
A Parallelized Monte Carlo Algorithm for the Nonlinear Poisson-
Boltzmann Equation in Two Dimensions 

 
Kausik Chatterjee1 and Jonathan Poggie2 

 
1Department of Electrical and Computer Engineering, Cooper Union, New York, NY 10003-

7185, USA, Email: chatte@cooper.edu, Phone: (212) 353-4333 
 

2Computational Sciences Center, Air Force Research Laboratory, 
Wright-Patterson AFB, OH 45433-7512, USA 

 
Abstract − This paper presents the parallelization of a 
previously-developed two-dimensional floating random 
walk (FRW) algorithm for the solution of the nonlinear 
Poisson-Boltzmann (NPB) equation. Historically, the 
FRW method has not been applied efficiently to the 
solution of the NPB equation which can be attributed to 
the absence of analytical expressions for volumetric 
Green’s functions. Stochastic approaches to solving 
nonlinear equations (in particular the NPB equation) 
that have been suggested in literature involve an 
iterative solution of a series of linear problems. As a 
result, previous applications of the FRW method have 
examined only the linearized Poisson-Boltzmann 
equation. In our proposed approach, an approximate 
(yet accurate) expression for the Green’s function for 
the nonlinear problem is obtained through perturbation 
theory, which gives rise to an integral formulation that 
is valid for the entire nonlinear problem. As a result, 
our algorithm does not have any iteration steps, and 
thus has a lower computational cost. A unique 
advantage of the FRW method is that it requires no 
discretization of either the volume or the surface of the 
problem domains. Furthermore, each random walk is 
independent, so that the computational procedure is 
highly parallelizable. In previously published work, we 
have presented the fundamentals of our algorithm and 
in this paper we report the parallelization of this 
algorithm in two dimensions. The solution of the NPB 
equation has many interesting applications, including 
the modeling of plasma discharges, semiconductor 
device modeling and the modeling of biomolecules. 
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I.   INTRODUCTION 
 
The solution of the nonlinear Poisson-Boltzmann 
(NPB) equation has widespread applications in science 

and engineering. These applications include the 
modeling of plasma sheaths [1], semiconductor device 
modeling [2] and the modeling of biomolecular 
structures and dynamics [3]. In this paper, we address 
the parallelization of a two-dimensional floating 
random-walk (FRW) [4-6] algorithm (a sub-class of 
Monte Carlo algorithms) for the NPB equation, subject 
to Dirichlet boundary conditions. 
 
The FRW method is based on probabilistic 
interpretations of deterministic equations. We consider 
a differential equation, with a differential operator L, 
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where the solution U(r) is a function  of the  three-
dimensional  position  vector r. The function f(r) is a 
source term. Using Green’s integral representation [7] 
U(r) can be written as 
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The symbol G(r|ro) is the volumetric Green’s function 
[7] for equation (1) at r given an impulse function at or  
and is given by the solution of the equation 
[ ] .)()( orrr −= δUL   r|r or )(G∇ , which on the other 

hand is called the surface Green’s function [7]. The first 
term on the right hand side of equation (2) is a volume 
integral involving the source term in the entire volume 
V of interest. The second and third terms are vector 
surface integrals over the surface S enclosing V, where 

sd  is a vector whose magnitude is equal to that of an 
infinitesimally small area unit on the surface S and 
directed normally outward from the center of the area 
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unit. The second integral on the right hand side of 
equation (2) corresponds to the Neumann [7] boundary 
condition, whereas the third integral corresponds to the 
Dirichlet [7] boundary condition.  
 
Equation (2) forms the mathematical basis of the FRW 
method. To evaluate the solution of equation (1) at a 
particular point in the domain of interest, we consider 
maximal spheres, cubes, or any geometrical object for 
which the volumetric Green’s function of equation (1) 
is known [4-6]. We then make random hops to the 
surface of that geometrical object based on any 
predefined probability density. The weights for such 
random hops are determined by sampling the various 
integrands in equation (2). For example, in the case of a 
Dirichlet problem with no source term [that 
is, 0)( =rf ], the problem reduces to a Monte Carlo 
integration of an infinite-dimensional integral, as given 
by [8], 
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where nn ,1−γ  is the angle between  r|r n1nrn

