of the 
previously mentioned static array creation methods and 
the Array1D <T> helper class. 

Figure 2 shows the private variables of an 
inhomogeneous medium TLM class, InHo. Since 
InHo is derived from TheBase, InHo inherits all the 
data and methods of TheBase. As a result, InHo can 
make use of the array creation methods and the one-
dimensional array class, TheBase, without using the 
<class>.<method> notation. Besides the private 
data shown in the figure, InHo has a number of public 
methods for data I/O, field simulation, and data 
processing. Figure 3 shows a main program that makes 
use of the InHo class to implement a single-thread 
TLM simulation algorithm identical to the original 

 
Fig.2. The class structure of TLM_IHNO in C#. 
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Fig.3. A C# program that employs the TLM_INHO 

class library. 
 

 
Fig.4. The output of the TLM program in figure 3. 

 
Fig.5. InHo_2, a new class derived from InHo. 

Pascal program. The false argument passed to the 
Iterate method informs the tlm object it is not 
necessary to send output to the console during the field 
simulation process. The original Output (renamed 
PlotGraph) procedure has been made virtual to 
support polymorphism. 

The new program has been used to analysis the 
rectangular resonator associated with the original 
Pascal TLM_INHO program. The output from the 
current C# implementation, which is identical to the 
output of the original program, is shown in Figure 4. 

The above computation has validated that the 
Program, InHo, and TheBase classes have been 
properly implemented in C# using the object-oriented 
paradigm. The helper classes and array creation 
methods are general purpose utilities for converting 
codes in other programming languages to C#. 

One of the advantages of object-oriented 
implementation is the ease of leveraging computing 
power of existing software modules via object 
inheritance and polymorphism. If the PlotGraph 
method of InHo is made virtual, a new class, say 
InHo_2, can be derived from InHo with a new pixel-
based graphical PlotGraph method that overrides the 
original string-based implementation. The code 
structure of such an implementation is shown in 
Figure 5. Inheritance and polymorphism are powerful 
features that do not exist in the traditional procedure-
oriented programming paradigm. 

Another advantage of object-oriented implementation 
is the feasibility of instantiating multiple copies of the 
InHo objects in the Main method.  A multiple-engine 
TLM program can be easily created using the InHo 
class library; Figure 6 depicts the code segment of a 
dual-engine simulation program.  On a multi-processor 
computer, the engines will run simultaneously. In order 
to illustrate the concurrent behaviour of the dual-engine 
implementation, a true argument is passed to the 
iterate method so that the tlm objects would print 
the name of the input file and the iteration number to 
the console during the field computation process. The 
screen image in Figure 7 shows interspersed outputs 
from the two concurrent threads in Figure 6. 

 
Fig.6. A multi-thread TLM_INHO code segment in C#. 

 
Fig.7. A screen image consists of interspersed outputs 

from the two execution threads in Fig 5. 
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Recently released CEM codes, [9] and [12], are 
mostly implemented in C++. However, as the author 
has mentioned earlier, programs implemented in C++ 
are not necessarily object-oriented programs. Programs 
that do not take advantage of object inheritance and 
polymorphism are merely class oriented programs. 
More applications of object-oriented programming 
paradigm to computational electromagnetics can be 
found in [20]-[25]. Details about polymorphism and 
concurrent programming in C# can be found in [26] 
and [27]. 

III. CONCLUSION 

A C# implementation of the classical two-
dimensional TLM algorithm by Hoefer has been 
presented. Object-oriented features such as 
encapsulation, inheritance and polymorphism have 
been demonstrated. The object-oriented paradigm 
presented in this paper can be used to convert most 
legacy procedure-oriented CEM programs to modern 
object-oriented library modules. The technique 
presented in this paper is equally applicable in the Java 
environment, or in the C++ world with other operating 
systems. The author is advocating placing commonly 
used CEM engines, such as MoM, FEM, FDTD and 
TLM, in an open source standard CEM library to 
benefit the EM community at large. 
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IV. APPENDIX 

