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Abstract − A new Moment Method (MM) scheme to 
solve the Electric Field Integral Equation (EFIE) for 
some ill-conditioned problems is presented. The 
approach is an alternative to the Combined-Field 
Integral Equation (CFIE). The proposed formulation 
employs the Impedance Boundary Condition (IBC) to 
compute the scattering from conducting bodies 
uncoated or coated by dielectric materials. The 
scheme uses dual meshes to represent the currents: 
one mesh for the electric current and another mesh for 
the magnetic current. Each mesh is defined by a grid 
of quadrangles that can be conformed to arbitrarily 
curved surfaces. The quadrangle grids are interlocked; 
the corners of the quadrangles of one mesh are the 
centers of the quadrangles of the other mesh and vice 
versa. Several examples showing the potential of the 
approach to solve ill-conditioned problems are 
included. 
 

I. INTRODUCTION 
 

It is well known that many electromagnetic 
radiation or scattering problems can be too ill-
conditioned to be solved using MM. This happens, 
particularly, when we analyze electrically large bodies 
using formulations based on either the EFIE or the 
Magnetic-Field Integral Equation (MFIE). In these 
cases, the MM equation systems are ill-conditioned at 
the resonance frequencies of the internal cavity 
defined by the volume of the body under analysis [1]. 
In these situations it is difficult to find reliable 
solutions, and thus these problems suffer from poor 
convergence and present spurious solutions. 
 

To reduce the difficulty of these ill-conditioned 
problems, several formulations have been proposed to 
improve the condition number of the corresponding 
MM matrix that may help solve these problems. One 
of the most powerful formulations to avoid in these 
ill-conditioned problems is the CFIE, which is based 
on a linear combination of the EFIE and the MFIE, 
[1], [2]. Like the MFIE, the CFIE is only applicable to 
closed bodies. The practice has shown that the CFIE 
is able to treat most problems, however there are still 
cases where difficulties remain because the accuracy 
of CFIE results depend on a correct choice in the 
weights of the EFIE and MFIE linear combination, 
and on the sampling density (number of MM 

subdomains per wavelength) [3]. In these cases, 
convergence studies on the relative weights of the 
CFIE and on the sampling density are performed in 
order to obtain “stable” solutions. These difficulties 
can be due to the MFIE component of the CFIE which 
gives poor results for sharp wedges and tips, [4]. 
 
  More recently formulations based on Dual-
Surface Field Integral Equations (DSFIE), [5], [6] 
have been investigated because they appear to be free 
of spurious problems and offer better solutions for 
bodies with sharp wedges or tips. The DSFIE forces 
boundary conditions on the body surface and also in a 
dual surface located inside the body. The separation 
between the surfaces is usually less than half a 
wavelength, and on the dual surface the boundary 
conditions are multiplied by a constant with an 
imaginary part. The DSFIE reduces spurious 
resonances and can treat geometries with sharp parts 
like cone-spheres with narrow vertices where the 
CFIE does not yield reliable results. However, a 
suitable definition of the dual surface in the DSFIE 
application for a particular problem needs to be 
adjusted in order to obtain accurate results [6]. For 
electrically small objects, the approach in [7], [8], 
which uses an accurate computation of the MM  
matrix terms of the MFIE and monopolar basis 
functions, gives reliable computations for problems 
with sharp wedges and tips. 
 

Here, a numerical scheme based on a 
combination of the EFIE and the IBC approach, [9-
11] is presented as an alternative formulation to solve 
these difficult problems.  
 

The scheme, outlined in [12], uses dual 
quadrangular meshes. One mesh is used to represent 
the discretized electric current and the other to 
represent the discretized magnetic current. The 
corners of the quadrangles of one mesh are in the 
centers of the quadrangles of the other mesh and vice 
versa. The scheme combines the operator which 
generates the electric field due to an electric current 
with the operator which generates an electric field due 
to a magnetic current. Both currents are expanded in 
terms of rooftop basis functions [13]. The testing 
functions are blade functions, [13], defined in the 
mesh used to represent the electric current. With this 
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choice of testing and basis functions we have found a 
simple and accurate way to descritize the electric field 
due to electric and magnetic currents. The meshes are 
defined over the iso-parametric lines of a NURBS´s 
(Non Uniform Rational Bi-Spline Surface) [14]. 
Using the discretization procedure shown in [15-17] 
we can work with curved quadrangles and we do not 
need any re-meshing in terms of flat patches.  