)( −∇ G and 
,nsd being a vector whose magnitude ( )nds  is equal to 

that of an infinitesimally small area unit on the surface 
nS  and directed normally outward from the center of 

the area unit. The successive surface integrals in 
equation (3) relate to successive random hops across the 
problem domain and the weight factors of the form 
( )n1-n rr |K  are derived from the third integral term on 

the right hand side of equation (2) that corresponds to 
the Dirichlet boundary condition. A particular random 
walk is terminated at the boundary, where the solution 
is known, and the samples of successive weight factors 
multiplied by the solution at the boundary yield a 
particular sample of the solution. A numerical solution 
of equation (1) is obtained by averaging over a 
statistically large number of such samples.  
 
At this point, we note that this method does not require 
any discretization, as the solution can be evaluated at 
the point of origination of the random walks 
irrespective of the solution at any other point. In 
contrast, deterministic numerical methods require the 
discretization of either the volume or the surface of the 
problem domain. Methods such as the finite-difference 
[9] or the finite-element [10] are based on volume 
discretization, while methods such as the method of 

moments [11] require surface discretization.  As a 
result, the FRW method has lower memory 
requirements compared to deterministic numerical 
methods.  
 
We also note that this method is inherently 
parallelizable, since different random-walks can be 
performed in different processors, and inter-processor 
communication is required only during the final 
averaging of the contributions from different walks. As 
a result, one can obtain very close to linear rate of 
parallelization for a large number of processors, which 
is a very unique advantage that the FRW method enjoys 
over deterministic methods. In this paper, the 
superiority of the FRW method over the finite-
difference method as regard to parallelization will be 
demonstrated.  
 
In spite of these unique advantages, the FRW method 
has not being applied to the NPB equation and other 
important nonlinear equations. This can be attributed to 
the absence of analytical expressions for volumetric 
Green’s functions of these equations. Early researchers 
in the area expressed the apprehension that the 
extension of the stochastic solution methodology to 
nonlinear problems might not be possible. In a 1954 
paper [12], J. R. Curtiss wrote: “So far as the author is 
aware, the extension of Monte Carlo methods to non-
linear processes has not yet been accomplished and 
may be impossible.” Stochastic approaches to solving 
nonlinear equations (in particular the NPB equation) 
that have been suggested in literature [13], involve an 
iterative solution of a series of linear problems and as a 
result random-walk algorithms that have been presented 
in literature [14-15], involve prior linearization of the 
NPB equation. In our proposed approach, an 
approximate (yet accurate) expression for the Green’s 
function for the nonlinear problem is obtained through 
perturbation theory, which gives rise to an integral 
formulation that is valid for the entire nonlinear 
problem. As a result, our algorithm does not have any 
iteration steps, and thus has a lower computational cost. 
The validity of such an integral expression is 
maintained by restricting the size of a random hop and 
increasing the order of perturbation in the Green’s 
function would allow one to increase the hop size, thus 
increasing computational speed. An approach utilizing 
a perturbation-based Green’s function was used to 
develop an FRW algorithm for the Helmholtz equation 
in heterogeneous problem domains (important for IC 
interconnect analysis at high frequencies) by Prof. K. 
Chatterjee in Ref. [16-17], where the idea of extending 
the approach to nonlinear problems was also proposed. 
Later that idea was extended to develop the 
fundamentals of a floating random-walk (FRW) 
algorithm for the NPB equation [18-20]. In this paper, 
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we present the results of parallelization of the FRW 
algorithm for the two-dimensional NPB equation. 
 

II.   FORMULATION OF THE ALGORITHM 
 
The formulation of the two-dimensional algorithm is 
presented in detail in [19, 20], along with its validation 
with the help of finite-difference based benchmarks. In 
this section, we give a brief description of that 
formulation before presenting the details of the 
parallelization. 
 