 
THEBASE.CS: AN OBJECT-ORIENTED TLM LIBRARY IN C#  
using System;          using System.Collections.Generic; 
using System.Text;     using System.IO; 
namespace TLM{ 
public class SrStream : StreamReader{ 
    public SrStream(String ifs) : base(ifs){} 
    public String ReadString(){ 
        char a = ' ';   do{ a = (char)Read();}   while (char.IsWhiteSpace(a)); 
        string buffer = ""; 
        do{ buffer += a;  a = (char)Read();} while (!char.IsWhiteSpace(a)); 
        return buffer; 
    } 
    public float ReadFloat() { return float.Parse(ReadString()); } 
    public int ReadInt() { return int.Parse(ReadString()); } 
} 
public class SwStream : StreamWriter{ 
    public SwStream(String ofs) : base(ofs){ } 
    public string Format<T>(T v, int pl){ 
        string str = v.ToString().PadLeft(pl, ' '); 
        return str.Substring(0, pl); 
}   } 
public class TheBase{ 
 
    // Protected Math Methods 
    //======================= 
    protected double atan(double v) { return Math.Atan(v); } 
    protected double exp(double v) { return Math.Exp(v); } 
    protected double cos(double v) { return Math.Cos(v); } 
    protected double sin(double v) { return Math.Sin(v); } 
    protected double sqrt(double v) { return Math.Sqrt(v); } 
    protected double floor(double v) { return Math.Floor(v); } 
    // Data 
    //===== 
    public SrStream sr; 
    public SwStream sw; 
    public String input_file, output_file; 
    // Protected IO Methods 
    //===================== 
    protected string Format<T>(T v, int pl) { return sw.Format<T>(v, pl); } 
    protected float ReadFloat() { return sr.ReadFloat(); } 
    protected int ReadInt() { return sr.ReadInt(); } 
    public class Array1D<T>{ 
        public Array1D(int x1, int x2){ 
            int[] dim ={ x2 - x1 + 1 };   int[] lower ={ x1 }; 
            a = Array.CreateInstance(typeof(T), dim, lower); 
        } 
        public T this[int i]{ 
            get { return (T)a.GetValue(i); } 
            set { a.SetValue(value, i); } 
        } 
        public Array a; 
    } 
    // Public Methods 
    //=============== 
    public TheBase(String ifs, String ofs){ 
        input_file = ifs; 
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        output_file= ofs; 
    } 
    public bool OpenFiles(){ 
        try{ 
            sr = new SrStream(input_file); 
            sw = new SwStream(output_file); 
            return true; 
        } 
        catch (Exception e){ 
            Console.WriteLine("An error occurred: ‘{0}’", e); 
            CloseFiles();   return false; 
    }   } 
    public void CloseFiles(){ 
        if (sr != null) sr.Close(); 
        if (sw != null) sw.Close(); 
    } 
    public static T[,] Array2D<T>(int x1, int x2, int y1, int y2){ 
        int[] dim ={ x2 - x1 + 1, y2 - y1 + 1 }; 
        int[] lower ={ x1, y1 }; 
        return (T[,])Array.CreateInstance(typeof(T), dim, lower); 
    } 
    public static T[,,] Array3D<T>(int x1,int x2,int y1,int y2,int z1,int z2){ 
        int[] dim ={ x2 - x1 + 1, y2 - y1 + 1, z2 - z1 + 1 }; 
        int[] lower ={ x1, y1, z1 }; 
        return (T[, ,])Array.CreateInstance(typeof(T), dim, lower); 
}   }   } 
TLM_INHO.CS: An object-oriented TLM Library in C#  
using System; 
using System.Text; 
using System.Threading; 
using System.Collections.Generic; 
using System.IO; 
 
namespace TLM{ 
public class InHo : TheBase{ 
    int nx, ny;  // number of nodes in mesh 
    int io, it, jo, ni; // output point (io,jo), output type & num of iters 
    int kb, kc, kd, ke; // number of boundaries,computational boxes,dielectric 