 
One objective of our approach is to analyze real 

conducting bodies. It can be noticed that at microwave 
frequencies the surface impedance of a good 
conductor is a hundredth or a thousandth of the free 
space wave impedance and the solution for a good 
conductor at such frequencies is very similar to the 
case of a perfect electric conducting (PEC) body.  
Therefore, the proposed approach can give good 
results for PEC if we model PEC with a surface 
impedance of about a thousandth of the free space 
wave impedance. One of the advantages of the present 
approach is that it permits the analysis of open or 
closed surfaces or a combination of them. The 
proposed approach can be considered as a 
regularization method, [18-19], because it diminishes 
the Q factor of the internal cavities of closed bodies 
and in this way the formulation reduces the problems 
of spurious responses at resonances frequencies. In 
addition, the approach is able to treat accurately 
problems with sharp wedges and tips using a reduced 
number of samples per wavelength. It is also useful in 
analyzing the scattering from lossy dielectric or 
conducting bodies that can be totally or partially 
coated by thin materials using the IBC approach. 
 

Dual meshes of quadrangles over curved surfaces 
are also considered in [20] to solve a CFIE in 
problems with dielectric bodies. In this reference, 
divergence-conforming basis functions are defined 
over one mesh and curl-conforming basis functions 
over the other mesh. Either current (electric or  
magnetic) is represented by both types of basis 
functions: divergence-conforming functions when the 
electric(magnetic) field of an electric(magnetic) 
current is computed, and curl-conforming basis 
functions when the magnetic(electric) field of an 
electric(magnetic) current is evaluated. Our approach 
is different from that of [20] because we solve the 
EFIE for metallic or body governed by the IBC and 
therefore, we can consider open and closed surfaces.  
Furthermore, we only use divergence-conforming 
functions in such a way that each mesh is reserved to 
only one kind of current, one mesh for the electric 
current and the other one for the magnetic current. 
  

The paper is organized as follows; section 2 
presents the theoretical formulation of the EFIE 
considered. The dual meshes and the numerical details 
of the method are shown in section 3. Some results 
that probe the capability of the approach to solve 
coated bodies, and ill-conditioned problems are 

presented in section 4, finally, the conclusion section.  
 

II.    FORMULATION 
 

We formulated the integral equation to be solved 
based on the equivalence principle, [21]. Figure 1 
shows the application of the equivalence principe to 
obtain the fields in the region external to volume V. 
On the surface S that encloses volume V the 
equivalent currents are given by 
 

)()(ˆ)( rHrnrJ TS ×= ,  (1.a) 
)()(ˆ)( rErnrM TS ×−=    (1.b) 

 
where zryrxrr zyx ˆˆˆ ++=  is the observation 

point on S and ( TE , TH ) are the total fields that are 
in the region external to V and can be expressed as, 

  
)()()( rErErE Simp

T += ,      (2.a) 

)()()( rHrHrH Simp
T +=              (2.b) 

 
where ( impE , impH )    are the fields due to the 
impressed currents ( impJ , impM  ) located outside V 
and ( SE , SH ) are the scattered fields due to the 
equivalent currents ( SJ , SM  ) 
 

 
Fig. 1.  The equivalence principle states that the field 
external to volume V in the problem shown in the left 
part of the figure can be computed considering the 
equivalent problem shown to the right. 
 
 

Writing the scattered fields as a function of the 
electric and magnetic equivalent density currents for 
the external region, we get, 
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These expressions can be written in a more compact 
form using the following linear operator notation, 
 

[ ] [ ]SEMSEJ
S MLJLrE +=)( ,               (4.a) 

   
[ ] [ ]SHMSHJ

S MLJLrH +=)( .          (4.b) 
 

We can combine equations (2) and (4) to obtain 
the EFIE and MFIE formulations, 
 

( ) ( ) ( )

( ) ,

imp S
T

imp
EJ S EM S

E r E r E r

E r L J L M

= +

= + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
     (5.a) 

 
( ) ( ) ( )

( ) .

imp S
T

imp
HJ S HM S

H r H r H r

H r L J L M

= +

= + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
    (5.b) 

 
For the case of a non-PEC body, like a real 
conducting body, a lossy dielectric body or a 
conducting body coated by a dielectric, the EFIE can 
be written as, 
 

ˆ ˆ( ) ( ) ( ) ( )

ˆ( ) .

imp
S EJ S

EM S

M r n r E r n r L J

n r L M

= − × − ×

− ×

⎡ ⎤⎣ ⎦
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    (6) 

 
By reordering the EFIE we have 
 

ˆ( ) ( ) .imp
S EJ S EM SE r n M r L J L M= − × − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  

         (7) 
 
Taking advantage of the duality between operators, 
we can write 
 

1
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where dual
HJL  is obtained from HJL  substituting the 

permeability µ by the permittivity ε. 

