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Abstract  A method for the simulation of complex 
circuits with nonlinear elements is proposed. The method 
is based on wavelet expansion of the state variable 
description, and leads to a compact representation of the 
nonlinear problem which is characterized by accuracy 
and computational efficiency. 
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I. INTRODUCTION 

 
The most common approach to design and optimize 

microwave devices is to represent them through 
equivalent circuits, which are in general composed by 
linear, non linear, lumped, and distributed elements. 

The main difficulty of the problem is the mixed 
nature between linear components (best treated in the 
frequency domain) and nonlinear components (best 
treated in the time domain). Some authors proposed the 
impulse response and convolution (IRC) technique [1] – 
[3], in which a great computational effort is dedicated to 
the process of recording and convolving the quantities 
related to the nonlinear elements. A different approach 
consists of approximating the frequency response by a 
Padè approximation, so called asymptotic waveform 
evaluation method, and has been used for both linear and 
nonlinear circuits [4] – [6]; the main drawback of the 
method is the sometimes low approximation (due to the 
reduction in the number of poles) in case of very complex 
circuits. In [7] a further approach is presented: the 
numerical inversion of Laplace transform technique, 
which is characterized by several advantages with respect 
to IRC and AWE, but suffers from the series 
approximations and the nonlinear iterations involved. 

Recently wavelet based techniques have been 
proposed also for the analysis of nonlinear circuits (in 
transient or steady state mode), showing good potential 
[8], [9]. A basis of Daubechies wavelets on the interval is 
here used to expand the unknown quantities and the 
circuit equations are obtained by the application of the 
modified nodal analysis. The nonlinearities are treated by 
the use of the substitution theorem, and the problem is 
solved by the application of a standard Newton – 

Raphson algorithm with an analytical calculation of the 
Jacobian. 

This particular formulation makes the method 
efficient from a computational point of view, since the 
matrices involved in the calculation are sparse (i.e. 
characterized by a small number of non zero elements), 
hence the number of multiplications required in the 
solution is low. Furthermore the characteristics of the 
chosen wavelet basis reduce the size of the matrix. 

The method has been tested in several cases, here is 
reported the calculation of voltages and currents in a 
complex circuit, and the results are compared with the 
results coming from a SPICE simulation. 
 

II. MATHEMATICAL FORMULATION 
 
A.   Modified Nodal Analysis in the Wavelet Domain 
 

Let us consider a complex circuit, composed by a set 
of lumped and distributed parameters, connected to 
independent voltage generators and linear loads. It is 
possible to divide the circuit into two interconnected 
parts: a subnetwork φ composed by lumped linear and 
nonlinear elements, for which we are interested in the 
calculation of voltages and currents, and a linear 
subnetwork π, composed by lumped and/or distributed 
elements, seen as a multiple port circuit. By the used of 
the MNA it is possible to write the circuit equations in the 
Laplace domain in the following form [10] 

 
( ) ( ) ( ) ( ) ( )s s s s s sϕ ϕ ϕ ϕ π π+ + =W x G x L i b  (1) 

 
where ϕx  is the vector of unknowns (nodal voltages, 
whose dimension is the total number of MNA 
variables); ϕW  and ϕG  are constant matrices describing 
the lumped elements of the network φ and b is a constant 
vectors whose entries are the independent voltage and 
current sources (together with the initial condition 
sources, if present). πL  is a matrix whose entries are 
zeroes or ones, mapping the vector ( )sπi  of currents 
entering the linear subnetwork π into the node space of 
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the network φ. The linear multiterminal subnetwork π can 
be described by the standard approach as 

 
( ) ( ) ( )s s sπ π π=Y V i     (2) 

 
where ( )sπY  is the y parameter matrix and ( )sπV  is the 
vector of terminal voltage nodes connecting the 
subnetwork to the network φ. By substituting (2) in (1) it 
is possible to write 

 
( ) ( ) ( )s s s sϕ ϕ ϕ ϕ+ =W x G x b��   (3) 

 
where ϕG�  and ϕW  take also into account the 

contribution of the matrix ( )sπY .  
As an example, we apply the MNA to the simple 

network represented in Fig. 1. 
 