// boundaries & excitation points or lines 
    float[, ,] v = Array3D<float>(1, 5, 1, 12, 1, 12);  // voltage buffer 
    float[,] data = Array2D<float>(1, 101, 1, 2); 
    char[,] outc = Array2D<char>(1, 101, 1, 70); 
    Array1D<float> rc = new Array1D<float>(1, 10);  // reflection coef 
    Array1D<float> rd = new Array1D<float>(1, 10);  // relative permittivity  
    Array1D<float> va = new Array1D<float>(1, 6);   // initial values 
    Array1D<float> eh = new Array1D<float>(0, 300); // storage for results 
    Array1D<float> r = new Array1D<float>(1, 12); 
    int[,] ib = Array2D<int>(1, 12, 1, 8); 
    int[,] ibd = Array2D<int>(1, 10, 1, 8); // waveguide, boundaries & codes 
    int[,] ie = Array2D<int>(1, 5, 1, 7);   // excitation points and code (115) 
    int[,] ia = Array2D<int>(1, 8, 1, 4);   // computation boxes 
    float ehre, ehim, d;  // field magnitudes and normalized frequencies 
    float pcf, cf, d1, d2, ds;      // normalized frequencies & step size 
    float peak, a, cs, max, yo; 
    int npt, l, j, m, i, ic, pt, ptp, ptm, nn;  // iteration counters} 
 
    void ReadHeader(){ String header; 
        header = sr.ReadLine(); sw.WriteLine(header); 
        header = sr.ReadLine(); sw.WriteLine(header); 
    } 
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    void ReadNxNy(){ ReadHeader();  nx = sr.ReadInt(); 
        ny = sr.ReadInt();        sr.ReadLine(); 
        sw.WriteLine("{0} {1}", Format<int>(nx, 4), Format<int>(ny, 4)); 
    } 
    void ReadBound(){  ReadHeader();  kb = 0; 
        do{ kb = kb + 1; 
            for (m = 1; m <= 8; m++){ ib[kb, m] = ReadInt(); 
                sw.Write("{0}", ib[kb, m].ToString().PadLeft(4, ' ')); 
                if (m == 4) sw.Write("    "); 
            } 
            r[kb] = ReadFloat();    it = ReadInt();      sr.ReadLine(); 
            sw.WriteLine("{0}{1}",Format<float>(r[kb],16),Format<int>(it, 10)); 
        } while (it > 0); 
    } 
    void ReadDielBound(){ ReadHeader();    kd = 0; 
        do{ kd = kd + 1; 
            for (m = 1; m <= 8; m++){  ibd[kd, m] = ReadInt(); 
                sw.Write("{0}", Format<int>(ibd[kd, m], 4)); 
                if (m == 4) sw.Write("    "); 
            } 
            rc[kd] = ReadFloat();      it = ReadInt();        sr.ReadLine(); 
            sw.WriteLine("{0}{1}",Format<float>(rc[kd],18),Format<int>(it,10)); 
        } while (it > 0); 
    } 
    void ReadCompBox(){ ReadHeader();    kc = 0; 
        do{ kc = kc + 1; 
            for (m = 1; m <= 4; m++){  ia[kc, m] = ReadInt(); 
                sw.Write("{0}", Format<int>(ia[kc, m], 4)); 
            } 
            rd[kc] = ReadFloat();    it = ReadInt();      sr.ReadLine(); 
            sw.WriteLine("{0}{1}",Format<float>(rd[kc],22),Format<int>(it,22)); 
        } while (it > 0); 
    } 
    void ReadExcitation(){  ReadHeader();    ke = 0; 
        do{ ke = ke + 1; 
            for (m = 1; m <= 7; m++){ ie[ke, m] = ReadInt(); 
                sw.Write("{0}", Format<int>(ie[ke, m], 4)); 
                if (m == 4) sw.Write("  "); 
            } 
            va[ke] = ReadFloat();  it = ReadInt();     sr.ReadLine(); 
            sw.WriteLine("{0}{1}",Format<float>(va[ke],16),Format<int>(it,17)); 
        } while (it > 0); 
    } 
    void ReadFreq(){ 
        sr.ReadLine();        sr.ReadLine();        d1 = ReadFloat(); 
        d2 = ReadFloat();     ds = ReadFloat();     sr.ReadLine(); 
        sr.ReadLine();        sr.ReadLine();        io = ReadInt(); 
        jo = ReadInt();       l = ReadInt();        ni = ReadInt(); 
        yo = ReadFloat();     sr.ReadLine(); 
        sw.WriteLine("Output point is ({0},{1})", 
            Format<int>(io,4),Format<int>(jo, 4)); 
        sw.WriteLine("Number of iterations is {0}", ni); 
        sw.WriteLine("Permittivity stub admittance is {0}", yo); 
        sw.WriteLine("   D1          D2         Step Size"); 
        sw.WriteLine("{0}{1}{2}", Format<float>(d1, 8), Format<float>(d2, 8), 