Using the IBC relation between the electric and 
magnetic currents,  
 

sup

)(
ˆ)(

Z
rM

nrJ S
S ×= ,       (9.a) 

( ) sup)(ˆ)( ZrJnrM SS ×−= ,          (9.b) 
 
we obtain the following expression of the EFIE, 
where we only have the current  SJ as the unknown 
function  
 

( )

( )

sup

sup

ˆ ˆ ( )
( )

2
ˆ ( )

Simp
EJ S

c
EM S

n n J r Z
E r L J

L n J r Z

× ×
= − −

+ ×

⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦

    (10) 

 
where Zsup stands for the surface impedance of the 
body and c

EML is the resulting operator after 

extracting the singular value of EML . 
 
 

III. COMPUTATIONAL METHOD 
 

The continuous operators in equation (10) can be 
discretized using the Moment Method. The scheme 
described in [15-17] has been followed to descritize 
the operator [ ]SEJ JL . Using this scheme the body 
surface is modelled by means of NURBS´s [14]. 
Considering u- and v-isoparameter lines, [17], each 
NURBS can be split into a mesh of small curved 
quadrangles. The solid lines of Fig. 2 are an example 
of a rectangular mesh over a NURBS, which has been 
represented to be flat to simplify the drawing. The 
same figure shows a second mesh that is dual of the 
first one. The electric current is expanded in terms of 
rooftops defined over pairs of contiguous rectangles in 
the mesh defined by the solid lines. This expansion 
can be written as, 
 

)()()()()(
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rfjIrfjIrJ
Njv

j
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Nju

j

u
EjJuS ∑∑

==

+=      (11.a) 

 

where )(rf u
Ej  and )(rf v

Ej  are rooftop functions for the 
u and v-components, respectively, of the electric 
current (see Fig. 3). In a similar way, the magnetic 
current can be expressed in terms of the rooftop 
functions )(rf u

Mj  and )(rf v
Mj , defined over the 

magnetic  mesh (see Fig. 3). For the magnetic current 
we have, 
 

)()()()()(
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j
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We can notice that for each u-rooftop/v-rooftop 
of the electric current a v-rooftop/u-rooftop of the 
magnetic current can be found such that the two 
rooftops have the same centre, they are perpendicular 
and they have a “dual”  shape (the length of  one is the 
width of the other and vice versa). Using this duality 
between couples of rooftops and the IBC of equations 
(9) the following relations between the weights of the 
current expansion of equation (11) can be found, 
 

)()ˆˆ()( sup jIZvujI Jvj
Jv

j
Mu

Mu ×
∆

∆
= ,         (12.a) 

 

)()ˆˆ()( sup jIvuZjI Juj
Ju

j
Mv

Mv ×
∆

∆
−= ,        (12.b) 

 
where it is assumed that the parameter coordinates 
have been chosen so that 0ˆ)ˆˆ( ≥•× nvu , 

j
Mu∆ , j

Jv∆ , j
Mv∆ and j

Ju∆  are the widths of rooftops  

)(rf u
Mj , )(rf v

Ej , )(rf v
Mj  and )(rf u

Ej , respectively, 

and  )ˆˆ( vu ×  is the amplitude of the vector product 

)ˆˆ( vu ×  . It is noticed that eventually û  and v̂  can 
not be orthogonal in real 3D space. However, 
following the IBC in equation (9)  )( jI Mu  will never 
depend on )( jI Ju  because both currents are parallel 
(neither )( jI Mv  will depend on )( jI Jv ). Moreover, 
the following relations between the total numbers of 
rooftops are satisfied, 
 

NjuNmv = ,                      (13.a) 
 

NjvNmu = .        (13.b) 
 
The descritized operators can be expressed as, 
 

1 1

( )

( ) ( ) ,

D
EJ s EJ

Nju Njv
J J
ij Ju ij Jv

j j

L J V i

Z I j Z I j
= =

=

= +

⎡ ⎤⎣ ⎦

∑ ∑
      (14.a) 

 

1 1
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Z I j Z I j
= =

=

= +

⎡ ⎤⎣ ⎦

∑ ∑
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where the total number of rooftops used to represent 
the electric or the magnetic currents is given by  
 

NjvNjuN +=       (15) 
 

J
ijZ  and M

ijZ represent the coupling between 
subdomains i and j of the electric and magnetic 
meshes, respectively. The terms )(iVEJ and 

)(iVEM stand for the impressed voltage due to the 
electric and magnetic current, respectively, computed 
in the electrical subdomain i, using as testing function 
a razor-blade function [15-17]. Other testing 
procedures can be used such as a Galerkin testing 
function. However, we have chosen a test by the 
razor-blade function because it is very simple and it 
needs fewer computations than other approaches, 
[13]. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.  A mesh of solid lines covers completely a 
NURBS. A second mesh is drawn using dashed lines. 
Both meshes are dual in the sense that the nodes of 
one mesh are the centres of the rectangles of the other 
mesh and vice versa.  
 