In our problem of interest, the dependent variable φ  is 
governed by the NPB equation, given as 

( ) ( )( ) Wee
c

kk ∈−=∇ − rrr ,1
2

2 φφφ ,            (4) 
       

where ),( θrr  is the two-dimensional position 
coordinate, c and k  are constants, while W is the two-
dimensional problem domain. Dirichlet boundary 
conditions have been imposed, 
 

Wg ∂∈= rr),(φ                        (5) 
 
where W∂ is the boundary of the domain W . Equation 
(4) can be normalized to 
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where θθλ == ˆ,/ˆ rr , .andˆ kck == λφφ  We 
further normalize the length scales to the radius R of a 
circular domain (the chosen geometry for random-
walks) and substitute Rr̂ˆ =ρ  and Rroo ˆˆ =ρ   in 
equation (6). The twice-normalized NPB equation is 
written as, 
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A volumetric Green’s function of equation (7), 
( )oρρ ˆ|ˆĜ  at ,ρ̂  assuming a dirac-delta function at 

oρ̂ inside the circular domain, is given as the solution of 
the equation  
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A zero-order approximation (assuming homogeneous 
Dirichlet boundary conditions) for the volumetric 

Green’s function, )ˆ|ˆ(ˆ )0(
oρρG  is the solution of 

equation 
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and is given as [7] 
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Equation (10) can be used to obtain a first-order 
approximation, )ˆ|ˆ(ˆ )1(

oρρG  to the volumetric Green’s 
function and is given as a solution of the following 
equation, 
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Based on equations (2), (10) and (11), )ˆ|ˆ(ˆ )1(
oρρG  is 

given by the following expression, 
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again be noted that ( ){ } 0ˆ|ˆ
1ˆ

)1( ==ρG oρρ  along the 
circumference of the circular domain.  Based on this 
approximate expression for the volumetric Green’s 
function and equation (2), an expression for normalized 
potential at a point oρ̂  is given by a line integral over 
the circumference of the unit circle and is expressed as, 
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For the development of the FRW algorithm, we need to 

estimate 
1ˆ

)1(
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dG in equation (13). This estimate is 

obtained by differentiating equation (12), and in the 
zero-centered notation (i.e. 0ˆ =oρ ) is given by, 
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where A and B  are given by, 
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Equation (13) in conjunction with equations (14) and 
(15) is used to develop the FRW algorithm for the 
problem under consideration. In order to calculate the 
normalized potential at a point of interest, we start our 
random-walks at that point and hop to the 
circumference of a circle of radius R. The random-
walks have to be restricted to a small fraction of the 
characteristic length λ  in order to maintain the validity 
of the first-order approximation in the perturbation 
expression for the volumetric Green’s function.  For 
every hop there is a weight factor obtained by sampling 
the multi-dimensional integrand of equation (13) 
according to a pre-determined probability distribution 
for each of the variables. As explained in the previous 
section, a particular random-walk, consisting of several 
such random hops, is terminated on the boundary of the 
problem domain, where the value of the potential is 
known. The contribution from a particular random-walk 
is obtained by multiplying the overall weight factor 
(which is obtained by multiplying the weight factors of 
individual hops) with the boundary value. An estimate 

φ̂ of the potential, at the point of origination of the hops 
is then obtained by averaging over a statistically large 
number of random-walks. 
 
The error in the result has a deterministic component 
arising from the truncation of the perturbation-based 
Green’s function in equation (12), which can be 
controlled by controlling the radius of the hop. The 
error also has a stochastic component, a measure of 
which is given by the “1-σ error Tσ ” given by [21], 

,
N
E

T
σ

σ =                                      (16)                            

where Eσ  is the standard deviation of the contributions 
from different random-walks, N being the number of 
random-walks. As a result, the statistical error can be 
controlled by controlling the number of random-walks.  
The FRW algorithm described previously was 
parallelized. Two levels of parallelism are inherent in 
an FRW algorithm.  First, the solutions for different 
points in the domain (different origins for the random 

walks) are independent of each other.  Second, for a 
given point of origin, each random walk is independent, 
and inter-processor communication is required only to 
sum up the contributions of the walks.  For this initial 
parallel implementation, the test points in the domain 
were handled serially. The walks were distributed in 
groups across computer processors, with 
communication and a reduction operation at the 
completion of the walks. The FRW algorithm was 
implemented in C, and the serial version of the code 
was converted to parallel using the Message Passing 
Interface (MPI) library.  The elegance and inherent 
parallelism of the FRW algorithm is demonstrated in 
the fact that the serial and parallel versions of the code 
differ by only four function calls, three of which are 
merely initialization routines. The results of this 
parallelization are given in the next section. 
 

