

Polymorphic Time Domain Computational Electromagnetics
Poman P.M. So

University of Victoria, Victoria, BC, Canada

Abstract — CEM methods such as FDTD and TLM
are the de-facto standard for general purpose EM field
modeling in the time domain. On the other hand, the
Microsoft .NET Framework and the associated C#
programming language have become the de-facto
standard for software development on Windows. This
paper presents the technique for building a time domain
CEM object library in C#. This approach could be the
basis for creating an open-source standard CEM library.

Index Terms — CEM, FDTD, TLM, time domain
analysis, object-oriented approach.

I. INTRODUCTION

Traditional computational electromagnetics (CEM)
research does not place sufficient emphasis on object-
oriented design and implementation. Classic and recent
CEM books [1] – [8] do not address the importance of
object orientation at all. As a result, software packages
developed by CEM practitioners usually cannot be
maintained outside of their respective research
institutions. It is hard to imagine engineers around the
world would have to re-invent the basic string and math
functions before they could start writing codes to solve
their design problems. However, when it comes to
developing new programs for CEM applications most
CEM practitioners have to start from scratch because
there is no standard CEM library at their disposal.
Using free packages such as NEC [9], TLM3D [10],
YatPac [11], and MEEP [12] to solve EM problems is
one thing; building new programs base on these
packages is a completely different challenge.

In the author’s opinion, general purpose CEM
methods such as MOM, FEM, FDTD and TLM are
mature enough to be placed in an open source standard
CEM library. The existence of such a library would not
pose unwanted competition to the CEM software
industry because the role of CEM industry should be in
optimizing the well known modeling methods with
proprietary features, in customizing the software with
industrial strength graphical user interface front-end,
and in interconnecting the field modeling engines to
CAD/CAE packages.

Object-oriented paradigm is the key for
implementing a standard CEM library. However,
Object orientation is not equivalent to programming in
Java, C++, and C#. In fact, it is not difficult to find
procedure-oriented spaghetti code written in these
languages. A truly object-oriented program makes good
use of encapsulation, inheritance, and polymorphism.
Stroustrup discusses the concept in great details in his
authoritative C++ book [13].

The author has illustrated the advantages of an OOP
CEM framework in an earlier paper [14]; in order to
build a standard CEM library in a reasonably short
period of time, existing procedure-oriented CEM codes
should be leveraged as much as possible. This paper
thus spells out the details of converting a procedure-
oriented program to an object-oriented implementation.
Since the Microsoft .NET Framework and its associated
C# programming language have become the de-facto
standard for the Windows software industry, this paper
makes use of the C# programming language to apply
the OOP techniques to computational electromagnetics.

II. IMPLEMENTATION OF TLM IN C#

The theory of TLM is well described in the literature
[1], [4], [15] and [16]. Procedure-oriented
implementation of the method can be found in [1] and
[10]; a package written in C/C++ has been recently
released by Russer et al. [11]. These TLM source codes
are invaluable resources for CEM researchers who are
interested in the TLM method. However, these
computer codes are based on legacy modules that are
not object-oriented. To illustrate the idea of object-
oriented implementation, this paper describes the
software technology for converting the TLM_INHO
Pascal program in [1] to a reusable class object in C#;
the source codes presented in this paper can be
downloaded at the CERL website [17].

C# is not the only programming language that is
suitable for implementing polymorphic CEM programs.
Many CEM professionals may prefer C++ and Java to
C# because of the maturity of the two older languages
as well as the general availability of third party
numerical libraries [18] and [19]. C# is used in this
paper because it supports multi-dimensional arrays in a

134

1054-4887 © 2007 ACES

ACES JOURNAL, VOL. 22, NO. 1, MARCH 2007

way that is similar to Pascal and FORTRAN.
Furthermore, C# supports C++ style operator
overloading which is a crucial feature for implementing
a complex mathematic library. Finally, C# can leverage
the computing power of library modules written in
C/C++, Pascal and FORTRAN via the .NET
Framework InteropServices. Hence, C# is a serious
programming language that CEM researchers may not
want to ignore.

The first step to convert the TLM_INHO.PAS
program to C# is to map the Pascal data types to the
equivalent C# data objects. Pascal’s numeric data types
such as integer and single can be translated in a
straightforward manner to the C#’s int and float
data types. In both languages, double precision floating
p o i n t n u m b e r s a r e c a l l e d d o u b l e .

{------- Pascal Code Segment -------}
nx, ny : integer; {mesh dimension }
d1, d2 : single; {normalized freq.}
header : string[80]; {temp. storage }

//-------- C# Code Segment ----------
int nx, ny; // mesh dimension
float d1, d2; //normalized freq
string header; //temporary storage

Listing 1. Code segment using simple data types to
illustrate the equivalence of data types
between Pascal and C#.