The descritized operator D

EJL of equation (14.a) can 

be obtained from the continuous operator EJL of 
equation (7) following the numerical scheme shown 
in [13], [15-17]. The term D

EML of equation (14.b) is 
obtained by descritizing the operator, 

Subdomain 
center 
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Considering the testing-function corresponding to an 
electric rooftop completely cuts its dual rooftop of 
magnetic current by a transversal line (see Fig. 4). 
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1
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and  i∆  is the length of the razor-blade function of 
subdomain i of the electrical mesh.  The term c

ijZ  
accounts for the coupling between the magnetic 
rooftop j and the electrical subdomain i considering 
the operator c

EML that gives the electric field of a 
magnetic current but excluding the singular value of 
the integral operator. The computation of the term c

ijZ  
does not have serious numerical difficulties and it can 
be calculated following a numerical approach similar 
to that indicated in [15-17] for the computation of 

J
ijZ  .  

Defining the total induced voltage )(iV as, 

)()()( iViViV EMEJ +=   (19) 
 

the following systems of linear equations can be 
obtained considering equations (12), (14) and (17)  
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ˆ ˆ( ( ) ) ( ) ;
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J MMv
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j Ju
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J MMu
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for i N

=

=

∆
= − × +

∆

∆
+ + ×

∆

=

∑

∑  

 (20) 
 
Solving this system of linear equations the electric 
current is obtained. The magnetic current is obtained 
from the electric current using equation (12). 
 

The approach is valid for problems defined by 
closed or open surfaces. When dealing with open 
surfaces the meshes near the aperture edges of the 
surfaces need to be defined in such a way so as to 
preserve the duality. Figures 5 and 6 show a way to 
define the meshes for a squared flat plate saving the 
duality between the electric and magnetic meshes. In 
both cases the rooftops of the two meshes cover 
completely the plate surface (the same domain), or in 
other words, the boundary of the meshes is the actual 
plate boundary.  It can be noticed that the rooftops for 

representing the electric and magnetic currents are 
spatially shifted but additionally they are defined near 
the edges of the plate in different ways: we have 
parallel and perpendicular rooftops for representing 
the electric current and these rooftops are defined over 
couple of patches of the same size, however we have 
not rooftops for representing the magnetic current 
parallel to the edges and the rooftops for representing 
the magnetic current perpendicular to the edges are 
defined over pairs of patches of different sizes (the 
patches bounded by the edges have a size that is the 
half of the size of the other patches). 

 
 
 

Fig. 3. (a) shows an example of rooftops for the u-
component, )(rf u

Ei ,  and for the v-component of the 

electric current, )(rf v
Ej . (b) shows an example of the 

dual rooftops )(´ rf u
Mj  and )(´ rf v

Mi  used to represent 

the u and v-components, respectively, of the magnetic 
current. It can be noticed that the rooftops for the 
electric and magnetic components are defined in dual 
meshes and that the rooftop for the u-component/v-
component of  the electric current and the rooftop for 
the v-component/u-component of the magnetic current 
have the same centre. 
 

IV. RESULTS 
 

Figure 7 shows the condition number, [18], 
versus frequency for a sphere with a radius of 1.m for 
the single and the dual mesh schemes. Ten 
subdomains per wavelength were considered in both 
approaches. The meshes for the electric current were 
the same in both approaches. The results for the single 
and the dual mesh schemes were obtained considering 
PEC and a surface impedance of 1 Ohm, respectively. 