III.   RESULTS 
 
In our benchmark problem (Fig. 1) [20], a circle λ  in 
diameter, is surrounded by a rectangle of dimensions 
3 2λ λ× . The normalized potential is unity on the inner 
circle and zero on the outer rectangle. When run in a 
single processor, 20000 random-walks were performed 
per solution point, while the radii of the hops were 
restricted to two percent of the characteristic length λ  
to maintain the validity of the first-order approximation 
in the derivation of the volumetric Green’s function in 
equation (12). For finite-difference calculations, a grid 
of 5151×  points, distributed over the first quadrant was 
used. The finite-difference calculations were carried out 
using a standard transformation from a curvilinear mesh 
in physical space to a uniform mesh in computational 
space, while maintaining second order accuracy. The 
results are shown in Table 1 and Fig. 2. Excellent 
agreement is observed between FRW and finite-
difference based results. 
 
It can also be observed that the absolute errors are 
consistently larger than the statistical errors, which can 
be attributed to the truncation of the perturbation-based 
Green’s function in equation (12), and also to the 
truncation errors in the finite-difference based 
approach.  
 
The parallelized algorithm was implemented on an IBM 
P4+ machine, running 1.7 GHz Power 4+ chips, with 2 
Gigabytes RAM available per processor for as many as 
64 processors. The timing results are shown in Fig. 3 
for 100000 and 10000 random-walks per solution point. 
It can be observed that for 100000 random-walks per 
solution point the speed of computation increases 
perfectly linearly with the number of processors, 
particularly for a relatively smaller number of 
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processors. This can be attributed to the fact that the 
random-walks per processor needs to be high enough to 
ensure that the time spent in actual computation is large 
compared to the communication time between the 
various processors. For the same reason, the increase in 
the speed of computation is only sixteen fold for 32 
processors with only 10000 random-walks per solution 
point. It should be borne in mind that the benchmark 
problems used for validation are relatively simple 
problems, and for more complicated problems one can 
expect to see even better scalability, stemming from the 
increased number of samples per processor. In 
comparison, the parallelization of the finite-difference 
algorithm (Fig. 4) for the same problem showed 
markedly inferior performance (compared to the case 
where N =100000) with increase in the number of 
processors. With 32 processors, the speed of 
computation is only 16 times higher than the speed with 
a single processor. It can also be concluded that as the 
finite-difference method (like other deterministic 
methods based on discretization) reduces the numerical 
solution of a differential equation to the numerical 
solution of a matrix equation, our newly-developed 
algorithm will exhibit superior efficiency of 
parallelization compared to other discretization-based 
deterministic methods as well. 

 
Table 1. Statistical error and mean absolute error 
between FRW and finite-difference based results. 

 
Benchmark 

Problem (20000 
Random Walks per 

Solution Point) 

Mean Absolute 
Error 

Statistical 
Error 

Along the 
centerline positive 

x-axis 
0.0033 0.0028 

Along the 
centerline positive 

y-axis 
0.0067 0.0025 

 
 

φ = 0

φ = 1

y

x

 
 

Fig. 1.  The solution of the NPB equation in the region 
between a circle surrounded by a rectangular boundary. 
Problem dimension is .23 λλ ×  

x,y

φ

0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

y = 0; finite difference
y = 0; random walk
x = 0; finite difference
x = 0; random walk

 
Fig. 2. Normalized potential plotted against position in 
normalized coordinates. 

 
Fig.3. Parallelization results for the FRW algorithm. 
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Fig. 4. Parallelization results for the finite-difference 
algorithm. 
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IV.    CONCLUSION 
 
In summary, we have parallelized a previously-
developed FRW algorithm for the solution of the NPB 
equation in two dimensions. This algorithm is based on 
an approximate volumetric Green’s function, derived 
using perturbation theory. Excellent agreement was 
found between the random walk and finite-difference 
results, while the FRW algorithm exhibited vastly 
superior (almost linear) efficiency of parallelization for 
a statistically significant number of random-walks per 
processor. The FRW algorithm also has the advantage 
of not requiring any discretization of the volume or the 
surface of problem domains. The approach is general, 
and can be applied to the numerical solution of other 
important nonlinear equations. Our work in the 
immediate future will involve the extension of this new 
FRW algorithm to Neumann and mixed boundary 
condition problems. The ultimate objective of this work 
is the extension of the perturbation-based approach to 
flow problems. 
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