The string types between these two languages are quite
different. In Pascal, string is an array of characters; the
characters in a string can be manipulated at run-time. In
C#, string is an immutable built-in type; a new string
must be created if any characters in the old string are to
be changed. In addition to that, the C# string is a
reference type. When the value of a string variable is
assigned to another string variable, only the reference
to the string is assigned to the new variable; both
variables will refer to the same character string. The
code segments in Listing 1 and 2 illustrate the said
concepts. When the content of a string is no longer
referred by a string variable, the memory location
occupied by the defunct string will be recovered by the
.NET Framework’s garbage collection utility. This
garbage collection concept applies to all built-in and
user defined reference data types.

Arrays in Pascal and C# are quite similar but the
differences have to be noted. In Pascal, array lower
bounds can be easily specified. In C#, arrays have a
default lower bound of zero; arrays with user specified
lower bounds can be created with the static

CreateInstance class method. In the original
TLM_INHO.PAS program, the three-dimensional array
for storing voltage impulses is declared as:

v:array[1..5,1..12,1..12] of single;

A three-dimensional C# array that allows indices to
span through [1..5, 1..12, 1..12] would be:

float[,,] v = new float[6,13,13];

The above three-dimensional C# array in fact has
1×13×13 extra entries. To avoid wasting storage, one
may use the following statement:

float[,,] v = (float[,,])
Array.CreateInstance(
typeof(float),
new int[] { 5,12,12 },
new int[] { 1, 1, 1 });

string a, b; // string variables
a = “abc”;// assign address of “abc”
b = a; // to a and b. a and b now
 // refer to the same string
a = “def” // a refer to a new string.
b = a; // a and b now refer to
 // “def”, “abc” becomes
 // inaccessible.

Listing 2. Code segment illustrates the reference
characteristic of the C# string; the
unreferenced “abc” string will eventually
be garbage collected by the .NET
Framework.

Instead of typing the declaration statement above
repetitively in a source file, one may define the
following generic static method to create three
dimensional arrays:

public static T[,,] Array3D<T>
 (int x1, int x2, int y1,
 int y2, int z1, int z2){
int[] dim={x2-x1+1, y2-y1+1,z2-z1+1};
int[] lower={x1, y1, z1};
return (T[,,])Array.CreateInstance(
 typeof(T), dim, lower);
}

Using this generic method, a three dimensional array of
storage for the voltage impulses can be created via the
following simple statement:

float[,,] v =
Array3D<float>(1,5,1,12,1,12);

135SO: POLYMORPHIC TIME DOMAIN COMPUTATIONAL ELECTROMAGNETICS

The same technique can be employed to create two-
dimensional arrays of any type; the generic method in
this case would be:

public static T[,] Array2D<T>
(int x1, int x2, int y1, int y2){
 int[] dim ={ x2-x1+1, y2-y1+1};
 int[] lower ={ x1, y1 };
return (T[,])Array.CreateInstance(
 typeof(T), dim, lower);
}

Hence, non-zero lower bound two-dimensional arrays
of type char, int and float can be declared like:

char[,] a =
Array2D<char>(1,5,1,120);
int[,] b =
Array2D<int>(1,5,1,120);
float[,] c =
Array2D<float>(1,5,1,120);

One would expect this technique to work for one-
dimensional arrays as well. However, the version 2.0
C# compiler does not allow one-dimensional
System.Array to be typecast to T[]. This compiler
deficiency, or bug, can be overcome by using the
following simple Array1D<T> class.

Fig.1. Helper classes for a new TLM_INHO object.

public class Array1D<T>{
 public Array1D(int x1, int x2){
 int[] dim ={ x2 - x1 + 1};
 int[] lower ={ x1};
 a = Array.CreateInstance(
 typeof(T),dim, lower);
 }

 public T this[int i]{
 get { return (T)a.GetValue(i);
}
 set { a.SetValue(value,i); }
 }
 public Array a;
}

Besides demonstrating C#’s generic class definition,
this implementation also illustrates the use of C#’s
indexer, [], as well as the accessor (get) and mutator
(set) property methods. With these array creation
methods and the Array1D <T> class, it is
straightforward to transform the TLM_INHO Pascal
program to a C# program — all data and procedures
crucial to the TLM simulation are placed inside a main
C# class; supporting data and utility functions are
placed in other general purpose helper classes. A screen
shot of the module that contains the immediate helper
classes for a new TLM_INHO object is shown in
Figure 1. SrStream and SwStream are text based
file IO classes whereas the TheBase consists of the
previously mentioned static array creation methods and
the Array1D <T> helper class.

Figure 2 shows the private variables of an
inhomogeneous medium TLM class, InHo. Since
InHo is derived from TheBase, InHo inherits all the
data and methods of TheBase. As a result, InHo can
make use of the array creation methods and the one-
dimensional array class, TheBase, without using the
<class>.<method> notation. Besides the private
data shown in the figure, InHo has a number of public
methods for data I/O, field simulation, and data
processing. Figure 3 shows a main program that makes
use of the InHo class to implement a single-thread
TLM simulation algorithm identical to the original

Fig.2. The class structure of TLM_IHNO in C#.