(a)

(b)
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A step of 10 MHz was used in the frequency sweep.  
In the frequency range considered we have two 
interior resonances at frequencies very close to the 
two large peaks. It can be appreciated that the dual 
mesh approach has a better behavior because the 
condition number for this approach is quite less than 
for the simple EFIE. As shown in [18] a reduction in 
the condition number means better convergence and 
more accurate results. Figure 8 presents the Bi-static 
RCS results for the co-polar plane cut obtained using 
the dual approach for the sphere at a frequency of 200 
MHz, which is very close to the first internal 
resonance. A number of 20 divisions per wavelength 
and a surface impedance of 1 Ohms were considered.  
The results were obtained with a residual error of 10-3, 
which was reached after 965 iterations of the 
BICGSTAB (L) method, [22], with L=5, which has 
been used to solve all the MM system of equations in 
this work. The total number of unknowns was 4836. 
The numerical results obtained using the dual mesh 
approach are compared with analytical results derived 
from the Mie series. A very good accuracy of the 
numerical results for a frequency very close to an 
internal resonance was obtained. 

 
Fig. 4. a) The areas covered by the electric rooftops i 
and j are indicated by solid lines.  The MM impedance 
term Zij

J that gives the coupling between rooftop j 
(active) and i (passive) is computed considering a  
blade-function as a testing function that extends along 
the segment indicated in the center of rooftop i. B) 
The dual magnetic rooftops are represented by dashed 
lines. The testing function of the electric rooftop i is a 
segment that cuts transversally the dual magnetic 
rooftop.  

 
 

Fig. 5. Mesh used to represent the electric current in a 
plate.  Each arrow corresponds to an electric rooftop.  
 

 
 
 

Fig. 6. Mesh used to represent the magnetic current in 
a plate. Each arrow corresponds to a magnetic 
rooftop. 

 
In order to show the capacity of the proposed 

approach to treat coated conducting bodies the case 
indicated in Fig. 9 was chosen. Numerical and 
analytical values of the Bi-static RCS are compared in 
Fig. 9 for the E-plane cut. The surface impedance of 
the coat is Zs=j72.75 and the current is represented by 
20 subdomains per wavelength. The numerical results 
for the coated sphere are obtained after 780 iterations 
with an error of 10-3. 

 
The second structure considered is a very sharp 

metallic wedge. This geometry gives a very ill-
conditioned problem when a plane wave is incident in 
a direction perpendicular to the edge of the wedge, 
with the E-field normal to that edge, as indicated in 
the sketch of Figure 10. The geometry of the problem 
is defined by two plates of size 1 m × 1 m. In the back 
part of the wedge the plates are separated by 1.0 cm. 
The working frequency is 300 MHz. The Bi-static 
RCS results obtained using the EFIE with a single 
mesh and with the proposed dual mesh are shown in 
Figs. 11and 12, respectively.  The plates were treated 
as PEC with the simple mesh approach and with a 1 Ω 

J 

(a) 

(b) 
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surface impedance with the dual mesh approach. A 
slow convergence of the results is apparent when the 
number of subdomains per wavelength is changed for 
the single mesh case in contrast with the fast 
convergence of the dual mesh case. The results of 
both formulations converge to nearly the same values 
for the higher values of divisions per wavelength as 
shown in Fig. 12. However, the efficiency of the 
formulations is quite different. As shown in Table 1, 
the single mesh formulation needs a number of 
iterations greater than the dual approach for obtaining 
a residual error of 10-3. 
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Fig. 7. Condition number versus frequency for a 
conducting sphere of radius 1 m.  
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Fig. 8. Bi-static RCS results for a conducting sphere 
of radius 1 m,  frequency 200 MHz. 
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Fig. 9. Bi-static RCS results at a frequency of 300 
MHz for a coated PEC sphere with an external  radius 
0.6 m. The coat is 0.03 m thick and has a relative 
permittivity of 2.0. 

 

 
 

Fig. 10. Wedge geometry considered to compute the 
Bi-static RCS for a phi-cut = 0º, theta varying from 0º 
to 180º for an incident plane wave in the direction 
shown and perpendicularly  polarized to the edge of 
the wedge. 
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Fig. 11. Bi-static RCS results of the wedge shown in 
Fig. 10 obtained using the EFIE with a simple mesh 
for different number of subdomains per wavelength.  
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Fig. 12. Bi-static RCS results of the wedge shown in 
Fig. 10 obtained using the dual mesh approach for 
different number of subdomains per wavelength. 
 
Table 1. Comparison between the numbers of 
iterations required for the single and dual mesh 
approaches for obtaining a residual error of 10-3 for 
different sampling densities for the wedge case.  
 