 

 
Fig. 1. Simple network for MNA analysis. 

 

 
In this case equations (1) and (2) respectively 

become 
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We now consider a wavelet basis 

( ) ( ) ( )1 , , nt b t b t=   b …  on the interval [ ]0, mT ; by 
performing the Wavelet Expansion (WE) of a generic 
function ( )f t , we obtain a vector of coefficients of 
dimension n; the notation used is the following: 
( ) ( )j j

j
f t b t f= =∑bf , where [ ]1, , T

nf f=f …  is the 

vector of the wavelet coefficients. By using the 

differential operator D and the integral operator I in the 
wavelet domain (for wavelets on the interval, introduced 
in [11]) the differentiation (or integration) of a function is 
simply performed by a matrix – vector product, i.e., 

( ) ( )df t
h t

dt
= ⇒ =h Df . Formally this means that it is 

possible to obtain the equation in the wavelet domain by 
simply using the Laplace domain equations and substitute 
the variables with the vectors of coefficients and the 
operator s with the differential matrix D. According to 
this, equation (3) can be expressed as 

 
( )ϕ ϕ ϕ ϕ+ = =W G x Tx b��    (6) 

 
i.e., an algebraic systems of the form ϕ =Tx b  in which 
the matrix T is straightforwardly calculated, the vector b 
contains the WE of the independent generators and ϕx  is 
the vector of unknowns (the wavelet coefficients of the 
expansion of the unknown voltages).  

For the example of Fig. 1 we obtain for the matrix 

ϕ ϕ+ =W G T��   
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  (7) 
 

where U  is the identity matrix of the proper dimension. 
As it can be easily seen the matrix T is sparse and the 
system can be easily and conveniently solved by an 
iterative technique, requiring a low CPU time 
consumption. 
 
B.  Treatment of the Nonlinearities 

 
The presence of nonlinearities (connected at the 

output ports) leads to an additional term in equation (1) 
 

( ) ( ) ( ) ( ) ( )( ) ( )s s s s s t sϕ ϕ ϕ ϕ π π ϕ + + + = W x G x L i F x bL

   (8) 
 

where ( )( )tϕF x  represents the above mentioned 
nonlinearities. 

For the sake of simplicity we here refer to a simple 
two port network, represented in Fig. 2a, where one port 
is connected to an independent generator, while the other 
port is connected to a nonlinear load, whose constitutive 
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relation is ( )i f v= . The extension to a more complex 
circuit (i.e. characterized by several ports, connected to 
generators, linear and nonlinear loads) is straightforward. 

 

 
Fig. 2a. Circuit with a nonlinear load. 

 

 
Fig.  2b. Application of the substitution’s theorem. 
 
 
It is possible to substitute the nonlinear load with a 

voltage generator imposing the unknown voltage ( )NLv t , 
as shown in Fig. 2b. Let us suppose that we are interested 
in calculating the current NLi  flowing through the 
nonlinear load. By applying the superposition effect 
(once the substitution has been performed the circuit is 
linear) we can write 

 
a b

NL NL NLi i i= +   (9) 
 
where the first term a

NLi  is related only to the presence of 
the independent generator E and can be calculated by 
simply solving a linear problem (of the kind reported in 
equation (6), while b

NLi  is the current related to the effect 
of the unknown voltage generator and needs of course to 
be calculated. Under these assumptions we can write in 
the wavelet domain 

 
a b a

NL NL NL NL NL= + = +i i i i Tv   (10) 
 

where the vectors represent the WE of the currents, the 
matrix T  is the matrix solving the linear problem (see 
equation (6), and NLv  is the wavelet expansion of the 
unknown voltage source. At this stage equation (10) is 
characterized by two vectors of unknowns: NLi  and NLv . 
The additional equation needed to solve the problem is 
the constitutive equation of the nonlinear load and it is 
enforced as follows. 