136 ACES JOURNAL, VOL. 22, NO. 1, MARCH 2007

Fig.3. A C# program that employs the TLM_INHO

class library.

Fig.4. The output of the TLM program in figure 3.

Fig.5. InHo_2, a new class derived from InHo.

Pascal program. The false argument passed to the
Iterate method informs the tlm object it is not
necessary to send output to the console during the field
simulation process. The original Output (renamed
PlotGraph) procedure has been made virtual to
support polymorphism.

The new program has been used to analysis the
rectangular resonator associated with the original
Pascal TLM_INHO program. The output from the
current C# implementation, which is identical to the
output of the original program, is shown in Figure 4.

The above computation has validated that the
Program, InHo, and TheBase classes have been
properly implemented in C# using the object-oriented
paradigm. The helper classes and array creation
methods are general purpose utilities for converting
codes in other programming languages to C#.

One of the advantages of object-oriented
implementation is the ease of leveraging computing
power of existing software modules via object
inheritance and polymorphism. If the PlotGraph
method of InHo is made virtual, a new class, say
InHo_2, can be derived from InHo with a new pixel-
based graphical PlotGraph method that overrides the
original string-based implementation. The code
structure of such an implementation is shown in
Figure 5. Inheritance and polymorphism are powerful
features that do not exist in the traditional procedure-
oriented programming paradigm.

Another advantage of object-oriented implementation
is the feasibility of instantiating multiple copies of the
InHo objects in the Main method. A multiple-engine
TLM program can be easily created using the InHo
class library; Figure 6 depicts the code segment of a
dual-engine simulation program. On a multi-processor
computer, the engines will run simultaneously. In order
to illustrate the concurrent behaviour of the dual-engine
implementation, a true argument is passed to the
iterate method so that the tlm objects would print
the name of the input file and the iteration number to
the console during the field computation process. The
screen image in Figure 7 shows interspersed outputs
from the two concurrent threads in Figure 6.

Fig.6. A multi-thread TLM_INHO code segment in C#.

Fig.7. A screen image consists of interspersed outputs

from the two execution threads in Fig 5.

137SO: POLYMORPHIC TIME DOMAIN COMPUTATIONAL ELECTROMAGNETICS

Recently released CEM codes, [9] and [12], are
mostly implemented in C++. However, as the author
has mentioned earlier, programs implemented in C++
are not necessarily object-oriented programs. Programs
that do not take advantage of object inheritance and
polymorphism are merely class oriented programs.
More applications of object-oriented programming
paradigm to computational electromagnetics can be
found in [20]-[25]. Details about polymorphism and
concurrent programming in C# can be found in [26]
and [27].

III. CONCLUSION

A C# implementation of the classical two-
dimensional TLM algorithm by Hoefer has been
presented. Object-oriented features such as
encapsulation, inheritance and polymorphism have
been demonstrated. The object-oriented paradigm
presented in this paper can be used to convert most
legacy procedure-oriented CEM programs to modern
object-oriented library modules. The technique
presented in this paper is equally applicable in the Java
environment, or in the C++ world with other operating
systems. The author is advocating placing commonly
used CEM engines, such as MoM, FEM, FDTD and
TLM, in an open source standard CEM library to
benefit the EM community at large.

ACKNOWLEDGEMENT

The author wishes to acknowledge the financial
support of the National Science and Engineering
Research Council of Canada.

REFERENCES

[1] W. J. R. Hoefer (editor T. Itoh), Numerical
Techniques for Microwave and Millimeter-Wave
Passive Structures, Chapter 8, John Wiley &
Sons, 1989.

[2] P.P. Silvester and R.L. Ferrari, Finite Elements
for Electrical Engineers, Second Edition,
Cambridge University Press, 1990.

[3] R.C. Booton Jr., Computational Methods for
Electromagnetics and Microwaves, John Wiley &
Sons, 1992.

[4] C. Christopoulos, The Transmission-Line
Modeling Method, IEEE Press / Oxford
University Press, 1995.

[5] T. Itoh, C. Pelosi, and P.P. Silvester, Finite
Element Software for Microwave Engineering,
John Wiely & Sons, 1996.

[6] M.N.O. Sadiku, Numerical Techniques in
Electromagnetics, Second Edition, CRC Press,
2001.

[7] D.B. Davidson, Computational Electromagnetics
for RF and Microwave Engineering, Cambridge
University Press, 2005.

[8] A. Taflove and S.C. Hagness, Computational
Electrodynamics, The Finite-Differences Time-
Domain Method, Third Edition, Artech House,
2005.

[9] NEC, http://www.si-list.org/swindex2.html.
[10] W.J.R. Hoefer, http://www.cerl.ece.uvic.ca/wjrh/t

lm/prog-fortran.html.
[11] P. Russer,

http://www.hft.ei.tum.de/php/resYATSIM2.php
and http://www.yatpac.org/index.php.