Subdomains per 
wavelength Single Mesh Dual Mesh 

6 2.061 1.310 
10 19.189 2.495 
20 19.304 3.388 
30 20.684 4.460 

 
The following case considered is of a rotor 

structure shown in Fig. 13. This structure is the 
bottom part of the CHANNEL cavity from ONERA. 
The height of the structure is 13.7 cm and the external 
cylinder has a diameter of 18.8 cm. This cylinder has 

θ 
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been modelled as a volumetric structure with a 2 mm 
of thickness. The blades have a thickness of about 4 
mm. The coordinates system has been fixed 
considering the z axis in the rotor axis. As can be 
noticed the rotor is a structure with lots of electrically 
thin plates oriented in many directions, and is quite a 
difficult problem for the EFIE because it presents lots 
of thin wedges and therefore it is an interesting 
problem for testing the efficiency of the dual mesh 
approach. Figures 14 and 15 show results of the Bi-
static RCS of the rotor structure for a frequency of 3.0 
GHz and for a θ=0º incidence. Again, the plates were 
treated as PEC with the simple mesh approach and 
with 1.Ω of surface impedance with the dual mesh 
approach. Results were obtained from different values 
of the sampling density. Table 2 shows the 
convergence rate for both approaches. It is evident 
that the dual approach convergence rate always is 
better than the simple mesh 
approach.

 
Isometric view 

 
Profile view 

               

Fig. 13. Isometric and profile views of the rotor 
located at the end of the engine cavity “CHANEL” 
from ONERA. 
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Fig. 14. Bi-static RCS results of the CHANEL rotor 
obtained using the EFIE approach for different 
subdomain densities. 

-40.00

-35.00

-30.00

-25.00

-20.00

-15.00

-10.00

-5.00

0.00

5.00

0 30 60 90 120 150 180

Theta (º)

RC
S 

(d
B

sm
)  

10 div. 20 div. 40 div.
 

 
Fig. 15. Bi-static RCS results of the CHANEL rotor 
obtained using the dual mesh approach for different 
subdomain densities. 
 
Table 2. Comparison between the numbers of 
iterations required for the single and dual mesh 
approach for obtaining a residual error of 10-3 for 
different sampling densities for the CHANEL rotor 
case.  
 

Subdomains per 
wavelength Single Mesh Dual Mesh 

10 465 399 
20 4.233 3.950 
30 9.325 8.127 

 
 

V.    CONCLUSIONS 
 

A new approach to solve the EFIE using a MM 
formulation based on dual meshes and on the IBC has 
been presented. Each mesh is defined by a grid of 
quadrangles. The meshes are dual because the 
quadrangle corners of one mesh are the centers of the 
quadrangles of the other mesh and vice versa. One of 
the meshes is used to represent the electric current and 
the other the magnetic current. In both meshes rooftop 
and razor-blade functions are used as basis and testing 
functions, respectively. This choice of the basis and 
testing functions enforces the duality of the 
formulation: the segment on which the testing 
function of one mesh extends is perpendicular and 
completely crosses the basis function of the other 
mesh. This fact is important because it makes the 
computation of the electric field due to a magnetic 
current more easy and accurate. 
 

Any body over which the IBC applies can be 
treated with the dual mesh formulation including 
realistic conducting bodies and lossy dielectric bodies. 
PEC bodies can be analyzed with a very small error 
by assuming they present small surface impedances, 
for example a thousandth of the free space wave 
impedance.  All these bodies can be analyzed very 
efficiently using this method because it requires a 
lower number of subdomains per wavelength and it 
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presents better convergence when the MM system of 
equations is solved by an iterative method. Using the 
IBC approach we only shall consider the electric 
current unknowns. The approach is useful to solve 
structures with open or closed surfaces and it does not 
suffer a loss of convergence at the frequencies of the 
internal resonances or other classes of problems, for 
instance ill-conditioning due to very narrow wedges. 
In the future the potentiality of the dual mesh 
approach will be extended to solve the CFIE.  
 

 
ACKNOWLEDGEMENTS 

 
This work has been supported in part by the 

Spanish Department of Education and Science, 
Project TEC 2004-03187, and by the Madrid 
Community Project S-0505/TIC/0255. 

The authors would like to thank ONERA for the 
geometry data of the rotor of the CHANNEL cavity. 
 

 
REFERENCES 

 
[1] W. C. Chew, J. Jin, E. Michielssen, and J. 

Song, Fast and Efficient Algorithms in 
Computational Electromagnetics, Artech 
House Inc. 2001. 

[2] J. R. Mautz and R. F. Harrington, “H-field, E-
field, and Combined-Field Solutions for 
Conducting Bodies of Revolution,” AEU, vol 
32, pp. 157-164, 1978. 