By inverse transforming (10) we obtain the following 
time domain expression of the unknown current 

 
( ) ( ) ( ),

a
NL NL kj NL j k

k j
i t i t T v b t= +∑∑         (11) 

 
where the terms ( )kb t  are the function of the wavelet 

basis, ,NL jv  are the entries of the vector NLv , while the 
terms kjT  are the entries of the square matrix T . 
Equation (11) must satisfy the constitutive equation of the 
nonlinear load ( )i f v= ; in order to enforce it we impose 

the collocation at the discrete times nt , n equally spaced 
points in the interval [ ]0, mT  (the ones which are 
characteristic of the definition of the wavelet functions 
[12]) obtaining a set of nonlinear equations in the 
unknown coefficients ,NL jv .  

The constitutive equation of the nonlinear load 
( ) 0i f v− =  can be written as 

 

( ) ( ) ( ), , 0a
NL kj NL j k NL j j

k j j
i t T v b t f v b t

 
+ − =  

 
∑∑ ∑     (12) 

 
i.e., ( ) 0NLF v =  in which we underline that the 
unknowns are the coefficients ,NL jv . The analytical 
evaluation of the Jacobian is straightforwardly written as 
follows 

 

( ) ( )kj k n j n
kNL

F fT b t b t
v v
∂ ∂

= −
∂ ∂∑ .  (13) 

 
The solution of the system is performed by adopting 

a Newton – Raphson algorithm, with an analytical 
evaluation of the Jacobian. The convenience of the 
proposed method, in terms of low CPU time consumption 
in the presence of nonlinear loads, stands in the 
availability of the analytical form of the Jacobian; as a 
matter of fact its knowledge allows us to use a 
sparsification procedure which results in a reduction of 
the CPU time employed for the solution, as explained in 
the next section. 
 
C.  Computational Cost of the Proposed Method 

 
The main advantage in using a wavelet basis stands 

in the fact that it is possible to represent very complex 
waveforms (typical of fast electrical transients, like the 
ones in microwave circuits) by a small number of wavelet 
functions (hence by a small number of coefficients). This 
leads to a reduced dimension of the matrices involved in 
the simulations, with respect to other standard techniques. 
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Furthermore it is well known that wavelets tend to 
concentrate in time zones where approximation needs to 
be high and have a reduced weight (low wavelet 
coefficients) in the other zones, a property known in the 
literature as self adaptive zooming. According to this 
observation, the use of a thresholding procedure is a 
common practice to reduce the computational cost [12], 
[13]. The coefficients of the wavelet matrix that are 
smaller than a fraction (typically a few thousandths) of 
the maximum are forced to zero.  

This procedure does not significantly affect the 
accuracy of the computations (when reasonable values of 
the threshold are used) and produces sparse matrices that 
can be efficiently stored and computed. In particular in 
[12] it is shown that for diagonal dominant matrices it is 
possible to obtain a percentage of non-zero elements of 
the order between 5% and 15% with solutions that are 
affected by extremely low error. The sparsification 
procedure is convenient because the number of 
multiplications required for the simulation is considerably 
lower with respect to the full matrix, leading to a 
significant CPU time reduction and a lower storage 
memory. 

It is noteworthy that a lower approximation in the 
evaluation of the Jacobian (which is exactly calculated by 
the analytical computation as in (13) and post processed 
by the sparsification procedure) does not affect the 
correctness of the solution, and may have effects only on 
the number of iterations necessary to reach convergence.  

In the evaluation of the overall computation time 
reduction we have to consider the weight of the wavelet 
transform of the input quantities and the inverse wavelet 
transform of the results. These operations are efficiently 
performed via matrix vector products characterized by 
sparse matrices [14]. As a consequence the reduction of 
the time needed to perform the matrix vector product 
obtained with the threshold procedure has a strong impact 
on the overall computation cost, as it involves the most 
time consuming activity. 
 

III. NUMERICAL APPLICATION 
 

As an example of application of the proposed 
technique we considered the circuit schematically shown 
in Fig. 3. It is composed by four Multiconductor 
Transmission Lines (three conductors and ground each) 
represented by blocks B, C, E, and F and by the blocks A 
and D constituted by three longitudinally disposed 
resistors of 0.1 Ω each. The per unit length parameters of 
the lines are the same for each line and are here reported 

 
351.63 0 0

0 366.11 0
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The lines in B and C are respectively long 10 and 5 

cm, while those in E and F have the same length of 15 
cm.  