[12] MEEP, http://ab-
initio.mit.edu/wiki/index.php/Meep.

[13] B. Stroustrup, The C++ Programming Language,
Special Edition, Addison-Wesley, 2000

[14] P.P.M. So, “An Object-oriented Framework for
Computational Electromagnetics,” 22nd Annual
Review of Progress in Applied Computational
Electromagnetics, pp. 219–224, March 12-16,
2006.

[15] P. B. Johns and R. L. Beurle, “Numerical solution
of two-dimensional scattering problems using a
transmission-line matrix,” Proc. IEE, Vol. 118,
No. 12, pp. 1203-1208, 1971.

[16] W. J. R. Hoefer, “Time domain electromagnetic
simulation for microwave CAD applications,”
IEEE Trans. MTT, Vol. 40, No. 7, pp. 1517-1527,
1992.

[17] CERL at UVic, www.cerl.ece.uvic.ca
[18] W.H. Press, S.A. Teukolsky, W.T. Vetterling,

and B.P. Flannery, Numerical Recipes in C++,
The Art of Scientific Computing, Second Edition,
Cambridge University Press, 2002.

[19] JMSL,
http://www.vni.com/products/imsl/jmsl/jmsl.html.

[20] D. Kurumbalapitiya and S.R.H. Hoole, “An
Object-oriented Representation of
Electromagnetic Knowledge,” IEEE Trans. On
Magnetics, Vol. 29, No. 2, pp. 1939–1942, March
1993.

[21] E.J. Silva and R.C. Mesquita, “Data Management
in Finite Element Analysis Programs Using
Object-oriented Techniques,” IEEE Trans. on
Magnetics, Vol. 32, No. 3, pp. 445–1448,May
1996.

138 ACES JOURNAL, VOL. 22, NO. 1, MARCH 2007

[22] E.Z. Zhou, “Object-oriented Programming, C++
and Power System Simulation,” IEEE Trans. on
Power Systems, Vol. 11, No. 1, pp. 206 – 215,
February 1996.

[23] L. Baduel, F. Baude, D. Caromel, C. Delbe, N.
Gama, S. El Kasmi, and S. Lanteri, “A Parallel
Object-oriented Application for 3D
Electromagnetism,” Proceedings of the 18th
International Parallel and Distributed Processing
Symposium (IPDPS’04).

[24] C. G. Biniaris, A. I. Kostaridis, D. I. Kaklamani,
and I. S. Venieris, “Implementing Distributed
FDTD Codes with Java Mobile Agents,” IEEE
Trans. Antenna and Propagation Magazine, Vol.
44, No. 6, pp. 115 – 119, December 2002.

[25] D. G. Lymperopoulos, D. Logothetis, P.
Atlamazoglou, and D. I. Kakalamani, “Using
Object-oriented and Literate-Programming
Techniques for the Development of a
Computational Electromagnetics Library,” IEEE
Antennas and Propagation Magazine, Vol. 47,
No. 3, pp. 31–38, June 2005.

[26] A. Troelsen, Pro C# 2005 and the .NET 2.0
Platform, APress, 2005.

[27] J. Richter, CLR Via C#, 2ED, Microsoft Press,
2006.

Poman P. M. So received the B.Sc.
degree in Computer Science and
Physics from the University of
Toronto, Canada, in 1985. He
received his degrees in Electrical
Engineering from the University of
Ottawa (B.A.Sc. and M.A.Sc.) and

the University of Victoria (Ph.D.) in 1987, 1989 and
1996, respectively.

From April 1997 to June 1998, he was a senior
antenna engineer at MDS Space Mission (Ste-Anne-de-
Bellevue, Quebec, Canada), formerly known as Spar
Aerospace Ltd. His work included high frequency (10
to 40 GHz) antennas and feed components design for
commercial satellite systems as well as Ka-band active
antenna CAD software development. In October 1993,
he was invited to the Ferdinand-Braun-Institut für
Höchstfrequenztechnik Berlin, Berlin, Germany, as a
research scientist. From August 1990 to February 1991,
he was a visiting researcher at the University of Rome
in Rome, Italy, and the Laboratoire d’Electronique in
Sophia Antipolis, France.

Dr. Poman So joined the Department of Electrical
and Computer Engineering at the University of Victoria
as an Assistant Professor in 2005. He is a Senior
Member of IEEE and a registered Professional
Engineer in the Province of British Columbia, Canada.
He has twenty years of research and industrial
experience in object-oriented computational
electromagnetics. He is a co-founder of the Faustus
Scientific Corporation and is the creator of the
company’s MEFiSTo line of electromagnetic modeling
software.