[3]  W. D. Wood Jr et al, “Convergence Properties 
of the CFIE for several Conducting Scatterers,” 
Proceedings of Applied Computational 
Electromagnetics, Monterey, CA, pp 677-682,  
March 2000. 

[4]  R. A. Shore and A. D. Yaghjian, “Dual-Surface 
electric  Integral Equation,” Air Force 
Research Laboratory Rep. AFRL-SN-HS-TR-
2001-013, 2001.  

[5]  V. V. S. Prakash and R. Mittra, “Dual Surface 
Combined Field Integral Equation for Three-
Dimensional Scattering,” Microwave and Opt. 
Tech. letts., vol. 29, pp. 293-296, June 2001. 

[6]  R. A. Shore and A. D. Yaghjian, “Dual-Surface 
Integral Equation in Electromagnetic 
Scattering,” IEEE Trans.  Antennas and 
Propag., vol. 53, pp. 1706-1709, May 2005. 

[7]   J. M. Rius, E. Úbeda, and J. Parrón, “On The 
Testing of the Magnetic Field Integral Equation 
With RWG Basis Functions in Method of 
Moments,” IEEE Trans.  Antennas and 
Propag., vol. 49, pp. 1550-1553, November 
2001. 

[8]  E. Ubeda and J. M. Rius, “Novel monopolar 
MFIE MoM-discretization for the scattering 
analysis of small objects,” IEEE Trans.  
Antennas and Propag., vol. 54, pp. 50-57, 
January 2005. 

[9]  S. Lee and W. Gee, “How good is the 
impedance boundary condition?,” IEEE Trans. 

Antennas and Propag., vol. 35, pp. 1313- 1315,   
November 1987. 

[10] T. B. A. Senior and J. L. Volakis, 
“Approximate boundary conditions in 
electromagnetics,” The Institution of Electrical 
Engineers, 1995. 

[11] Y. Rahmat-Samii and D. J. Hoppe, “Impedance 
Boundary Conditions in Electromagnetics,” 
Hemisphere Pub., 1995. 

[12] O. Gutierrez, J. Bueno, I. Gonzalez, and F. 
Catedra, “An Improvement of the Method of 
Moments Combining EFIE and MFIE 
Formulations for Coated Conducting Bodies,” 
2005AP/S-URSI International Symposium, 
Washington, July 2005. 

[13] A. W. Glisson and D. R. Wilton, “Simple and 
Efficient Numerical Methods for Problems of 
Electromagnetic Radiation and Scattering from 
Surfaces,” IEEE Trans.  Antennas and Propag., 
vol. 28,  pp. 593-603, October 1997. 

[14] G. Farin, Curves and Surfaces for Computer 
Aided Geometric Design: A practical Guide, 
Academic Press. 

[15] L. Valle, F. Rivas, and M. F. Cátedra, 
“Combining the Moment Method with 
Geometrical Modelling by NURBS Surfaces 
and Bezier Patches,” IEEE Trans.  Antennas 
and Propag., pp. 373-381, March  1994. 

[16] F. Rivas, L. Valle, and M. F. Cátedra, “A 
moment method formulation for the analysis of 
wire antennas attached to arbitrary conducting 
bodies defined by parametric surfaces,” Journal 
of Applied Computational Electromagnetics 
Society Journal. pp. 32-39, July 1996. 

[17] M. F. Cátedra, F. Rivas, and L. Valle, “A 
Moment Method Approach Using Frequency 
Independent Parametric Meshes,” IEEE Trans.  
Antennas and Propag., pp. 1567-1568, October 
1997. 

[18] C. A. Klein and R. Mittra, “An Application of 
the ‘Condition Number’ Concept to the 
Solution of Scattering Problems in the Presence 
of the Interior Resonances Frequencies,” IEEE 
Trans.  Antennas and Propag., vol. 23, pp. 
431-435, May 1975. 

[19] G. A. Deschamps and H. S. Cebayan, “Antenna 
Synthesis and Solution of Inverse Problems by 
Regularization Methods,” IEEE Trans.  
Antennas and Propag., vol. 20, pp. 268-274, 
May 1972. 

[20] M. H. Smith and A. F. Peterson, “Numerical 
Solution of the CFIE Using Vector Bases and 
Dual Interlocking Meshes,” IEEE Trans.  
Antennas and Propag., vol. 53, pp. 3334-3339, 
October 2005. 

[21] C. Balanis, Advanced Engineering 
Electromagnetics, John Wiley&Sons, 1989, 
New York. 