 Format<float>(ds, 18)); 
    } 
    public InHo(String ifs, String ofs) : base(ifs, ofs) { } 
    public void ReadData(){ 
        ReadNxNy();           ReadBound();             ReadDielBound(); 

142 ACES JOURNAL, VOL. 22, NO. 1, MARCH 2007



  

        ReadCompBox();        ReadExcitation();        ReadFreq(); 
    } 
    public void Iterate(bool bShowProgress){ 
        if (bShowProgress){ 
            Console.WriteLine("Finished reading input."); 
        } 
        float a, vx, vy, vxy; 
        // CLEAR WORKING SPACE  
        for (j = 1; j <= ny; j++){ 
            for (i = 1; i <= nx; i++){ 
                for (m = 1; m <= 5; m++){ 
                    v[m, i, j] = 0; 
        }   }   } 
        // INITIALIZE EXCITATION POINTS 
        for (nn = 1; nn <= ke; nn++){ 
            for (j = ie[nn, 3]; j <= ie[nn, 4]; j++){ 
                for (i = ie[nn, 1]; i <= ie[nn, 2]; i++){ 
                    m = ie[nn, 5]; 
                    while (m <= ie[nn, 7]){ 
                        v[m, i, j] = va[nn];      m = m + ie[nn, 6]; 
                    } v[5, i, j] = va[nn]; 
        }   }   } 
        // Sample Output at time zero } 
        switch (l){ 
            case 3: eh[0] = 2 * (v[1, io, jo] + v[2, io, jo] + v[3, io, jo] + 
                          v[4, io, jo] + yo * v[5, io, jo]) / (4 + yo); break; 
            case 2: eh[0] = yo * (v[3, io, jo] - v[1, io, jo]); break; 
            case 1: eh[0] = yo * (v[4, io, jo] - v[2, io, jo]); break; 
        } 
        for (ic = 1; ic <= ni; ic++){ 
            // INHOMOGENEOUS SHUNT NODE SCATTERING PROCEDURE 
            for (nn = 1; nn <= kc; nn++){ 
                for (j = ia[nn, 3]; j <= ia[nn, 4]; j++){ 
                    for (i = ia[nn, 1]; i <= ia[nn, 2]; i++){ 
                        a = (v[1, i, j] + v[2, i, j] + v[3, i, j] + v[4, i, j] 
                            + v[5, i, j] * rd[nn]) * 2 / (rd[nn] + 4); 
                        v[1,i,j]=a-v[1,i,j];      v[2,i,j]=a-v[2,i,j]; 
                        v[3,i,j]=a-v[3,i,j];      v[4,i,j]=a-v[4,i,j]; 
                        v[5,i,j]=a-v[5,i,j]; 
            }   }   } 
            // SET UP BOUNDARY CONDITIONS 
            for (nn = 1; nn <= kb; nn++){ 
                for (j = ib[nn, 3]; j <= ib[nn, 4]; j++){ 
                    for (i = ib[nn, 1]; i <= ib[nn, 2]; i++){ 
                        vxy = v[ib[nn, 6], i, j]; 
                        v[ib[nn, 6], i, j] = r[nn] * v[ib[nn, 5], i  
                        + ib[nn, 8], j + ib[nn, 7]]; 
                        v[ib[nn, 5], i + ib[nn, 8], j + ib[nn, 7]] = 
                        r[nn] * vxy; 
            }   }   } 
            // PERFORM IMPEDANCE MODIFICATIONS AT AIR-DIELECTRIC BOUNDARIES 
            if (ibd[1, 1] != 0){ 
                for (nn = 1; nn <= kd; nn++){ 
                    for (j = ibd[nn, 3]; j <= ibd[nn, 4]; j++){ 
                        for (i = ibd[nn, 1]; i <= ibd[nn, 2]; i++){ 
                            vx = v[ibd[nn, 6], i, j]; 
                            vy = v[ibd[nn, 5], i + ibd[nn, 8], j + ibd[nn, 7]]; 
                            v[ibd[nn, 6], i, j] 
                                = -rc[nn] * vy + (1 + rc[nn]) * vx; 
                            v[ibd[nn, 5], i + ibd[nn, 8], j + ibd[nn, 7]] 