139SO: POLYMORPHIC TIME DOMAIN COMPUTATIONAL ELECTROMAGNETICS

IV. APPENDIX

THEBASE.CS: AN OBJECT-ORIENTED TLM LIBRARY IN C#
using System; using System.Collections.Generic;
using System.Text; using System.IO;
namespace TLM{
public class SrStream : StreamReader{
 public SrStream(String ifs) : base(ifs){}
 public String ReadString(){
 char a = ' '; do{ a = (char)Read();} while (char.IsWhiteSpace(a));
 string buffer = "";
 do{ buffer += a; a = (char)Read();} while (!char.IsWhiteSpace(a));
 return buffer;
 }
 public float ReadFloat() { return float.Parse(ReadString()); }
 public int ReadInt() { return int.Parse(ReadString()); }
}
public class SwStream : StreamWriter{
 public SwStream(String ofs) : base(ofs){ }
 public string Format<T>(T v, int pl){
 string str = v.ToString().PadLeft(pl, ' ');
 return str.Substring(0, pl);
} }
public class TheBase{

 // Protected Math Methods
 //=======================
 protected double atan(double v) { return Math.Atan(v); }
 protected double exp(double v) { return Math.Exp(v); }
 protected double cos(double v) { return Math.Cos(v); }
 protected double sin(double v) { return Math.Sin(v); }
 protected double sqrt(double v) { return Math.Sqrt(v); }
 protected double floor(double v) { return Math.Floor(v); }
 // Data
 //=====
 public SrStream sr;
 public SwStream sw;
 public String input_file, output_file;
 // Protected IO Methods
 //=====================
 protected string Format<T>(T v, int pl) { return sw.Format<T>(v, pl); }
 protected float ReadFloat() { return sr.ReadFloat(); }
 protected int ReadInt() { return sr.ReadInt(); }
 public class Array1D<T>{
 public Array1D(int x1, int x2){
 int[] dim ={ x2 - x1 + 1 }; int[] lower ={ x1 };
 a = Array.CreateInstance(typeof(T), dim, lower);
 }
 public T this[int i]{
 get { return (T)a.GetValue(i); }
 set { a.SetValue(value, i); }
 }
 public Array a;
 }
 // Public Methods
 //===============
 public TheBase(String ifs, String ofs){
 input_file = ifs;

140 ACES JOURNAL, VOL. 22, NO. 1, MARCH 2007

 output_file= ofs;
 }
 public bool OpenFiles(){
 try{
 sr = new SrStream(input_file);
 sw = new SwStream(output_file);
 return true;
 }
 catch (Exception e){
 Console.WriteLine("An error occurred: ‘{0}’", e);
 CloseFiles(); return false;
 } }
 public void CloseFiles(){
 if (sr != null) sr.Close();
 if (sw != null) sw.Close();
 }
 public static T[,] Array2D<T>(int x1, int x2, int y1, int y2){
 int[] dim ={ x2 - x1 + 1, y2 - y1 + 1 };
 int[] lower ={ x1, y1 };
 return (T[,])Array.CreateInstance(typeof(T), dim, lower);
 }
 public static T[,,] Array3D<T>(int x1,int x2,int y1,int y2,int z1,int z2){
 int[] dim ={ x2 - x1 + 1, y2 - y1 + 1, z2 - z1 + 1 };
 int[] lower ={ x1, y1, z1 };
 return (T[, ,])Array.CreateInstance(typeof(T), dim, lower);
} } }
TLM_INHO.CS: An object-oriented TLM Library in C#
using System;
using System.Text;
using System.Threading;
using System.Collections.Generic;
using System.IO;

namespace TLM{
public class InHo : TheBase{
 int nx, ny; // number of nodes in mesh
 int io, it, jo, ni; // output point (io,jo), output type & num of iters
 int kb, kc, kd, ke; // number of boundaries,computational boxes,dielectric

// boundaries & excitation points or lines
 float[, ,] v = Array3D<float>(1, 5, 1, 12, 1, 12); // voltage buffer
 float[,] data = Array2D<float>(1, 101, 1, 2);
 char[,] outc = Array2D<char>(1, 101, 1, 70);
 Array1D<float> rc = new Array1D<float>(1, 10); // reflection coef
 Array1D<float> rd = new Array1D<float>(1, 10); // relative permittivity
 Array1D<float> va = new Array1D<float>(1, 6); // initial values
 Array1D<float> eh = new Array1D<float>(0, 300); // storage for results
 Array1D<float> r = new Array1D<float>(1, 12);
 int[,] ib = Array2D<int>(1, 12, 1, 8);
 int[,] ibd = Array2D<int>(1, 10, 1, 8); // waveguide, boundaries & codes
 int[,] ie = Array2D<int>(1, 5, 1, 7); // excitation points and code (115)
 int[,] ia = Array2D<int>(1, 8, 1, 4); // computation boxes
 float ehre, ehim, d; // field magnitudes and normalized frequencies
 float pcf, cf, d1, d2, ds; // normalized frequencies & step size
 float peak, a, cs, max, yo;
 int npt, l, j, m, i, ic, pt, ptp, ptm, nn; // iteration counters}

 void ReadHeader(){ String header;
 header = sr.ReadLine(); sw.WriteLine(header);
 header = sr.ReadLine(); sw.WriteLine(header);
 }