[22] G. L. G. Sleijpen and D. R. Fokkema, 
“BICGSTAB(L) For Linear Equations 

371 ACES JOURNAL, VOL. 22, NO. 3, NOVEMBER 2007



 

Involving Unsymmetric Matrices With 
Complex Spectrum,” Electronic Transactions 
On Numerical Analysis, vol. 1, pp. 11-32, 
September 1993. 

 
 
 
 

Manuel F. Catedra received 
his M.S. and Ph. D. degrees in 

Telecommunications 
Engineering from the 
Polytechnic University of 
Madrid (UPM) in 1977 and 
1982 respectively. From 1976 
to 1989 he was with the 

Radiocommunication and Signal Processing 
Department of the UPM. He has been Professor at the 
University of Cantabria from 1989 to 1998. He is 
currently Professor at the University of Alcalá, in 
Madrid, Spain. 
He has worked on about 60 research projects solving 
problems of Electromagnetic Compatibility in Radio 
and Telecommunication Equipment, Antennas, 
Microwave Components and Radar Cross Section and 
Mobile Communications. He has developed and applied 
CAD tools for radio-equipment systems such as Navy-
ships, aircraft, helicopters, satellites, the main 
contractors being  Spanish or European Institutions such 
as EADS, ALCATEL, CNES, ALENIA, ESA, DASA,  
SAAB, INTA, BAZAN, INDRA, the Spanish Defence 
Department. 
He has directed about 15 Ph. D. dissertations, has 
published about 45 papers (IEEE, Electronic Letters, 
etc), two books, about 10 chapters in different books, 
has given short courses and has given around a hundred 
and thirty presentations in International Symposia. 
 
 
 

Oscar Gutiérrez Blanco was 
born in Torrelavega, Spain, in 
1970. He received the BS and 
MS degrees in 

Telecommunications 
Engineering from the 
University of Cantabria, Spain, 
in 1993 and 1996, respectively. 

From 1995 to 1998, he was with the Communications 
Engineering Department of the Cantabria as Research 
assistant. He received the Ph. D. degree in 
Telecommunication from the Alcala university, Spain, 
in 2002. From 1998 to 2000, he was with the Signal 
Theory and communications Deparment of the Alcala 
University, Madrid. In 2001, he is currently an 
assistant professor in the Computational Science 
Department in the Alcalá University, Madrid. 
He has participated in more than 40 research projects, 
with Spanish and European companies, related with 
analysis of on board antennas, radio propagation in 

mobile communication, RCS computation, etc. His 
research interests are in high-frequency methods in 
electromagnetic radiation and scattering, and ray-
tracing acceleration techniques. 
 
 

Iván González Diego was born in 
Torrelavega, Spain in 1971. He 
received the B.S. and M.S. degrees 
in telecommunications engineering 
from the University of Cantabria, 
Spain, in 1994 and 1997 
respectively, and the Ph. D. degree 
in telecommunications engineering 

from the Univeristy of Alcalá , Madrid, Spain in 2004. 
He worked in the Detectability Laboratory of the 
National Institute of Technical Aerospace (INTA), 
Madrid, Spain and as an Assistant Researcher at the 
University of Alcalá. He currently works as Assistant 
Professor in this university. He has participated in 
several research projects with Spanish and European 
companies, related with analysis of on board antennas, 
radio propagation in mobile communications, RCS 
computation, etc. His research interests are in 
numerical methods applied to the electromagnetic 
problems, like genetic algorithms and numerical 
methods to represent complex bodies for the 
electromagnetic techniques. 
 
 

 
Francisco Saez de Adana was 
born in Santander, Spain, in 
1972. He received the BS, MS 
and Ph. D. degrees in 

Telecommunications 
Engineering from the University 
of Cantabria, Spain, in 1994, 

1996 and 2000, respectively. Since 1998 he works at 
the University of Alcalá, first as assistant professor 
and since 2002 as professor. He has worked as faculty 
research at Arizona State University from March 2003 
to August 2003. 
He has participated in more than forty research 
projects with Spanish, European, American and 
Japanese companies and universities, related with 
analysis of on board antennas, radio propagation in 
mobile communication, RCS computation, etc. He has 
directed two Ph. D. Dissertations, has published 
sixteen papers in referred journals and more than 40 
conference contributions at international symposia. 
His research interests are in areas of high-frequency 
methods in electromagnetic radiation and scattering, 
on-board antennas analysis, radio propagation on 
mobile communications and ray-tracing acceleration 
techniques. 
 

372CÁTEDRA, ET. AL.: ELECTRIC AND MAGNETIC DUAL MESHES TO IMPROVE MOM FORMULATIONS