A voltage generator of waveform 
 

( ) ( )
22

1 10 sin 2 2
t T

Te t e f t T Vπ
− − 

   = ⋅ ⋅ −   
 

is applied to terminal #1, with T = 0.11ns, f = 2.8 GHz 
and characterized by an internal resistive impedance R1 = 
10 Ω. 

The amplitude of the waveform e1 (t) shown in Fig. 
4, has been chosen in order to strongly evidence the 
nonlinear effects.  

Terminals 2, 3, 5, 6, 8, 9, 11, and 12 are connected to 
50 Ω termination resistances. 

Terminal # 4 is terminated on the series connection 
of a 15 Ω resistance and of a nonlinearity described by 
the following characteristic 

 
( ) ( )5 3

4 410v t i t= ⋅ . 
 
Terminals 7 and 10 are terminated on series 

connection between a 20Ω  resistance and a diode of 
characteristic 

 

( ) ( )( )4,7
4,7 0 1Tv t vi t I e= ⋅ −  

 
where 0 1I pA=  and 0.025865 VTv = . 

The system has been simulated by using a basis of 
128 Daubechies wavelet with 6 vanishing moments. 

The same system has also been simulated with 
SPICE and the results have been compared with those 
obtained by the approach here presented.      
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Fig.3. Analysed circuit. 
 

 
Fig. 4. Input voltage at terminal #1. 

 
 

 
Fig. 5. Typical sparsity pattern of the Jacobian matrix in 

the version that uses sparse matrices. 

 
Fig. 6. Typical sparsity pattern of the Jacobian matrix in 

the version that uses original full matrices. 
 
 
Two versions of the proposed method have been 

implemented: the first one which performs the 
sparsification in order to take advantage of the available 
numerical routines for treatment of sparse matrices while 
the other uses the original full matrices. 

The comparison has been performed by considering 
the Jacobian matrices related to comparable deviation of 
( )NLF v  from zero in the cases of solution of the 

sparsified and original system. 
Figures 5 and 6, respectively, show the Jacobian 

used in Newton-Raphson scheme with and without 
sparsification. 

Figures 7 and 8, respectively, show the voltage and 
the current on the cubic nonlinearity. 
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Fig. 7. Comparison between the voltages on the cubic 

nonlinearity obtained by the proposed approach and by 
SPICE. 

 

 
Fig. 8. Comparison between the currents on the cubic 

nonlinearity obtained by the proposed approach and by 
SPICE. 

 
The waveforms obtained by the two approaches are 

practically indistinguishable. In order to appreciate the 
good agreement between the results a zoom on the 
voltages is shown in Fig. 9. 

Figures 10 and 11 show the voltage and the current 
on the diodes. As expected the current on the diode is 
unidirectional and the voltage on the diode does not 
exceed the value of 0.65 V that approximately represents 
the direct bias voltage of a silicon diode. 

The first procedure has required 23 iterations while 
the second one 35. The solution of the linear system 
obtained after the thresholding procedure was about five 
times faster than that in the other one. The total CPU time 
(2.8 sec) required to solve the nonlinear problem by using 
sparse matrices using the standard Newton-Raphson was 
three times shorter than the modified Newton-Raphson 

with full matrices (9.3 sec). The used threshold was 5% 
of the maximum element of each column. 

As for the SPICE simulation the CPU time was about 
4 seconds. 

 

 
Fig. 9. Enlarged portion of Fig. 7. 

 

 
Fig. 10. Voltage on the diodes on terminals #7 and #10. 

 

 
Fig. 11. Current across the diodes on terminals #7 and 

#10. 
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IV. CONCLUSIONS 
 

A method for the simulation of complex circuits, in 
presence of nonlinear elements is here proposed. The 
method is based on wavelet expansion and a special 
treatment of the nonlinearity. The method allows a fast 
computation, together with the required accuracy and low 
memory consumption. 
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