141SO: POLYMORPHIC TIME DOMAIN COMPUTATIONAL ELECTROMAGNETICS

 void ReadNxNy(){ ReadHeader(); nx = sr.ReadInt();
 ny = sr.ReadInt(); sr.ReadLine();
 sw.WriteLine("{0} {1}", Format<int>(nx, 4), Format<int>(ny, 4));
 }
 void ReadBound(){ ReadHeader(); kb = 0;
 do{ kb = kb + 1;
 for (m = 1; m <= 8; m++){ ib[kb, m] = ReadInt();
 sw.Write("{0}", ib[kb, m].ToString().PadLeft(4, ' '));
 if (m == 4) sw.Write(" ");
 }
 r[kb] = ReadFloat(); it = ReadInt(); sr.ReadLine();
 sw.WriteLine("{0}{1}",Format<float>(r[kb],16),Format<int>(it, 10));
 } while (it > 0);
 }
 void ReadDielBound(){ ReadHeader(); kd = 0;
 do{ kd = kd + 1;
 for (m = 1; m <= 8; m++){ ibd[kd, m] = ReadInt();
 sw.Write("{0}", Format<int>(ibd[kd, m], 4));
 if (m == 4) sw.Write(" ");
 }
 rc[kd] = ReadFloat(); it = ReadInt(); sr.ReadLine();
 sw.WriteLine("{0}{1}",Format<float>(rc[kd],18),Format<int>(it,10));
 } while (it > 0);
 }
 void ReadCompBox(){ ReadHeader(); kc = 0;
 do{ kc = kc + 1;
 for (m = 1; m <= 4; m++){ ia[kc, m] = ReadInt();
 sw.Write("{0}", Format<int>(ia[kc, m], 4));
 }
 rd[kc] = ReadFloat(); it = ReadInt(); sr.ReadLine();
 sw.WriteLine("{0}{1}",Format<float>(rd[kc],22),Format<int>(it,22));
 } while (it > 0);
 }
 void ReadExcitation(){ ReadHeader(); ke = 0;
 do{ ke = ke + 1;
 for (m = 1; m <= 7; m++){ ie[ke, m] = ReadInt();
 sw.Write("{0}", Format<int>(ie[ke, m], 4));
 if (m == 4) sw.Write(" ");
 }
 va[ke] = ReadFloat(); it = ReadInt(); sr.ReadLine();
 sw.WriteLine("{0}{1}",Format<float>(va[ke],16),Format<int>(it,17));
 } while (it > 0);
 }
 void ReadFreq(){
 sr.ReadLine(); sr.ReadLine(); d1 = ReadFloat();
 d2 = ReadFloat(); ds = ReadFloat(); sr.ReadLine();
 sr.ReadLine(); sr.ReadLine(); io = ReadInt();
 jo = ReadInt(); l = ReadInt(); ni = ReadInt();
 yo = ReadFloat(); sr.ReadLine();
 sw.WriteLine("Output point is ({0},{1})",
 Format<int>(io,4),Format<int>(jo, 4));
 sw.WriteLine("Number of iterations is {0}", ni);
 sw.WriteLine("Permittivity stub admittance is {0}", yo);
 sw.WriteLine(" D1 D2 Step Size");
 sw.WriteLine("{0}{1}{2}", Format<float>(d1, 8), Format<float>(d2, 8),

 Format<float>(ds, 18));
 }
 public InHo(String ifs, String ofs) : base(ifs, ofs) { }
 public void ReadData(){
 ReadNxNy(); ReadBound(); ReadDielBound();