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                                = rc[nn] * vx + (1 - rc[nn]) * vy; 
            }   }   }   } 
            // INTERCHANGE IMPULSES AMOUNG NODES 
            for (nn = 1; nn <= kc; nn++){ 
                for (j = ia[nn, 3]; j <= ia[nn, 4]; j++){ 
                    for (i = ia[nn, 1]; i <= ia[nn, 2]; i++){ 
                        a = v[3, i, j];         v[3, i, j] = v[1, i, j + 1]; 
                        v[1, i, j + 1]          v[4, i, j] = v[2, i + 1, j]; 
                        v[2, i + 1, j] = a; 
            }   }   } 
            // Sample Output 
            switch (l){ 
                case 3: eh[ic] = 2 * (v[1,io,jo] + v[2,io,jo] + v[3,io,jo] + 
                     v[4, io, jo] + yo * v[5, io, jo]) / (4 + yo);    break; 
                case 2: eh[ic] = yo * (v[3, io, jo] - v[1, io, jo]);  break; 
                case 1: eh[ic] = yo * (v[4, io, jo] - v[2, io, jo]);  break; 
            } 
            if (bShowProgress){ 
                Console.WriteLine("{0}: iteration {1}", input_file, ic); 
                Thread.Sleep(1); 
    }   }   } 
    public void Fourier(){ 
        float ra, rb, cs, u, uk, ehre, ehim, ehmod, d; 
        npt = 0;      max = 0;      ra = 0;      rb = 6.283184f;     d = d1; 
        while (d <= d2){ 
            ehre = 0;   ehim = 0;   uk = (float)exp(-d * ra);        u = uk; 
            for (ic = 0; ic <= ni; ic++){ 
                cs = ic * rb * d; 
                ehre = (float)(ehre + (eh[ic] * cos(cs) * uk)); 
                ehim = (float)(ehim - (eh[ic] * sin(cs) * uk)); 
                uk = uk * u; 
            } 
            ehmod = (float)(sqrt(ehre * ehre + ehim * ehim)); 
            npt = npt + 1;            data[npt, 1] = d; 
            data[npt, 2] = ehmod;     d = d + ds; 
        } 
        for (j = 1; j <= npt; j++){ 
            if (data[j, 2] > max){ 
                max = data[j, 2];      peak = data[j, 1];        pt = j; 
    }   }   } 
    public void CurveFit(){ 
        float ai, bmax; 
        if (pt > 1 && pt < npt){ ptp = pt + 1;        ptm = pt - 1; 
            ai = ((data[ptm,2]-max)*(data[ptm,1]-data[ptp,1])-(data[ptm, 2]– 
                   data[ptp, 2]) * (data[ptm, 1] - data[pt, 1])); 
            ai = ai / ((data[ptm,1] - data[pt,1])*(data[pt,1]-data[ptp,1])* 
                  (data[ptm, 1] - data[ptp, 1])); 
            bmax = (data[ptm,2]-max)/(data[ptm,1]-data[pt,1])-ai*(data[ptm,1] 
                  + data[pt, 1]); 
            peak = -bmax / (2 * ai); 
    }   } 
    public void Correct(){ 
        float a, p; 
        // VELOCITY ERROR CORRECTION 
        p = (float)(3.14592653 * peak); 
        cf = (float)(p / atan(sqrt(2.0) * sin(p))); 
        pcf = peak / cf; 
    } 
    public void PrintReport(){ 
        sw.WriteLine(); 
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        sw.WriteLine("        RESULTS"); 
        sw.WriteLine("        -------"); 
        sw.WriteLine("{0} points plotted.", Format<int>(npt, 4)); 
        sw.WriteLine("  Maximum plotted field magnitude:"); 
        sw.WriteLine("{0}", Format<float>(max, 14)); 
        cf = 1 / cf; 
        sw.WriteLine("  The velocity correction factor (Do/D) is {0}", cf); 
        sw.WriteLine( 

"  MESHSIZE/MESH WAVELENGTH     MESHSIZE/FREE SPACE    FIELD 
MAGNITUDE"); 

        sw.WriteLine("           (D)                    (Do)    WAVELENGTH      
(EHMOD)"); 
        sw.WriteLine( 

"  ------------------------   -----------------------  -----------
----"); 

        for (j = 1; j <= npt; j++){ 
            sw.WriteLine("        {0}                    {1}              {2}", 
                    Format<float>(data[j, 1], 8), 
                    Format<float>(data[j, 1] * cf, 8), 
                    Format<float>(data[j, 2], 8)); 
        } 
        sw.WriteLine(); 
        sw.WriteLine("Maximum field value at D  = {0}", peak); 
        sw.WriteLine("      corresponding to Do = {0} <=== FINAL RESULT", pcf); 
    } 
    public void PlotGraph(){ 
        float u; 
        sw.WriteLine("                         Graph of EHMOD vs. D"); 
        sw.WriteLine("   D                              EHMOD"); 
        u = max / 70; 
        if (u == 0) 
            Console.WriteLine("No plot generated - all values equal zero."); 
        else{ 
            sw.Write("         "); 
            for (j=7; j<=63; j+=7) sw.Write("   {0}",Format<float>(j*u,4)); 
                sw.WriteLine("   {0}", Format<float>(max, 4)); 
            for (j = 1; j <= npt; j++){ 
                data[j, 2] = data[j, 2] / max; 
                data[j, 2] = (float)(floor(70 * data[j, 2])); 
                for (i = 1; i <= 70; i++){ 
                    outc[j, i] = ' '; 
                    if (data[j, 2] == i) outc[j, i] = '*'; 
                } 
                sw.Write(" {0}|", Format<float>(data[j, 1], 7)); 
                for (i = 1; i <= 70; i++){ sw.Write(outc[j, i]); } 
                sw.WriteLine(); 
    }   }   } 
    public void Run(bool bShowProgress){ 
        ReadData();        Iterate(bShowProgress);        Fourier(); 
        CurveFit();        Correct();                     PrintReport(); 
        PlotGraph(); 
    } 
    public void Work(){ 
        if (OpenFiles()){   Run(true);  CloseFiles(); 
    }   } 
}   } 
 
TLM.CS: An object-oriented TLM Program in C#  
using System;                 using System.Text;       using System.Threading; 
using System.Collections.Generic;                      using TLM; 
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namespace CS_TLM{ // This is the main program to test out the TLM class 
    class Program{ 
        static void Main(string[] args){ 
            // Single Thread TLM_InHo 
            //======================= 
            InHo tlm = new InHo(@"../../TLM_INHO_INP.txt", 
                                @"../../TLM_INHO_OUT.txt"); 
            if (tlm.OpenFiles()){ 
                tlm.Run(false);    tlm.CloseFiles(); 
            } 
            // Multi-Thread TLM_InHo 
            //====================== 
            InHo tlm_1 = new InHo(@"../../TLM_INHO_INP_1.txt", 
                                  @"../../TLM_INHO_OUT_1.txt"); 
            InHo tlm_2 = new InHo(@"../../TLM_INHO_INP_2.txt", 
                                  @"../../TLM_INHO_OUT_2.txt"); 
            ThreadStart delegate_1 = new ThreadStart(tlm_1.Work); 
            ThreadStart delegate_2 = new ThreadStart(tlm_2.Work); 
            Thread thread_1 = new Thread(delegate_1); 
            Thread thread_2 = new Thread(delegate_2); 
            thread_1.Start();   thread_2.Start(); 
            while (thread_1.IsAlive || thread_2.IsAlive){ Thread.Sleep(1); } 
            Console.WriteLine("Job Done!"); 
}    }    } 
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