142 ACES JOURNAL, VOL. 22, NO. 1, MARCH 2007

 ReadCompBox(); ReadExcitation(); ReadFreq();
 }
 public void Iterate(bool bShowProgress){
 if (bShowProgress){
 Console.WriteLine("Finished reading input.");
 }
 float a, vx, vy, vxy;
 // CLEAR WORKING SPACE
 for (j = 1; j <= ny; j++){
 for (i = 1; i <= nx; i++){
 for (m = 1; m <= 5; m++){
 v[m, i, j] = 0;
 } } }
 // INITIALIZE EXCITATION POINTS
 for (nn = 1; nn <= ke; nn++){
 for (j = ie[nn, 3]; j <= ie[nn, 4]; j++){
 for (i = ie[nn, 1]; i <= ie[nn, 2]; i++){
 m = ie[nn, 5];
 while (m <= ie[nn, 7]){
 v[m, i, j] = va[nn]; m = m + ie[nn, 6];
 } v[5, i, j] = va[nn];
 } } }
 // Sample Output at time zero }
 switch (l){
 case 3: eh[0] = 2 * (v[1, io, jo] + v[2, io, jo] + v[3, io, jo] +
 v[4, io, jo] + yo * v[5, io, jo]) / (4 + yo); break;
 case 2: eh[0] = yo * (v[3, io, jo] - v[1, io, jo]); break;
 case 1: eh[0] = yo * (v[4, io, jo] - v[2, io, jo]); break;
 }
 for (ic = 1; ic <= ni; ic++){
 // INHOMOGENEOUS SHUNT NODE SCATTERING PROCEDURE
 for (nn = 1; nn <= kc; nn++){
 for (j = ia[nn, 3]; j <= ia[nn, 4]; j++){
 for (i = ia[nn, 1]; i <= ia[nn, 2]; i++){
 a = (v[1, i, j] + v[2, i, j] + v[3, i, j] + v[4, i, j]
 + v[5, i, j] * rd[nn]) * 2 / (rd[nn] + 4);
 v[1,i,j]=a-v[1,i,j]; v[2,i,j]=a-v[2,i,j];
 v[3,i,j]=a-v[3,i,j]; v[4,i,j]=a-v[4,i,j];
 v[5,i,j]=a-v[5,i,j];
 } } }
 // SET UP BOUNDARY CONDITIONS
 for (nn = 1; nn <= kb; nn++){
 for (j = ib[nn, 3]; j <= ib[nn, 4]; j++){
 for (i = ib[nn, 1]; i <= ib[nn, 2]; i++){
 vxy = v[ib[nn, 6], i, j];
 v[ib[nn, 6], i, j] = r[nn] * v[ib[nn, 5], i
 + ib[nn, 8], j + ib[nn, 7]];
 v[ib[nn, 5], i + ib[nn, 8], j + ib[nn, 7]] =
 r[nn] * vxy;
 } } }
 // PERFORM IMPEDANCE MODIFICATIONS AT AIR-DIELECTRIC BOUNDARIES
 if (ibd[1, 1] != 0){
 for (nn = 1; nn <= kd; nn++){
 for (j = ibd[nn, 3]; j <= ibd[nn, 4]; j++){
 for (i = ibd[nn, 1]; i <= ibd[nn, 2]; i++){
 vx = v[ibd[nn, 6], i, j];
 vy = v[ibd[nn, 5], i + ibd[nn, 8], j + ibd[nn, 7]];
 v[ibd[nn, 6], i, j]
 = -rc[nn] * vy + (1 + rc[nn]) * vx;
 v[ibd[nn, 5], i + ibd[nn, 8], j + ibd[nn, 7]]

143SO: POLYMORPHIC TIME DOMAIN COMPUTATIONAL ELECTROMAGNETICS

 = rc[nn] * vx + (1 - rc[nn]) * vy;
 } } } }
 // INTERCHANGE IMPULSES AMOUNG NODES
 for (nn = 1; nn <= kc; nn++){
 for (j = ia[nn, 3]; j <= ia[nn, 4]; j++){
 for (i = ia[nn, 1]; i <= ia[nn, 2]; i++){
 a = v[3, i, j]; v[3, i, j] = v[1, i, j + 1];
 v[1, i, j + 1] v[4, i, j] = v[2, i + 1, j];
 v[2, i + 1, j] = a;
 } } }
 // Sample Output
 switch (l){
 case 3: eh[ic] = 2 * (v[1,io,jo] + v[2,io,jo] + v[3,io,jo] +
 v[4, io, jo] + yo * v[5, io, jo]) / (4 + yo); break;
 case 2: eh[ic] = yo * (v[3, io, jo] - v[1, io, jo]); break;
 case 1: eh[ic] = yo * (v[4, io, jo] - v[2, io, jo]); break;
 }
 if (bShowProgress){
 Console.WriteLine("{0}: iteration {1}", input_file, ic);
 Thread.Sleep(1);
 } } }
 public void Fourier(){
 float ra, rb, cs, u, uk, ehre, ehim, ehmod, d;
 npt = 0; max = 0; ra = 0; rb = 6.283184f; d = d1;
 while (d <= d2){
 ehre = 0; ehim = 0; uk = (float)exp(-d * ra); u = uk;
 for (ic = 0; ic <= ni; ic++){
 cs = ic * rb * d;
 ehre = (float)(ehre + (eh[ic] * cos(cs) * uk));
 ehim = (float)(ehim - (eh[ic] * sin(cs) * uk));
 uk = uk * u;
 }
 ehmod = (float)(sqrt(ehre * ehre + ehim * ehim));
 npt = npt + 1; data[npt, 1] = d;
 data[npt, 2] = ehmod; d = d + ds;
 }
 for (j = 1; j <= npt; j++){
 if (data[j, 2] > max){
 max = data[j, 2]; peak = data[j, 1]; pt = j;
 } } }
 public void CurveFit(){
 float ai, bmax;
 if (pt > 1 && pt < npt){ ptp = pt + 1; ptm = pt - 1;
 ai = ((data[ptm,2]-max)*(data[ptm,1]-data[ptp,1])-(data[ptm, 2]–
 data[ptp, 2]) * (data[ptm, 1] - data[pt, 1]));
 ai = ai / ((data[ptm,1] - data[pt,1])*(data[pt,1]-data[ptp,1])*
 (data[ptm, 1] - data[ptp, 1]));
 bmax = (data[ptm,2]-max)/(data[ptm,1]-data[pt,1])-ai*(data[ptm,1]
 + data[pt, 1]);
 peak = -bmax / (2 * ai);
 } }
 public void Correct(){
 float a, p;
 // VELOCITY ERROR CORRECTION
 p = (float)(3.14592653 * peak);
 cf = (float)(p / atan(sqrt(2.0) * sin(p)));
 pcf = peak / cf;
 }
 public void PrintReport(){
 sw.WriteLine();

144 ACES JOURNAL, VOL. 22, NO. 1, MARCH 2007

 sw.WriteLine(" RESULTS");
 sw.WriteLine(" -------");
 sw.WriteLine("{0} points plotted.", Format<int>(npt, 4));
 sw.WriteLine(" Maximum plotted field magnitude:");
 sw.WriteLine("{0}", Format<float>(max, 14));
 cf = 1 / cf;
 sw.WriteLine(" The velocity correction factor (Do/D) is {0}", cf);
 sw.WriteLine(

" MESHSIZE/MESH WAVELENGTH MESHSIZE/FREE SPACE FIELD
MAGNITUDE");

 sw.WriteLine(" (D) (Do) WAVELENGTH
(EHMOD)");
 sw.WriteLine(

" ------------------------ ----------------------- -----------
----");

 for (j = 1; j <= npt; j++){
 sw.WriteLine(" {0} {1} {2}",
 Format<float>(data[j, 1], 8),
 Format<float>(data[j, 1] * cf, 8),
 Format<float>(data[j, 2], 8));
 }
 sw.WriteLine();
 sw.WriteLine("Maximum field value at D = {0}", peak);
 sw.WriteLine(" corresponding to Do = {0} <=== FINAL RESULT", pcf);
 }
 public void PlotGraph(){
 float u;
 sw.WriteLine(" Graph of EHMOD vs. D");
 sw.WriteLine(" D EHMOD");
 u = max / 70;
 if (u == 0)
 Console.WriteLine("No plot generated - all values equal zero.");
 else{
 sw.Write(" ");
 for (j=7; j<=63; j+=7) sw.Write(" {0}",Format<float>(j*u,4));
 sw.WriteLine(" {0}", Format<float>(max, 4));
 for (j = 1; j <= npt; j++){
 data[j, 2] = data[j, 2] / max;
 data[j, 2] = (float)(floor(70 * data[j, 2]));
 for (i = 1; i <= 70; i++){
 outc[j, i] = ' ';
 if (data[j, 2] == i) outc[j, i] = '*';
 }
 sw.Write(" {0}|", Format<float>(data[j, 1], 7));
 for (i = 1; i <= 70; i++){ sw.Write(outc[j, i]); }
 sw.WriteLine();
 } } }
 public void Run(bool bShowProgress){
 ReadData(); Iterate(bShowProgress); Fourier();
 CurveFit(); Correct(); PrintReport();
 PlotGraph();
 }
 public void Work(){
 if (OpenFiles()){ Run(true); CloseFiles();
 } }
} }

TLM.CS: An object-oriented TLM Program in C#
using System; using System.Text; using System.Threading;
using System.Collections.Generic; using TLM;

145SO: POLYMORPHIC TIME DOMAIN COMPUTATIONAL ELECTROMAGNETICS

namespace CS_TLM{ // This is the main program to test out the TLM class
 class Program{
 static void Main(string[] args){
 // Single Thread TLM_InHo
 //=======================
 InHo tlm = new InHo(@"../../TLM_INHO_INP.txt",
 @"../../TLM_INHO_OUT.txt");
 if (tlm.OpenFiles()){
 tlm.Run(false); tlm.CloseFiles();
 }
 // Multi-Thread TLM_InHo
 //======================
 InHo tlm_1 = new InHo(@"../../TLM_INHO_INP_1.txt",
 @"../../TLM_INHO_OUT_1.txt");
 InHo tlm_2 = new InHo(@"../../TLM_INHO_INP_2.txt",
 @"../../TLM_INHO_OUT_2.txt");
 ThreadStart delegate_1 = new ThreadStart(tlm_1.Work);
 ThreadStart delegate_2 = new ThreadStart(tlm_2.Work);
 Thread thread_1 = new Thread(delegate_1);
 Thread thread_2 = new Thread(delegate_2);
 thread_1.Start(); thread_2.Start();
 while (thread_1.IsAlive || thread_2.IsAlive){ Thread.Sleep(1); }
 Console.WriteLine("Job Done!");
} } }

146 ACES JOURNAL, VOL. 22, NO. 1, MARCH 2007

